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Abstract 38 

Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal 39 

hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the 40 

potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar 41 

previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus 42 

(MERS-CoV), thus far causing over 550 laboratory-confirmed infections, with an unexplained 43 

steep rise in the number of cases being recorded over recent months. The human MERS fatality 44 

rate of ~30% is alarmingly high, even though many deaths were associated with underlying 45 

medical conditions. Registered therapeutics for the treatment of coronavirus infections are not 46 

available. Moreover, the pace of drug development and registration for human use is generally 47 

incompatible with strategies to combat emerging infectious diseases. Therefore, we have 48 

screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such 49 

compounds would prove sufficiently potent, their efficacy might be directly assessed in MERS 50 

patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and 51 

lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (EC50 values 3-8 µM). 52 

Moreover, these compounds also inhibit the replication of SARS-coronavirus and human 53 

coronavirus 229E. Although their protective activity (alone or in combination) remains to be 54 

assessed in animal models, our findings may offer a starting point for treatment of patients 55 

infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce 56 

viral replication to very low levels, a moderate viral load reduction may create a window to 57 

mount a protective immune response. 58 

 59 
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 60 

Introduction 61 

In June 2012, a previously unknown coronavirus was isolated from a patient who died from 62 

acute pneumonia and renal failure in Saudi Arabia (1, 2). Since then the virus, now known as 63 

the Middle East respiratory syndrome coronavirus (MERS-CoV; (3)), was contracted by 64 

hundreds of others in geographically distinct locations in the Middle East and evidence for 65 

limited human-to-human transmission accumulated (4). Travel-related MERS-CoV infections 66 

were reported from a variety of countries in Europe, Africa, Asia and the U.S.A., causing small 67 

local infection clusters in several cases 68 

(http://www.who.int/csr/disease/coronavirus_infections/en/). About 200 laboratory-confirmed 69 

human MERS cases were registered during the first two years of this outbreak, but recently, for 70 

reasons that are poorly understood thus far, this number has almost tripled within just two 71 

months’ time (April-May 2014; (5)). This sharp increase in reported infections has enhanced 72 

concerns that we might be confronted with a repeat of the 2003 severe acute respiratory 73 

syndrome (SARS) episode, concerns aggravated by the fact that the animal reservoir for MERS-74 

CoV remains to be identified with certainty (6-9). Furthermore, at about 30%, the current 75 

human case fatality rate is alarmingly high, even though many deaths were associated with 76 

underlying medical conditions. MERS-CoV infection in humans can cause clinical symptoms 77 

resembling SARS, such as high fever and acute pneumonia, although the two viruses were 78 

reported to use different entry receptors, dipeptidyl peptidase 4 (DPP4; (10)) and angiotensin-79 

converting enzyme 2 (ACE2; (11)), respectively. 80 
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Coronaviruses are currently divided across four genera (alpha-, beta-, gamma-, and 81 

deltacoronaviruses; (12)). MERS-CoV was identified as a member of lineage C of the genus 82 

Betacoronavirus (2), which also includes coronaviruses of bat (13, 14) and hedgehog origin (6). 83 

Following the 2003 SARS epidemic, studies into the complex genome, proteome, and 84 

replication cycle of coronaviruses were intensified. Coronaviruses are enveloped viruses with a 85 

positive-sense RNA genome of unprecedented length (25 to 32 kb; (12, 15, 16)). The crystal 86 

structures of a substantial number of viral nonstructural and structural proteins were solved, 87 

and targeted drug design was performed for some of those (reviewed in (17)). Unfortunately, 88 

thus far none of these efforts resulted in antiviral drugs that were advanced beyond the 89 

preclinical phase (18). The 2003 SARS-CoV epidemic was controlled within a few months after 90 

its onset and since then the virus has not re-emerged, although close relatives continue to 91 

circulate in bat species (14). Consequently, the interest in anti-coronavirus drug development 92 

has been limited, until the emergence of MERS-CoV. Despite the modest size of this CoV 93 

outbreak thus far, the lack of effective methods to prevent or treat coronavirus infections in 94 

humans is a serious concern for the control of MERS-CoV or the next zoonotic coronavirus. 95 

