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ABSTRACT In Caenorhabditis elegans, the dopamine transporter DAT-1 regulates synaptic dopamine (DA)
signaling by controlling extracellular DA levels. In dat-1(ok157) animals, DA is not taken back up presynap-
tically but instead reaches extrasynpatic sites, where it activates the dopamine receptor DOP-3 on
choligeneric motor neurons and causes animals to become paralyzed in water. This phenotype is called
swimming-induced paralysis (SWIP) and is dependent on dat-1 and dop-3. Upstream regulators of dat-1
and dop-3 have yet to be described in C. elegans. In our previous studies, we defined a role for HLH-17
during dopamine response through its regulation of the dopamine receptors. Here we continue our charac-
terization of the effects of HLH-17 on dopamine signaling. Our results suggest that HLH-17 acts downstream
of dopamine synthesis to regulate the expression of dop-3 and dat-1. First, we show that hlh-17 animals
display a SWIP phenotype that is consistent with its regulation of dop-3 and dat-1. Second, we show that this
behavior is enhanced by treatment with the dopamine reuptake inhibitor, bupropion, in both hlh-17 and dat-1
animals, a result suggesting that SWIP behavior is regulated via a mechanism that is both dependent on and
independent of DAT-1. Third, and finally, we show that although the SWIP phenotype of hlh-17 animals is
unresponsive to the dopamine agonist, reserpine, and to the antidepressant, fluoxetine, hlh-17 animals are
not defective in acetylcholine signaling. Taken together, our work suggests that HLH-17 is required to main-
tain normal levels of dopamine in the synaptic cleft through its regulation of dop-3 and dat-1.
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In Caenorhabditis elegans and other multicellular organisms, basic he-
lix-loop-helix (bHLH) proteins coordinate a number of developmental
events, including myogenesis (Chen et al. 1994), organ morphogenesis
(Tamai and Nishiwaki 2007), and mesodermal development (Harfe
et al. 1998). These proteins also have vital functions during neurogenesis
(Hallam et al. 2000; Krause et al. 1997). For example, the proneural
protein HLH-14 is required to generate multiple neurons stemming
from a variety cell lineage types, while HLH-3 is needed for the differ-
entiation of hermaphrodite-specific motor neurons (Doonan et al. 2008;
Frank et al. 2003; Poole et al. 2011). HLH-17 is the C. elegans homolog

of the mammalian proneural family Olig (Ligon et al. 2006; Zhou and
Anderson 2002) but does not appear to play a role in neuronal
specification during embryogenesis (Yoshimura et al. 2008). Our
previous studies instead demonstrated that HLH-17 is required for
normal behavioral responses to dopamine signaling (Felton and
Johnson, 2011).

In vertebrates and invertebrates, dopamine signaling is associated
with motivation, recognition and reward, memory and adaptation,
hormonal regulation, and motor control. In humans, imbalances in
dopamine signaling are associated with many neurological diseases,
including Parkinson disease, Alzheimer disease, ADHD, and substance
abuse (Choi and Tarazi 2010; Middleton et al. 2007; Xie et al. 2010).
Dopamine signaling in C. elegans involves many of the same molecules
as in mammals (Chase and Koelle 2007). For example, dopamine is
synthesized by the tyrosine hydroxylase enzyme CAT-2. On synthesis,
dopamine is sequestered in presynaptic storage vesicles by the ve-
sicular monoamine transporter CAT-1, where it remains until being
released into the presynaptic cleft in response to a stimulus. Once in
the synapse, dopamine binds to and activates D1-like (DOP-1) and
D-2 like receptors (DOP-2 and DOP-3) that are positioned either
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pre-, post-, or extra-synaptically. Unbound dopamine is taken back
up into the presynaptic cell via reuptake by the dopamine trans-
porter DAT-1.

HLH-17 is expressed in the glia-like cells surrounding the CEP
dopaminergic neurons (McMiller and Johnson 2005) and in the sheath
or socket cells of the inner labia and outer labia (Yoshimura et al. 2008).
Our previous data revealed that HLH-17 affects dopamine signaling
through the DOP-1, DOP-2, and DOP-3 receptors as shown by the
impaired response of hlh-17(ns204) animals to endogenous and exoge-
nous dopamine. The hlh-17(ns204) animals also have reduced levels of
the dop-3 and dop-1 mRNAs and phenocopy dop-3 hypomorhs (Chase
et al. 2004; Felton and Johnson 2011). Together, these data suggest that
HLH-17 functions upstream of the dopamine receptor genes and that
the loss of hlh-17 causes a reduction in dopamine receptor activity.