Antiviral research in the post-SARS era resulted in the identification of several 96 

compounds that may target coronavirus replication directly or modulate the immune response 97 

to coronavirus infection. For example, entry inhibitors targeting the coronavirus spike protein 98 

were developed (reviewed in (19)). In addition, several of the replicative enzymes (including 99 

both proteases and the helicase) were targeted with small-molecule inhibitors, some of which 100 

can inhibit coronavirus infection in cell culture at low-micromolar concentrations ((20-26) and 101 

reviewed in (26) and (27)). Broad spectrum antiviral agents, like the nucleoside analogue 102 
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ribavirin and interferon (IFN), were tested for their ability to inhibit SARS-CoV infection and 103 

were – to a limited extent - used for the treatment of SARS patients during the outbreak 104 

(reviewed by (28) and (29)). In the case of ribavirin, mixed results were reported from studies in 105 

different cell lines, animal models, and patients. Also the merits of treating SARS patients with 106 

immunomodulatory corticosteroids have remained a matter of debate (reviewed in (28-30)). 107 

For MERS-CoV, partial ribavirin sensitivity was observed in cell culture and in a macaque animal 108 

model, but only when using very high doses of the compound in combination with interferon-109 

α2b (31, 32). However, in a small-scale clinical trial, this combination therapy did not benefit 110 

critically ill MERS patients (33). Nevertheless, the anti-coronavirus effects of type I IFN 111 

treatment deserve further evaluation, in particular since MERS-CoV seems to be considerably 112 

more sensitive than SARS-CoV (34, 35). Treatment with type I IFNs inhibits SARS-CoV and MERS-113 

CoV replication in cell culture (31, 34-41) and, for example, protected macaques against SARS-114 

CoV (36) or MERS-CoV infection (32). Based on experiments in cell culture, mycophenolic acid 115 

was recently reported to inhibit MERS-CoV infection (41, 42), and we and others showed that 116 

low-micromolar concentrations of cyclosporin A inhibit coronavirus replication (34, 43-45).  117 

We recently described (34) a high-throughput assay for antiviral compound screening 118 

that is based on the pronounced cytopathic effect (CPE) caused by MERS-CoV infection in Vero 119 

and Huh7 cells. This assay was now further exploited to screen a library of 348 FDA-approved 120 

drugs for their potential to inhibit MERS-CoV replication. Chloroquine, chlorpromazine, 121 

loperamide, and lopinavir were found to inhibit MERS-CoV replication in vitro at low-122 

micromolar concentrations. In addition, these molecules appear to be broad-spectrum 123 

coronavirus inhibitors, as they blocked the replication of human coronavirus 229E and SARS-124 
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CoV with comparable efficacy. Since these compounds have already been approved for clinical 125 

use in humans, their anti-MERS-CoV activity merits further investigation, in particular in a small-126 

animal model for MERS-CoV infection, of which a first example has recently been described 127 

(46). 128 

 129 

 130 

Materials and Methods 131 

Cell culture and virus infection - Vero, Vero E6, and Huh7 cells were cultured as described 132 

previously (34, 47). Infection of Vero and Huh7 cells with MERS-CoV (strain EMC/2012; (1)) at 133 

high or low multiplicity of infection (MOI) and SARS-CoV infection of Vero E6 cells  (strain 134 

Frankfurt-1; (48)) were done as described before (34). Infection with GFP-expressing 135 

recombinant HCoV-229E (HCoV-229E-GFP; (49)) was performed in DMEM containing 8% FCS, 2 136 

mM L-Glutamine (PAA), non-essential amino acids (PAA), and antibiotics. HCoV-229E-GFP was 137 

used to infect monolayers of Huh7 cells at an MOI of 5 as described previously (43). MERS-CoV 138 

and SARS-CoV titrations by plaque assay were performed essentially as described before (50). 139 

For titrations after high-MOI MERS-CoV infections (MOI of 1), cells were washed twice with PBS 140 

and the virus titer at 1 h post infection (p.i.) was determined to correct for the remainder of the 141 

inoculum. All work with live MERS-CoV and SARS-CoV was performed inside biosafety cabinets 142 

in biosafety level 3 facilities at Leiden University Medical Center or Erasmus Medical Center 143 

Rotterdam. 144 

 145 
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Screening of an FDA-approved compound library - A library of 348 FDA-approved drugs was 146 

purchased from Selleck Chemicals (Houston, TX, USA). Compounds were stored as 10-mM stock 147 

solutions in DMSO at 4°C until use. Compound stocks were diluted to a concentration of 200 or 148 

60 µM in Iscove's Modified Dulbecco's Medium (Life Technologies) containing 1% FCS (PAA) and 149 

antibiotics. For MERS-CoV studies, Vero cells were seeded in 96-well plates at a density of 2x104 150 

cells per well. After overnight incubation of the cells at 37°C, each well was given 50 µl of 151 

compound dilution, which was mixed with 100 µl of EMEM medium containing 2% FCS 152 

(EMEM/2%FCS) and 50 µl of MERS-CoV inoculum in EMEM/2% FCS. The MOI used was 0.005 153 

and final compound concentrations tested were 15 or 50 µM. As solvent control, a subset of 154 

wells was given 0.5% DMSO instead of compound dilution. At 3 days post infection (d p.i.), 155 

differences in cell viability caused by virus-induced CPE and/or compound-specific side effects 156 

were analyzed using the CellTiter 96 AQueous Non-Radioactive Cell Proliferation 157 

(monotetrazolium salt; MTS) Assay (Promega), as described previously (34). Cytotoxic effects of 158 

compound treatment were monitored in parallel plates containing mock-infected cells, which 159 

were given regular medium instead of virus inoculum.  160 

 161 

Compound validation - For validation experiments, we separately re-ordered chlorpromazine 162 

(CPZ; S2456; SelleckChem), lopinavir (LPV; ABT-378; SelleckChem), and loperamide (LPM; 163 

S2480; SelleckChem), which were dissolved in DMSO, and chloroquine (CQ; C6628; Sigma) 164 

which was dissolved in PBS. For all compounds 20-mM stock solutions were stored at -20°C as 165 

aliquots for single use. To verify the antiviral effect of CQ, CPZ, LPM, and LPV on MERS-CoV 166 

replication, the assay above described was repeated in 96-well plates using Huh7 cells (104 cells 167 
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seeded per well on the day before infection), and cell viability was assayed at 2 d p.i. Likewise, 168 

compounds were tested for their inhibitory effect on SARS-CoV infection at 3 d p.i. (104 Vero E6 169 

cells seeded per well, MOI 0.005). For HCoV-229E-GFP infections, 104 Huh7 cells were seeded 170 

per well, incubated overnight, and infected at an MOI of 5. Medium containing 0 to 50 µM of a 171 

compound was given 1 h before the start of infection (t=-1), and the compound remained 172 

present during infection. HCoV-229E-GFP-infected Huh7 cells were fixed at 24 h p.i. and GFP 173 

expression was quantified by fluorometry, as described previously (43). 174 

 175 

Statistical analysis - The half-maximal effective concentration (EC50) and the compound-specific 176 

toxicity (50% cytotoxic concentration; CC50) were calculated with GraphPad Prism 5 software 177 

using the non-linear regression model. The relative efficacy of a compound in specifically 178 

inhibiting viral replication (as opposed to inducing cytopathic side-effects) was defined as the 179 

selectivity index (SI; calculated as CC50/EC50). Statistical analyses were performed using the 180 

results of at least two independent experiments. 181 

 182 

 183 

Results 184 

 185 

Screening for FDA-approved compounds with anti-MERS-CoV activity. A primary library screen 186 

was performed using a set of 348 FDA-approved drugs which were evaluated for their ability to 187 

inhibit the replication of MERS-CoV in Vero cells (for a complete list of compounds tested, see 188 
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Supplemental Table S1) according to a recently published method that employs a colorimetric 189 

cell viability assay to quantify virus-induced CPE  (34).  190 

The primary screen resulted in the identification of 11 hits that showed at least 50% 191 

inhibition of virus-induced CPE in the absence of cytotoxicity (which was defined as >75% 192 

viability in compound-treated mock-infected cultures).  Next, these drugs, as well as the earlier 193 

reported coronavirus inhibitor chloroquine (51-55), were tested over a broader concentration 194 

range (2 to 62.5 µM; Supplemental Fig. 1). In this screen, compounds were considered as 195 

confirmed hits when they inhibited MERS-CoV-induced CPE by >60% at non-toxic 196 

concentrations (defined as >75% remaining viability in compound-treated mock-infected 197 

cultures). Following this second round of testing, Cilnidipine, Fluoxetine HCl, Ivermectin, 198 