Here we continue our characterization of the role of HLH-17 in
dopamine signaling. Our data suggest that HLH-17 influences dopamine-
dependent behaviors by regulating genes that mediate levels of ex-
tracellular dopamine. The dat-1 mRNA levels are reduced, but not
eliminated, in hlh-17(ns204) animals. Furthermore, hlh-17(ns204)
animals display swimming-induced paralysis (SWIP) behavior in
water that is an intermediate between the behavior in dat-1 animals
and in wild-type animals and that is enhanced by treatment with the
dopamine reuptake inhibitor, bupropion. We show that a null allele of
dop-3 completely suppresses the SWIP phenotype of hlh-17 animals,
supporting previous data that HLH-17 acts upstream of DOP-3. Sur-
prisingly, the SWIP phenotype of hlh-17 animals is unaffected by treat-
ment with the VMAT inhibitor reserpine or with the serotonin reuptake
inhibitor, fluoxetine; however, this unresponsiveness is not due to re-
duced acetylcholine signaling. Taken together, our results suggest that
HLH-17 influences extracellular dopamine levels in C. elegans, in part
by its regulation of the dopamine receptors and the dopamine
transporter.

MATERIALS AND METHODS

Nematode strains and maintenance
The following strains were used in this study: wild-type: Bristol strain
(N2); RM2702 [dat-1(ok157)]; OS2649: [hlh-17(ns204)]; and LX705
[dop-1 (vs100) dop-3 (vs106)]. OS2649 was a gift from Dr. S. Shaham.
The strains CMJ2003 [hlh-17(ns204); dat-1(ok157)] and CMJ2004
[hlh-17(ns204); dop-1(vs100) dop-3(vs106)] were generated using tra-
ditional crossing techniques and the genotypes were confirmed by
PCR. To generate CMJ2004, hlh-17(ns204) males were crossed with
dop-1(vs100) dop-3(vs106) hermaphrodites, and the F1 males were
backcrossed to dop-1(vs100) dop-3(vs106). F2 hermaphrodites were
separately cloned, and their progeny were genotyped by PCR. The
strain CMJ2005 [hlh-17(ns204); dat-1(ok157); dop-1(vs100) dop-3
(vs106)] was generated by crossing CMJ2003 males with CMJ2004.
F1 hermaphrodites were separately cloned, and their progeny
were genotyped by PCR for hlh-17 and dat-1. The progeny of
hermaphrodites that were confirmed to be homozygous for both
hlh-17 and dat-1 were then subcloned and their progeny were
screened for homozygosity for dop-3 by PCR and for rescue of
SWIP behavior.

The transgene, cmjEx22, is a 6.2-kb genomic fragment consisting of
2 kbp upstream of the hlh-17 translational start site, the entire hlh-17
coding region, the SV40 nuclear localization signal (NLS), and 850 bp
of the sequences coding for green fluorescent protein (GFP). The GFP
sequences were amplified from pPD95.67 (a gift from A. Fire) using
serial overlap PCR. Transgenic lines to rescue loss of hlh-17 were
produced by microinjecting the final PCR product (cmjEx22) into

hlh-17(ns204) animals, along with the pCFJ90 [Pmyo-2::mCherry::
unc-54utr] co-injection marker, using standard microinjection tech-
niques(Rieckher et al. 2009), and is designated as CMJ2002 [hlh-17
(ns204); cmjEX22, pCFJ90(Pmyo-2::mCherry::unc54utr)].

Three separate lines (15.1, 15.3, and 3.1) were tested for rescue of
SWIP, basal slowing response, and dopamine paralysis. All three lines
were able to at least partially rescue each of the phenotypes tested;
however, the degree of rescue for each line was specific to the pheno-
type tested.

Unless otherwise noted, strains were cultured on solid nematode
growth media (NGM) containing OP50 at 20� using standard methods
and synchronized cultures were prepared by hypochlorite treatment
of gravid adults, as previously described (Brenner 1974). The following
primers were used for genotyping: HLH17F: 59-TCTGGGGACC
CTCTCCTCG-39; HLH17R: 59-CGATTTTTGCTGCTAATGGGCAA
CAC-39; DAT1F: 59-CTATTCGGATATCTTGCCAATGCTATACC-
39; DAT1R: 59-CTATTCGGATATCTTGCCAATGCTATACC-39; DOP3F:
59-CTATTCGGATATCTTGCCAATGCTATACC-39; and DOP3R:
59-CTAACTCACCAGAAAATCAGAAACTGC-39.