Manidipine, Oxybutynin, Pyrimethamine, Rifabutinin, and Rifapentine were not further retained 199 

(Supplemental Fig. 1).  200 

 201 

Low-micromolar concentrations of chloroquine, chlorpromazine, loperamide, and lopinavir 202 

inhibit MERS-CoV replication. Four compounds were selected for further validation. 203 

Chloroquine (CQ) was found to inhibit MERS-CoV replication in a dose-dependent manner with 204 

an EC50 of 3.0 µM (SI 19.4; Fig. 1A and Table 1). Interestingly, also another reported inhibitor of 205 

clathrin-mediated endocytosis (56), chlorpromazine (CPZ), was found to inhibit MERS-CoV-206 

induced CPE (EC50 4.9 µM; SI 4.3) with a 12-µM dose achieving complete inhibition (Fig. 1B and 207 

Table 1). Loperamide (LPM), an antidiarrheal agent, inhibited MERS-CoV-induced CPE with an 208 

EC50 of 4.8 µM (Fig. 1C and Table 1), but proved relatively toxic in Huh7 cells. An SI of 3.2 was 209 

calculated and a maximum of 82% inhibition was observed at 8 µM, a concentration that was 210 
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not cytotoxic. The fourth hit was the human immunodeficiency virus-1 (HIV-1) protease 211 

inhibitor lopinavir (LPV), which was previously shown to inhibit SARS-CoV main protease activity 212 

and SARS-CoV replication in vitro (24). LPV inhibited MERS-CoV-induced CPE with an EC50 of 8.0 213 

µM (SI 3.1; Fig. 1D and Table 1) and a maximal protective effect (89% inhibition) was observed 214 

at a dose of 12 µM. Two other MERS-CoV isolates (MERS-HCoV/KSA/UK/Eng-2/2012 and MERS-215 

HCoV/Qatar/UK/Eng-1/2012) (57) were found to be equally sensitive to CQ, CPZ, LPM, while 216 

being somewhat less sensitive to treatment with LPV (data not shown). 217 

 218 

CQ, CPZ, LPV, and LPM also inhibit replication of SARS-CoV and HCoV-229E. To investigate 219 

whether the MERS-CoV inhibitors identified above are potential broad-spectrum coronavirus 220 

inhibitors, we assessed their activity against two other coronaviruses: the alphacoronavirus 221 

HCoV-229E and the lineage B betacoronavirus SARS-CoV (MERS-CoV belongs to lineage C). All 222 

four compounds inhibited SARS-CoV-induced CPE in a dose-dependent manner (Fig. 2 and Table 223 

1). For CQ, an EC50 value of 4.1 µM was observed (Fig. 2A), which is in line with earlier reports 224 

(51, 52). This compound did not affect the metabolism of Vero E6 cells or induce alterations in 225 

cell morphology at concentrations of up to 128 µM  (CC50 of >128 µM; SI >31). LPM and CPZ 226 

blocked SARS-CoV CPE with comparable EC50 values (4.8 versus 4.9 µM; Fig. 2B-C). LPV 227 

completely blocked SARS-CoV induced CPE at 12 µM, with an EC50 of 8.0 µM (Fig. 2D).  228 

Anti-HCoV-229E activity was assessed employing a GFP-expressing recombinant virus, as 229 

described previously (43, 49). All four compounds inhibited HCoV-229E-GFP replication at 230 

concentrations comparable to those needed to inhibit MERS-CoV and SARS-CoV replication (Fig. 231 

3 and Table 1). The CQ EC50 value of 3.3 µM (SI of >15) for HCoV-229E-GFP was in the same 232 
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range as the previously reported concentration (10 µM) needed to significantly reduce HCoV-233 

229E production in the human cell line L132 (53). Furthermore, CPZ, LPM, and LPV inhibited 234 

HCoV-229E-GFP replication with EC50 values of 2.5 µM (SI 9.4), 4.2 µM (SI 6.0) and 6.6 µM (SI 235 

5.7), respectively. 236 

 237 

Time-of-addition experiments suggest that CQ, CPZ, and LPM inhibit an early step in the 238 

replicative cycle whereas LPV inhibits a post-entry step. Both CQ and CPZ are known inhibitors 239 

of clathrin-mediated endocytosis and may thus inhibit MERS-CoV infection at a very early stage. 240 