Gene expression analysis
Synchronized populations were collected at the L4 stage, pelleted, and
frozen at 280�. Total RNA, cDNA synthesis, and real-time PCR were
performed as previously described (Felton and Johnson 2011), except
the cDNA was amplified from 1 mg of total RNA in 20 mL reactions.
Real-time PCR was performed with Taqman Gene Expression Assays
(Applied Biosystems/Invitrogen) using relative quantitation against glyc-
eraldehyde 3-phosphate dehydrogenase (gpd-3) (Ce02616909_gH) as the
endogenous control. The probe sets used were: hlh-17(Ce02616669_m1);
dat-1(Ce02450896_g1); cat-1(Ce02495610_m1);mod-5 (Ce02415245_m1);
dop-1 (Ce02494345_m1); dop-2 (Ce02479824_m1) dop-3(Ce02496462_m1);
lev-8 (Ce02501240_g1); and unc-43 (Ce02458977_m1). Gene expression
assays were performed in triplicate for at least three biological
replicates.

Behavioral assays
Assays for dopamine paralysis and basal slowing response were as
previously described (Felton and Johnson 2011), except animals were
assayed at the late L4 stage. For SWIP, approximately 10 L4-stage
animals were placed in 150 mL of water in a single well of 48-well
tissue culture plate (Cat #677180; CELLSTAR). After 20 min, animals
were categorized as paralyzed if they failed to exert the normal thrash-
ing behavior within a 20-sec time frame (McDonald et al. 2007). For
SWIP assay conducted with inhibitors, animals were grown on NGM
plates containing the appropriate drug [reserpine (0.6 mM; Cat
#S1601), fluoxetine (145 mM; Cat #S1333), and bupropion (10 mM;
Cat #S2452)] and then analyzed in water. All inhibitors were obtained
from Selleckchem. Aldicarb-induced paralysis and levamisole-induced
paralysis assays were conducted using standard protocols (Lewis et al.
1980; Nguyen et al. 1995; Mahoney et al. 2006) with some modifica-
tions. Plates containing aldicarb (1.0 mM; FisherSci #US-PST-940) or
levamisole (0.2 mM; FisherSci #ICN15522805) were prepared 1 hr
before use. Drugs were prepared as 100-mM stocks in 70% ethanol,
diluted in sterile M9 buffer, added to NGM plates already seeded with
OP50, to the appropriate concentration, and allowed to diffuse into
the media for 1 hr. L4-stage animals were manually selected to con-
firm their age and moved to plates using a platinum wire and were
examined every hour for a 5-hr to 6-hr period. Animals were catego-
rized as paralyzed if they failed to move after prodding with a platinum
wire.
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RESULTS AND DISCUSSION

HLH-17 functions upstream of the D2-like dopamine
receptor DOP-3 to regulate behavioral responses
to dopamine
The effects of dopamine signaling in C. elegans are mediated by the
three heterotrimeric G-protein receptors, DOP-1, DOP-2, and DOP-3
(Missale et al. 1998). Our previous studies demonstrated that mRNA
levels of these three receptors are reduced in hlh-17(ns204) animals
and that hlh-17(ns204) animals phenocopy those carrying loss-of-
function alleles of dop-3 (Felton and Johnson 2011). As shown in
Figure 1, and in our previous studies, fewer hlh-17(ns204) and dop-3
(vs106) animals than wild-type animals were paralyzed after 40 min of
exposure to 10 mM of exogenous DA, and both well-fed hlh-17(ns204)
animals and well-fed dop-3(vs106) animals failed to exhibit the basal
slowing response (BSR) when encountering a bacterial lawn. In this
study, we used an extragenic, translational reporter for hlh-17 to rescue
the dopamine paralysis and basal slowing phenotypes of transgenic
hlh-17(ns204) animals. This reporter was able to restore dopamine
sensitivity and to enhance BSR, showing that the previously reported
phenotypes are indeed a result of loss of HLH-17 (Figure 1). We
previously reported that a transcriptional reporter for hlh-17 drives
expression in the glial-like, cephalic sheath cells of the dopaminergic
neurons (McMiller and Johnson 2005), and others have detected weak
hlh-17 expression in the sheath or socket cells of the inner labia and
outer labia (Yoshimura et al. 2008). The translational reporter used in
this study was driven by the same promoter sequences and was sim-
ilarly expressed (data not shown). This expression pattern weakly
correlates with expression of the dopamine receptors in neuronal
support cells of the head (Chase et al. 2004); therefore, we looked
for genetic interactions between hlh-17 and dop-3. As shown in Figure
1, the resistance to dopamine-induced paralysis and the BSR of hlh-17
(ns204); dop-3(vs106) are not significantly different from the resistance
and slowing response phenotypes of dop-3(vs106) and hlh-17(ns204)
animals (Figure 1) and are consistent with a model in which HLH-17
is functioning in the same genetic pathway as DOP-3 to modulate
these behaviors. Taken together, we conclude that the influence of
HLH-17 on behaviors that are mediated by dopamine occurs through
the transcriptional regulation of dop-3. Our existing data suggest that
this regulation is indirect; however, it is possible that the transcrip-
tional and translational constructs used in our studies do not fully
report the wild-type expression pattern for hlh-17. In fact, recent gene
expression profiles from FACS sorted cells point to overlapping ex-
pression of hlh-17 and dop-3 in the dopamine neurons of late embryos,
in panneuronal cells and the glutamate receptor neurons of L2-stage
animals, and in the cephalic sheath of young adult animals (Spencer
et al. 2011; see WormViz at http://www.vanderbilt.edu/wormdoc/
wormmap/WormViz.html). Additionally, dopamine receptor genes
are expressed in mammalian glial cells (Biedermann et al. 1995; Kuric
et al. 2013) and further support the possibility that HLH-17 directly

Figure 1 HLH-17 functions upstream of dop-3 to regulate dopamine
signaling. (A) DA-induced paralysis: hlh-17(ns204), dop-3 (vs106), and
hlh-17(ns204); dop-3 (vs106) animals are less sensitive than wild-type
animals to 10 mMDA. Transgenic expression of HLH-17::GFP in hlh-17
(ns204) animals rescues the DA-induced paralysis phenotype. The bar
for hlh-17R represents the average measurements from three biolog-
ical replicas of three independent lines. �Statistical significance when
compared to wild-type, n = 10 animals/strain/rep for three biological
replicas. (B) Basal slowing response: Well-fed wild-type animals, but

not hlh-17(ns204), dop-3 (vs106), or hlh-17(ns204); dop-3 (vs106) ani-
mals, move significantly slower in the presence of food (white bars)
than in the absence of food (gray bars). (C) Transgenic expression of
HLH-17::GFP rescues the basal slowing response of hlh-17(ns204) ani-
mals. Three independent lines, 15.3, 15-1, and 3.1, were assayed. In
(B) and (C), five animals/rep/strain for a total of three biological replicas
were assayed. Each animal was analyzed for three separate 20-sec
intervals, so that the total number of observations was 15 observations/
rep/strain. �P , 0.05; ��P , 0.005; ���P , 0.0005.
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regulates as dop-3 expression in the cephalic sheath and in selected
neurons during C. elegans development.

The hlh-17 mutants are defective in clearing dopamine
from the synaptic cleft
In our previous studies, the mRNA levels of genes required for
dopamine synthesis, those encoding tyrosine hydroxylase gene (cat-2)
and the aromatic amino acid decarboxylase (bas-1), were not affected
by loss of hlh-17. This suggested that the presynaptic synthesis of
dopamine is not compromised in hlh-17(ns204) animals. Additionally,
exogenous dopamine failed to repress egg-laying in naive hlh-17(ns204)
animals; however, exogenous dopamine was able to repress the stim-
ulation of egg-laying by the neurotransmitter, serotonin (Felton and
Johnson 2011). Although we did not further address the serotonin
responsiveness of hlh-17(ns204) animals, this result suggested that
some ability of hlh-17(ns204) animals to respond to exogenous dopa-
mine may be mediated by the binding of the neurotransmitter to other
non-dopaminergic receptors. For example, dopamine can bind with
low affinity to a number of the neurotransmitter receptors involved in
serotonin-stimulated egg-laying, including MOD-1, SER-1, SER-2, and
SER-7 (Chase and Koelle 2007; Dempsey et al. 2005).

To further define the role of HLH-17 during dopamine signaling,
we measured the mRNA levels of the genes encoding the vesicular
monoamine transporter (VMAT), cat-1, and the dopamine reuptake
transporter, dat-1, in hlh-17(ns204) animals. As shown in Figure 2,
dat-1, but not cat-1, mRNA levels, are decreased in hlh-17(ns204)
animals. We also found that the mRNA levels for the dopamine re-
ceptor genes, dop-1, dop-2, and dop-3, are downregulated in L4-stage
animals, confirming that the decreased levels previously reported in
L1-stage animals (Felton and Johnson 2011) remain low in animals at
the stage used for our behavior assays.