To investigate this, both compounds were added to cells 1 h before (t=-1) or after (t=+1) 241 

infection (MOI of 1). Viral titers were determined at 24 h p.i. by plaque assay (Fig. 4). Virus 242 

production was not affected by CQ treatment when the compound was added at 1 h p.i. 243 

However, when added prior to infection, 16- and 32-µM concentrations of CQ induced a ~1-log 244 

and 2-log reduction in virus production, respectively (Fig. 4A). Comparable results were 245 

obtained upon CQ treatment of MERS-CoV-infected Huh7 cells (Fig. 4B). The results were less 246 

unambiguous for CPZ: addition 1 h prior to infection led to a ~2-log reduction of virus progeny 247 

titers, however, when added at 1 h p.i. a modest effect (0.5 to 1 log reduction) was observed 248 

(Fig. 4C-D), suggesting that the compound may also affect MERS-CoV infection at a post-entry 249 

stage. Treatment with 16 µM LPM in Vero cells reduced virus production by ~2 log when added 250 

prior to infection, while a 1-log reduction was observed when LPM was added at 1 h p.i. (Fig. 251 

4E). Although this suggests a more pronounced effect early in MERS-CoV replication, this 252 

difference was not clearly observed when using Huh7 (compare Fig. 4E and 4F). Treatment with 253 

LPV from t=-1 or t=+1 h p.i. was equally effective in inhibiting MERS-CoV progeny production (2 254 
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to 3 log reduction), suggesting that LPV blocks a post-entry step in the MERS-CoV replicative 255 

cycle (Fig. 4G-H).  256 

 257 

 258 

Discussion 259 

The ongoing MERS-CoV outbreak has made it painfully clear that our current options for 260 

treatment of life-threatening zoonotic coronavirus infections in humans are very limited. At 261 

present, no drug is available for the treatment of any of the human or zoonotic coronaviruses 262 

(reviewed in (58)), despite the extensive research efforts triggered by the 2003 SARS outbreak 263 

(reviewed in (26, 27)). The brevity of that epidemic is a major reason why, thus far, none of the 264 

prototypic coronavirus inhibitors was advanced beyond the (early) preclinical stage. Like SARS-265 

CoV a decade ago and MERS-CoV at present, future emerging coronaviruses will likely continue 266 

to pose a threat to global public health. Therefore, the search for broad-spectrum inhibitors 267 

that may reduce the impact of coronavirus infections in humans remains a challenging research 268 

priority. Given the time-consuming nature of antiviral drug development and registration, 269 

existing therapeutics for other conditions may constitute the only immediate treatment option 270 

in the case of emerging infectious diseases. For most of these drugs, ample experience is 271 

available with dosing in man and their safety and ADME profile is well known.  272 

At the time of this study, a MERS-CoV infection model in (small) animals was not 273 

available. For initial antiviral testing, we therefore used our cell culture-based screening assay 274 

(34) to search for compounds that may inhibit MERS-CoV infection. We identified four FDA-275 

approved compounds (chloroquine, chlorpromazine, loperamide and lopinavir) that inhibit the 276 
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in vitro replication of MERS-CoV at low-micromolar concentrations (Fig. 1 and Table 1). While 277 

for some of these molecules the SI was limited (<10), for each of them we established at least 278 

one concentration at which MERS-CoV replication was inhibited by more than 80% without a 279 

detectable reduction of cell viability. The same four drugs were also found to inhibit, with 280 

comparable potency, the in vitro replication of two other coronaviruses, i.e. HCoV-229E and 281 

SARS-CoV (Fig. 2 and 3 and Table 1).  282 

CQ inhibited MERS-CoV replication with an EC50 value of 3.0 µM (Fig. 1A) and blocked 283 

infection at an early step (Fig. 5A). CQ has a tendency to accumulate in lysosomes where it 284 

sequesters protons and increases the pH. In addition, it interacts with many different proteins 285 

and cellular processes, resulting in the modulation of autophagy and the immune response (for 286 

a review see (59)). CQ has also been reported to  inhibit the replication of multiple flaviviruses, 287 

influenza viruses, HIV (reviewed in (60)), Ebola virus (61), Nipah-Hendra virus (62), as well as 288 

several coronaviruses, including SARS-CoV,  in cell culture (51-55, 63, 64). Early reports showed 289 

that high doses of CQ inhibit an early step of the replication of the coronavirus mouse hepatitis 290 

virus (MHV). However, in SARS-CoV-infected BALB/c mice, systemically administered CQ did not 291 

result in a significant viral load reduction in the lungs. Intranasal administration of CQ 292 