Like the mammalian VMATs, CAT-1 mediates the packaging and
transport of the biogenic amines into synaptic vesicles and is required
for proper release of dopamine from presynaptic neurons in C. elegans
(Duerr et al. 1999). The dopamine transporter, DAT-1, is localized to
the synapses of all dopaminergic neurons of C. elegans males and
hermaphrodites (McDonald et al. 2007) and is responsible for neuro-
transmitter clearance from the synaptic cleft (Carvelli et al. 2004;
Torres et al. 2003). In otherwise wild-type animals, loss of dat-1 leads
to increased activation of the DOP-3 receptors located on cholinergic
motor neurons (Chase et al. 2004). Consequently, dat-1 animals are
paralyzed in water as a result of DOP-3 hyperactivation; this behavior
can be measured using a SWIP assay (Chase and Koelle 2007; McDonald
et al. 2007). SWIP does not occur in cat-1 animals because dopamine
is not efficiently packaged or subsequently released into the synaptic
cleft. We reasoned that if hlh-17(ns204) animals synthesize and release
normal levels of dopamine, but produce less DAT-1, then they would
be less efficient than wild-type animals at clearing extrasynpatic do-
pamine from the synaptic cleft. To test this hypothesis, we conducted
SWIP assays with wild-type, hlh-17(ns204), and dat-1(ok157) animals.
As reported previously (McDonald et al. 2007), and as shown in
Figure 2, dat-1(ok157) animals, but not wild-type animals, have
a strong SWIP response after 20 min in water. The SWIP response
of hlh-17(ns204) animals was an intermediate response, with approx-
imately 40% of the animals becoming paralyzed after 20 min in water.

Figure 2 Loss-of hlh-17 affects extracellular DA levels. (A) mRNA lev-
els in L4-stage hlh-17(ns204) animals when normalized against mRNA
levels in age-matched wild-type animals. Light gray shading repre-
sents wild-type range of expression (1.0 6 0.115). The levels of cat-1
and mod-5 mRNA are not significantly affected in hlh-17(ns204) ani-
mals. (B) hlh-17(ns204) animals demonstrate SWIP behavior that is an
intermediate of the behavior in N2 and dat-1(ok157) animals, and that
is rescued by transgenic expression of HLH-17::GFP. The bar for hlh-
17R represents the average measurements from three biological rep-
licas of three independent lines. For all strains except hlh-17R, n = 30
animals/rep/strain. For hlh-17R, n was equal to an average of at least
15 animals/line/biological rep (range, 12–26) because of differences in
transmission frequency of the transgene. (C) SWIP phenotype in dou-
ble mutant hlh-17(ns204); dat-1(ok157) and hlh-17(ns204); dop-3
(vs106) animals is more similar to the phenotype in dat-1(ok157) and
dop-3(vs106) animals, respectively, than in wild-type animals. The
SWIP phenotype of hlh-17(ns204); dat-1(ok157); dop-3(vs106) animals

is not significantly different from the SWIP phenotypes of dop-3 or hlh-
17(ns204); dop-3(vs106) animals. n = 30 animals/rep/strain for three
biological replicas. �P , 0.05; ��P , 0.005; ���P , 0.0005; ����P ,
0.0001.
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This phenotype was rescued by transgenic expression of HLH-17. The
result suggests that loss of HLH-17 compromises the ability of mutant
animals to clear dopamine from the synaptic cleft and could be inter-
preted as representing a slight, rather than complete, loss of dat-1 activity.

The SWIP phenotype seen in dat-1 animals is completely rescued
by loss of DOP-3 (Sugiura et al. 2005); hence, we reasoned that the
reduced SWIP response of hlh-17(ns204) animals, which is an inter-
mediate of the responses of wild-type and dat-1 animals, may be the
result of having decreased levels of both dop-3 and dat-1. To test this
hypothesis, we compared the SWIP phenotypes of hlh-17(ns204); dat-
1(ok157) animals and of hlh-17(ns204); dop-3(vs106) animals with
those of dat-1(ok157) and dop-3(vs106) animals, respectively. As
shown in Figure 2, complete loss of dat-1 activity enhanced the SWIP
response of hlh-17(ns204) animals, whereas complete loss of dop-3
activity significantly decreased the SWIP response. Furthermore, the
SWIP phenotypes of hlh-17(ns204); dop-3(vs106) animals and hlh-17
(ns204); dop-3(vs106); dat-1(ok157) animals were not significantly dif-
ferent from that of dop-3(vs106) animals (P = 0.574 and 0.265, re-
spectively). Interestingly, loss of hlh-17 and dat-1 appears to be an
additive effect: a comparison of the differences of the means shows
that the difference for wild-type vs. hlh-17; dat-1 is equal to the sum of
the differences for wild-type vs. hlh-17 and wild-type vs. dat-1. These
results underscore the dependence of the SWIP phenotype on DOP-3.
Furthermore, the results suggest that the SWIP response is not medi-
ated solely through dat-1, and that hlh-17 may affect the SWIP
phenotype through both dat-1-dependent and dat-1-independent
mechanisms. A dat-1-independent, dop-3-dependent mechanism for
the SWIP phenotype is consistent with the results of a previously
reported forward genetics screen (Hardaway et al. 2012) and suggests
that the HLH-17 transcriptional network may include genes that act
in parallel to dat-1.

Our results from the dopamine paralysis assays and the egg-laying
assays suggest that hlh-17(ns204) animals are less sensitive to exoge-
nous dopamine, a result that is consistent with reduced dop-3 activity.
The results from assays for BSR and SWIP, both of which rely on
normal synthesis and release of endogenous dopamine from presyn-
aptic neurons, suggest that hlh-17(ns204) animals produce normal
amounts of dopamine but are deficient in the ability to transport
the dopamine. This result is also consistent with reduced dop-3 activ-
ity. Likewise, a failure in the ability to transport dopamine from the
synaptic cleft is consistent with reduced dat-1 activity, as is the SWIP
phenotype of hlh-17(ns204) animals. From these results, we conclude
that HLH-17 functions to control extrasynpatic dopamine levels, in
part by its regulation of dop-3 and dat-1.

The hlh-17 mutants are responsive to reuptake
inhibitors that are selective for dopamine, but not
for serotonin
Bupropion is a selective norepinephrine and dopamine reuptake
inhibitor commonly used in mice and human studies (Dellagioia et al.
2012; Roelands et al. 2012; Rosenberg et al. 2013) and in the treatment
of ADHD (Cantwell 1998; Reimherr et al. 2005) and depression
(Carlat 2012; Stahl et al. 2013). Reuptake inhibitors block the ability
of a transporter to move a neurotransmitter from the synapse to the
presynaptic neuron or the surrounding glial cells, thereby increasing
extracellular concentrations that ultimately increase neurotransmis-
sion. We reasoned that the intermediate SWIP behavior of hlh-17
(ns204) animals occurs because these animals still produce a small
amount of functional DAT-1, and that treatment with bupropion would
increase SWIP in hlh-17(ns204) animals. As expected, pretreatment
of hlh-17(ns204) animals with bupropion increased their SWIP

response to that of untreated dat-1(ok157) animals (Figure 3), sup-
porting our mRNA studies showing that dat-1 expression is reduced
but not completely eliminated in hlh-17(ns204) animals. It has been
shown previously that SWIP can be rescued in dat-1(ok157) animals
by pretreatment with the dopamine antagonist reserpine (McDonald

Figure 3 The hlh-17 animals respond selectively to reuptake inhibi-
tors. (A) Pretreatment with the DAT reuptake inhibitor, bupropion,
increases the SWIP phenotype of N2, hlh-17(ns204), dat-1(ok157),
and hlh-17(ns204); dop-3(vs106) animals. The ability of bupropion to
enhance SWIP behavior is not dependent on DOP-3. The SWIP phe-
notype in hlh-17(ns204) animals is unaffected by pretreatment with
reserpine (B) or fluoxetine (C). In all panels, n = 30 animals/rep/strain;
dark bars = minus inhibitor; and light bars = plus inhibitor. �P , 0.05;
��P , 0.005; ���P , 0.0005.
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et al. 2007), an antipsychotic drug that depletes vesicular dopamine
stores by blocking the vesicular monoamine transporter (VMAT).
As shown in Figure 3, pretreatment with reserpine reduced the SWIP
responses of dat-1(ok157) animals but did not affect SWIP in wild-
type animals or in hlh-17(ns204) animals. This result was unexpected
because cat-1 mRNA levels are not affected in hlh-17(ns204) animals;
however, others have reported reserpine insensitive mutants that show
SWIP behavior in a dat-1-dependent manner (Hardaway et al. 2012).
Bupropion pretreatment also increased SWIP in dat-1(ok157) animals,
hlh-17(ns204); dat-1(ok157) animals, and hlh-17(ns204); dat-1(ok157);
dop-3(vs106) animals (Figure 3). Together, these results further em-
phasize that SWIP behavior may not be mediated solely through
dopamine reuptake by DAT-1. The ability to induce SWIP behavior
in dop-3 animals suggests that the mechanism may occur through
a dopamine-independent mechanism.