(50mg/kg) resulted in a minor reduction of viral titers in the lung (65). When pregnant mice 293 

were treated with CQ (at 15 mg/kg) their newborn offspring was protected against a lethal 294 

challenge with HCoV-OC43 (54). Likely, the accumulation of CQ in the milk glands, resulting in 295 

high drug concentrations in maternal milk, was a major factor in reaching a sufficiently high 296 

plasma concentration of the drug in blood. CQ was also shown to inhibit the in vitro replication 297 

(EC50 2 µM) of the feline coronavirus infectious peritonitis virus (FIPV) (55). Treatment of 298 
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naturally infected cats with CQ resulted in a clinical improvement, which was however not 299 

attributed to a direct antiviral effect and likely due to the immunomodulatory properties of CQ. 300 

These results highlight that, e.g. drug delivery route, virus strain used, and drug dosage might 301 

influence the outcome in animal models. In BALB/c mice steady-state plasma concentrations of 302 

8 µM were observed following repeated administration of CQ at 90 mg/kg (61), which is above 303 

the EC50 of CQ for inhibition of MERS-CoV-induced CPE in this study. Plasma levels of 9 µM were 304 

observed in humans following CQ treatment with 8 mg/kg/day for three consecutive days (66). 305 

The second FDA-approved drug found to block MERS-CoV infection was CPZ, the first 306 

antipsychotic drug developed for treatment of schizophrenia (67). CPZ affects the assembly of 307 

clathrin-coated pits at the plasma membrane (56) and has been reported to inhibit the 308 

replication of alphaviruses (68), hepatitis C virus (69), and the coronaviruses SARS-CoV (70), 309 

infectious bronchitis virus (71) and MHV-2 (72). Our time-of-addition studies, however, suggest 310 

that CPZ inhibits MERS-CoV replication at both an early and a post-entry stage, implying that an 311 

effect on clathrin-mediated endocytosis is unlikely to be the sole antiviral mechanism (Fig. 4C-312 

D). Plasma concentrations of CPZ in patients treated for psychotic disorders range between 0.3 313 

and 3 µM (73), which is somewhat below the observed EC50 values observed here (which range 314 

between 2 and 9 µM). 315 

The replication of MERS-CoV in vitro was also inhibited by LPM, an anti-diarrheal opioid-316 

receptor agonist that reduces intestinal motility (reviewed in (74)). LPM also inhibits the 317 

replication of two other coronaviruses at low-micromolar concentrations (4 to 6 µM). Upon oral 318 

or intravenous administration, the molecule rapidly concentrates in the small intestine. Less 319 

than 1% of orally taken LPM is absorbed from the gut lumen and its tendency to concentrate at 320 
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the site of action is the probable basis for its anti-diarrheal effect (75). This same property 321 

would very much limit systemic use for the treatment of respiratory coronavirus infections, 322 

although administration in the form of an aerosol might be explored. In the veterinary field, it 323 

would be interesting to test whether the compound has the potential to inhibit enteric 324 

coronaviruses such as the porcine transmissible gastroenteritis coronavirus. 325 

Finally, the HIV-1 protease inhibitor (PI) LPV was shown to inhibit MERS-CoV replication 326 

with EC50 values of about 8 µM, which is in the range of the LPV plasma concentrations (8-24 327 

µM) that have been observed in AIDS patients (76). LPV was previously shown to block the 328 

SARS-CoV main protease (Mpro) (24). This is somehow unexpected since the retro- and 329 

coronavirus proteases belong to different protease families (the aspartic and chymotrypsin-like 330 

protease families, respectively). Since MERS-CoV and SARS-CoV are relatively closely related, 331 

LPV may also target the Mpro of MERS-CoV. However, several anti-HIV PI’s are also known to 332 

influence intracellular pathways leading to side effects in patients undergoing highly active anti-333 

retroviral therapy, including lipodystrophy and insulin resistance (77). The exact cellular targets 334 

of these PI’s have not yet been identified and most likely multiple pathways are involved. It 335 

remains to be investigated if the effect of LPV on these intracellular pathways is associated with 336 

the anti-CoV activity found here. Interestingly no selective anti-CoV activity was found for two 337 

other HIV PI’s in the compound library (Atazanavir and Ritonavir - see supplemental data set 338 