To test the possibility that the SWIP phenotype is also modulated
through serotonin, although a role for 5HT during SWIP has not been
reported to date, we measured the SWIP response of WT, hlh-17
(ns204), and dat-1(ok157) animals after exposure to fluoxetine. Fluox-
etine blocks the function of SERT/MOD-5, the serotonin (5HT) reup-
take transporter (Keowkase et al. 2010; Kullyev et al. 2010). As seen in
Figure 3, the SWIP response phenotype increased in wild-type ani-
mals that were pretreated with fluoxetine but decreased in similarly
treated dat-1(ok157) animals. These results can be explained by the
action of fluoxetine, which is known to increase extracellular concen-
trations of dopamine (Bymaster et al. 2002; Koch et al. 2002). The
excess dopamine in treated wild-type animals would phenocopy
mutants that have increased extracellular levels of dopamine and have
an increased SWIP response. Fluoxetine can also aggressively inhibit
any transport of dopamine by the serotonin transporters (Bymaster
et al. 2002) so that treated dat-1 animals would show a reduced SWIP
response, analogous to the reduced response of dat-1; dop-3 animals
(McDonald et al., 2007). Interestingly, hlh-17(ns204) animals were
insensitive to fluoxetine, although they have normal levels of mod-5
mRNA (see Figure 2) and respond to exogenous serotonin in egg-
laying assays (Felton and Johnson 2011). Fluoxetine has previously
been shown to act via both serotonin-dependent and serotonin-
independent mechanisms in C. elegans (Kullyev et al. 2010; Ranganathan
et al. 2001). In future studies we will further explore the role of HLH-17
in serotonin signaling, which may also address the mechanisms of flu-
oxetine resistance in hlh-17(ns204) animals.

The hlh-17(ns204) animals are not defective in
acetylcholine release
It is possible that the SWIP response of hlh-17(ns204) animals is in-
sensitive to both reserpine and fluoxetine because HLH-17 influences

the activity of C. elegans biogenic amines in a manner that, with the
exception of dopamine, does not involve the regulation of genes di-
rectly involved in neurotransmitter synthesis, packaging, or transport.
A more attractive, alternative possibility is that HLH-17 influences
acetylcholine release, as the phenotypic effects of both reserpine (Saharia
et al. 2012) and fluoxetine (Bolanos et al. 2002; Chau et al. 2011) are
dependent on acetylcholine. In support of this possibility, the inhib-
itory effect of fluoxetine on acetylcholine release in rats is dependent
on activity of the dopaminergic D2 receptors (Bolanos et al. 2002).
Furthermore, loss of dop-3 activity in C. elegans has recently been
shown to increase acetylcholine release, whereas null alleles of genes
required for acetylcholine release have been shown to rescue the SWIP
phenotype in dat-1(ok157) animals (Allen et al. 2011).

We used aldicarb and levamisole sensitivity assays to examine
acetylcholine release and acetylcholine reception, respectively, in hlh-
17(ns204) animals. Aldicarb is an acetylcholinesterase inhibitor and
thereby increases the concentration of acetylcholine in the neuromus-
cular junction. Animals with reduced acetylcholine release are resis-
tant to aldicarb-induced paralysis, whereas those with increased
acetylcholine release are more sensitive (Allen et al. 2011; Rand
2007). As shown in Figure 4, hlh-17(ns204) animals are more sensitive
to aldicarb than wild-type and dat-1(ok157) animals (P = 0.0428 and
0.132, respectively). This result is consistent with the weak effects of
the dop-3(v106) mutation on aldicarb sensitivity that was previously
reported, and suggests that acetylcholine release is otherwise normal
in hlh-17(ns204) animals. We also found that hlh-17(ns204) animals
are more sensitive to levamisole (P = 0.0002), a cholinergic agonist
that binds selectively to acetylcholine receptors in body-wall muscles
(Rand 2007). We are able to tentatively explain this increased sensi-
tivity based on our unpublished microarray analysis that indicates that
the activity of the nicotinic acetylcholine receptor gene, lev-8, is upre-
gulated in hlh-17(ns204) animals. Interestingly, our microarray data
indicated that the gene encoding the calcium/calmodulin-dependent
protein kinase UNC-43 is also upregulated. Mutants carrying gain-of-
function alleles of unc-43 have previously been reported to have in-
creased resistance to fluoxetine. As shown in Figure 2, we were able to
validate these results using RT-qPCR analysis. mRNA levels of unc-43
and lev-8 are increased in hlh-17 animals, whereas the level of mod-5,
a gene that was not differentially affected in our microarray analysis,
remained unaffected. To our knowledge, loss of dopamine receptor
activity, in particular dop-3, has not been tested; however, animals that
are defective in dopamine synthesis display normal sensitivity to leva-
misole (Suo and Ishiura 2013). Taken together, our results suggest that
neither acetylcholine release nor acetylcholine reception is compro-
mised in hlh-17(ns204) animals, and that the resistance to reserpine
and fluoxetine may be mediated through other genes in the HLH-17
transcriptional network.

Figure 4 The hlh-17 animals do not have
reduced acetylcholine signaling. (A) hlh-17
(ns204) animals are more susceptible to aldi-
carb-induced paralysis than wild-type (P =
0.0428) and dat-1(ok157) animals (P = 0.1319).
(B) The hlh-17(ns204) animals are more sus-
ceptible to levamisole-induced paralysis than
wild-type (P = 0.0002) and dat-1(ok157) animals
(P = 0.0002). In all panels, n = 30 animals/rep/
strain.
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CONCLUSION
The Olig sub-family of bHLH transcription factors influences the
specification of oligodendrocytes, myelin formation, and axon path-
finding of motor neurons in both invertebrates and vertebrates (Lu
et al. 2002; Oyallon et al. 2012; Tiso et al. 2009; Zhou and Anderson
2002). In C. elegans, HLH-17 is an Olig homolog that is expressed in
sheath cells of the dopaminergic neurons; however, this protein has no
known role in glial cell specification, neurite extension, or axon guid-
ance (Yoshimura et al. 2008). The work presented here and in pre-
vious studies points to a role for HLH-17 in controlling dopamine-
dependent behaviors. Specifically, our work suggests that HLH-17 is
needed to clear extracellular dopamine from the synaptic cleft. First,
hlh-17(ns204) animals have reduced mRNA levels for dat-1, dop-3,
dop-2, and dop-1 but maintain normal levels of cat-1 and cat-2. Sec-
ond, the SWIP response of hlh-17(ns204) animals is consistent with
reduced levels of dat-1 and dop-3 and is rescued when dop-3 activity is
completely eliminated. Third, hlh-17(ns204) animals are not defective
in acetylcholine release and, in fact, show an increased sensitivity to
aldicarb that is consistent with the increased acetylcholine release that
occurs in animals with reduced dop-3 activity.

The bHLH transcription factor family has well-established roles in
neurogenesis and the specification and maintenance of neuronal
identity. In Drosophila, for example, the bHLH gene, lethal of scute, is
required for cell-specific transcription of the dopaminergic H-cell neu-
ron of the ventral nerve cord and for specification of the non-midline
dopaminergic neurons (Oyallon et al. 2012; Stagg et al. 2011) In zebra-
fish, Olig2 regulates expression of the gene encoding Sim1, a bHLH-
PAS protein that drives specification of the diencephalic dopaminergic
neurons (Borodovsky et al. 2009). Less clear, however, is whether
HLH-17 plays a conserved role in the regulation of genes required
for neurotransmitter signaling in general and dopamine signaling in
particular. The gene encoding the human dopamine reuptake trans-
porter is regulated by the hairy/enhancer of split-like bHLH protein,
HesR1. HesR1 represses activity of the human DAT1 gene in cell
culture by binding to sequences in the 39 UTR(Fuke et al. 2005).
HesR1 also affects dopamine receptor expression in mice, and hesr1
mutant mice show defects in dopamine-dependent behaviors (Fuke
et al. 2006). Although both are basic helix-loop-helix proteins, HLH-
17 shows no sequence similarity to HesR1 and is most similar to the
human olig-related proteins, bHLHb5/Beta3 and bHLHb4. Neither of
these proteins has been shown to directly regulate expression of the
dopamine transporter or dopamine receptor genes in humans. How-
ever, both proteins are part of the bHLH transcriptional network that
drives retina development (Feng et al. 2006; Pennesi et al. 2006;
Skowronska-Krawczyk et al. 2004), and the dopamine receptors are
critical for normal retinal function (He et al. 2013; Nguyen-Legros
et al. 1999; Ogata et al. 2012; Reis et al. 2007; Yang et al. 2013). Our
own transgenic expression data show strong expression of hlh-17 in the
cephalic sheath cells of wild-type animals and, on its own, do not
support the direct regulation of dat-1 and dop-3 by HLH-17. However,
mRNA for both dop-3 and hlh-17 was recently detected in glutamate
receptor neurons of L2-stage animals and in the cephalic sheath cells of
young adult animals (Spencer et al. 2011; see also WormViz). Further-
more, mRNA for dop-3, dat-1, and hlh-17 was detected in the dopamine
neurons and panneuronal neurons of late embryos and L2-stage ani-
mals, respectively. Taken together with the epistasis analysis presented
in this study, the colocalization of these mRNAs supports the possibility
that HLH-17 is a direct regulator of dop-3 and dat-1. However, further
studies are in progress to confirm that prediction.

Interestingly, the SWIP response in hlh-17(ns204) animals is en-
hanced by pre-treatment with bupropion, an antidepressant and DAT

inhibitor that is used to treat ADHD in adults and children (Faraone
and Glatt 2010; Jafarinia et al. 2012) but is unaffected by the antide-
pressant fluoxetine and the dopamine antagonist, reserpine. This find-
ing underscores the need to develop animal models of dopamine
signaling that accurately reflect the effects of reduced expression of
multiple neurotransmitter signaling pathway genes, rather than com-
plete loss of function of a single gene. Our future studies are aimed at
exploiting hlh-17(ns204) for this purpose.
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