S1). During the SARS outbreak, treatment with LPV, in combination with ritonavir, was explored 339 

with some success in non-randomized clinical trials (for reviews, see (78, 79)).  340 

The efficacy of the most promising compounds identified in this study, CQ and LPV, 341 

should now be evaluated in (small-)animal models for MERS-CoV infection, which are still in 342 
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development. In a non-human primate model (macaques), only mild clinical signs developed, in 343 

contrast to the frequently severe clinical outcome in humans (80, 81). Unfortunately, Syrian 344 

hamsters (82), BALB/c mice (83), and ferrets (84) were found to resist MERS-CoV infection. A 345 

very recent study (46) reported that mice can be rendered susceptible to MERS-CoV infection 346 

by prior transduction with a recombinant adenovirus that expresses human DPP4, a 347 

documented receptor for MERS-CoV entry (10). Subsequent MERS-CoV infection resulted in 348 

severe pneumonia and high MERS-CoV titers in the lungs (46). Despite some practical and 349 

conceptual limitations, this model may provide a useful starting point for further evaluation of 350 

inhibitors of MERS-CoV infection. 351 

 In 2003, the ~10% mortality rate among SARS patients was one of the major reasons for 352 

the worldwide public unrest caused by the emergence of SARS-CoV. Clearly, and despite the 353 

recent sharp increase in number of registered cases (5), the course of the MERS-CoV outbreak 354 

has been quite different thus far. Although only 550-600 laboratory-confirmed cases have been 355 

registered in the two years that have passed since the first documented human infections, in 356 

particular the ~30% mortality rate within this group remains a grave concern. In this context, 357 

efficacious anti-coronavirus drugs, administered alone or in combination, can constitute an 358 

important first line of defense. It typically takes over 10 years to develop a newly discovered 359 

molecule and obtain approval for clinical use. To the best of our knowledge, there are currently 360 

no potent and selective coronavirus inhibitors in (early or advanced) preclinical development. 361 

Hence, drugs that have been registered for the treatment of other conditions and that also 362 

inhibit MERS-CoV replication might be used (off-label) in an attempt to save the life of MERS 363 

patients. A combination of two or more of such drugs may cause a modest reduction in viral 364 
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load, which might aid to control viral replication, slow down the course of infection and allow 365 

the immune system to mount a protective response. In an accompanying paper, CQ and CPZ 366 

were identified as inhibitors of the MERS-CoV as well (Dyall et al. 2014). Follow-up studies will 367 

include in-depth mechanism of action studies, including resistance development of MERS-CoV 368 

against the compounds identified. Furthermore, the efficacy of combinations of two or more of 369 

these drugs will be explored, also in combination with interferon. In particular CQ and LPV may 370 

constitute valuable candidates for further testing in animal models or direct off-label use, since 371 

the concentrations needed to inhibit viral replication in cell culture are in the range of the 372 

concentrations that can be achieved in human plasma.  373 

 374 

 375 

 376 

 377 

 378 

 379 

Acknowledgements 380 

We thank Ali Tas, Corrine Beugeling, and Dennis Ninaber for excellent technical assistance, and 381 

Bart Haagmans and Ron Fouchier for helpful discussions. This research was supported in part by 382 

the Council for Chemical Sciences (CW) of the Netherlands Organization for Scientific Research 383 

(NWO) through TOP grant 700.57.301 and by the EU-FP7-Health project SILVER (grant 260644). 384 

 385 

 386 



19 

 

Figure legends 387 

 388 

Figure 1. Low-micromolar amounts of chloroquine, chlorpromazine, loperamide, and 389 

lopinavir inhibit MERS-CoV-induced cytopathology. 390 

Huh7 cells in 96-well plates were infected with MERS-CoV isolate EMC/2012 (MOI 0.005) in the 391 

presence of A) 0-32 μM CQ, B) 0-16 μM CPZ, C) 0-8 μM LPM, or D) 0-20 μM LPV. Cells were 392 

incubated for 2 days and cell viability was monitored using an MTS assay. In addition, the 393 

potential toxicity of compound treatment only was monitored in parallel mock-infected Huh7 394 

cell cultures. Graphs show the results (average and SD) of a representative experiment that was 395 

performed in quadruplo. All experiments were repeated at least twice. For each compound, the 396 

calculated EC50, CC50, and SI values are given. 397 

 398 

Figure 2. Low-micromolar amounts of chloroquine, chlorpromazine, loperamide, and 399 

lopinavir inhibit SARS-CoV-induced cytopathology. 400 

Vero E6 cells in 96-well plates were infected with SARS-CoV isolate Frankfurt-1 (MOI 0.005) in 401 

the presence of A) 0-32 μM CQ, B) 0-16 μM CPZ, C) 0-32 μM LPM, or D) 0-32 μM LPV, given at 402 

t=+1 h p.i. Cells were incubated for 3 days and viability was monitored using an MTS assay. In 403 

parallel, potential compound cytotoxicity was monitored in mock-infected Vero E6 cells. Graphs 404 

show the results (average and SD) of a representative experiment that was performed in 405 

quadruplicate. All experiments were repeated at least twice. For each compound, the EC50, 406 

CC50, and SI values are given. 407 

 408 
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Figure 3. HCoV-229E-GFP replication is inhibited by low-micromolar amounts of chloroquine, 409 

chlorpromazine, loperamide, and lopinavir . 410 

Huh7 cells in 96-well plates were infected with HCoV-229E-GFP (MOI 5) in the presence of 0-50 411 

μM A) CQ, B) CPZ, C) LPM, or D) LPV. Compounds were given at t=-1 and remained present 412 

during infection. Cells were fixed at 24 h p.i. and GFP reporter gene expression was measured 413 

and normalized to the signal in control cells (100 %; black bars), which were treated with the 414 

solvent used for the various compounds. The effect of compound treatment on the viability of 415 

mock-infected Huh7 cells, compared with solvent-treated control cells, was determined by 416 

using an MTS assay (grey lines). Graphs show the results (average and SD) of a representative 417 

quadruplicate experiment. All experiments were repeated at least twice; n.d., not detected. 418 

 419 

Figure 4. Chloroquine, chlorpromazine, loperamide, and lopinavir affect various stages of the 420 

MERS-CoV replication cycle.  421 

Vero (A, C, E, G) and Huh7 cells (B, D, F, H) were infected with MERS-CoV isolate EMC/2012 422 

(MOI 1). At t=-1 or t=+1, the indicated concentrations of CQ (A, B), CPZ (C, D), LPM (E, F), and 423 

LPV (G, H) were given and virus titers in the culture supernatant (n=4, average and SD are 424 

shown) were determined at 24 h p.i. using plaque assays; n.d., not detected. 425 

 426 
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Table 1. Antiviral activity of chloroquine, chlorpromazine, loperamide and lopinavir against MERS-CoV, SARS-

CoV and HCoV-229E-GFP 

 MERS-CoV SARS-CoV HCoV-229E-GFP 

Compound  EC50
a (µM) CC50

a (µM) SI EC50 (µM) CC50 (µM) SI EC50 (µM) CC50 (µM) SI 

Chloroquine 3.0 (± 1.1) 58.1 (± 1.1) 19.4 4.1 (± 1.0) >128 >31 3.3 (± 1.2) >50 >15 

Chlorpromazine  4.9 (± 1.2) 21.3 (± 1.0) 4.3 8.8 (± 1.0) 24.3 (± 1.1) 2.8 2.5 (± 1.0) 23.5 (± 1.0) 9.4 

Loperamide 4.8 (± 1.5) 15.5 (± 1.0) 3.2 5.9 (± 1.1) 53.8 (± 1.7) 9.1 4.0 (± 1.1) 25.9 (± 1.0) 6.0 

Lopinavir 8.0 (± 1.5) 24.4 (± 1.0) 3.1 17.1 (± 1.0) >32 >2 6.6 (± 1.1) 37.6 (± 1.3) 5.7 

 

a EC50 and CC50 values are means (± SD) from a representative experiment (n=4) that was repeated at least twice. Antiviral activity was 

determined in Huh7 cells (for MERS-CoV and HCoV-229E-GFP ) or VeroE6 cells (for SARS-CoV). See text for more details. 


