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Multiple inhibitory kinetics reveal an
allosteric interplay among thrombin

functional sites
Dear Editors,

Thrombin (EC 3.4.21.5, 36 kDa) is a key enzyme of the blood
coagulation system, accomplishing limited proteolysis of fibrinogen
and, thus, producing a network from fibrin fibers. This process,
along with platelet aggregation, provides effective blood clotting [1].
Besides, thrombin is involved in a variety of processes including ones
linked with thrombin production and inhibition, platelet activation,
and regulation of inflammation. To perform these diverse functions
thrombin employs several spatially separated sites; in particular, the
main ones are exosite I, exosite II, and the active site [2]. The exosites
are enriched with lysine/arginine residues and have affinity to negative
charged ligands. The active site is represented by His57, Asp102, and
Ser195 triade is exposed at the bottom of the substrate binding groove
in thrombin [1]. The efficient hydrolysis is possible through forming
either simultaneous specific interaction with thrombin exosites and
active site (macromolecular substrates) or additional interactions with
active site cleft (peptidomimetics). Thrombin substrate selectivity can
be clearly seen on fibrinogen which has only 4 thrombin-sensitive
peptide bonds out of 376 trypsin-sensitive bonds [3].

A variety of factors that determine thrombin activity poses a
question on an ideal thrombin inhibitor. A set of proteins, peptides,
peptidomimetics, DNA, RNA, and carbohydrates was reported to
inhibit thrombin activities to various extents. Known inhibitors can
be readily classified by their target site: exosite I-targeted (hirugen
[4], G-quadruplex-based DNA aptamers [5]), exosite II-targeted
(heparin [6], RNA aptamer Toggle-25 t [7]), active site-targeted
(PPACK [8], argatroban [9]), and alsomixed types – ‘exosite I plus active
site’-targeted (hirudin [10], bivalirudin [4]) along with ‘exosite II plus
active site’-targeted inhibitors (antithrombin III with heparin [11]).
Generally, active site-targeted inhibitors directly affect thrombin
peptidase activity. Exosite I-targeted inhibitors disturb fibrinogen
hydrolysis. Whereas exosite II-targeted inhibitors interfere with
heparin binding.

An attempt to compare already existingdata for inhibition capacity of
different substances faces the problem of diversity of applied techniques
mainly because of fundamentally different inhibition mechanisms of
these substances. Clearly, conventional amidolytic assay provides little
or no information about exosite-targeted inhibitors [12]. In principle,
techniques based on natural thrombin substrate hydrolysis have obvious
advantages; but until recently there have been no assays suited for
inhibitor screening.

In this paper the effect of thrombin inhibitors onfibrinogenhydrolysis
has been investigated using turbidimetric assay reported recently [13].
AlsoGPRP-peptide [14], as an inhibitor of the next step, fibrin association,
was characterized kinetically for the first time. A collected set of data
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makes possible to compare directly different thrombin inhibitors, to
understand the enzyme activity regulation in order to gain knowledge
for rational development of new antithrombotic substances.

Materials and Methods

Inorganic salts and Tris were purchased from MP Biomedicals
(France). Recombinant human thrombin with a specific activity of
3.6 kIU/mg (HTI, USA) and fibrinogen fromhumanplasma (Calbiochem,
Germany) were used. Recombinant hirudin with specific antithrombin
activity 16 kIU/mg (GenWay, USA); antithrombin III from human plasma
with 0.71 mole of active substance per mole of protein (HTI, USA);
unfractionated sodiumheparin (Synthes, Russian Federation); bivalirudin
trifluoroacetate (Selleck Chemicals, USA); hirugen (AnaSpec, USA);
PPACK∙2HCl (HTI, USA); argatroban (Sigma-Aldrich, USA); RNA
aptamer Toggle-25 t, 5’-GGGAACAAAG-CUGAAGUACUUACCC-3’
(Synthol, Russian Federation); and GPRP-peptide (Sigma-Aldrich,
USA) were used.

Turbidimetric Assay

The thrombin inhibition experiments were carried out at 37 °С in
the buffer with the salt composition close to blood plasma (20 mM
Tris-acetate, pH 7.4, 0.14 M NaCl, 5 mM KCl, 1 mM MgCl2, 1 mM
CaCl2). Fibrinogen concentrationwas 0.5, 1.0 or 2.0 μM;and the thrombin
was added to final concentration 1-5 nM. The sample turbidity was
detected as described earlier [15] with the spectrophotometer WPA
Biowave II + (Biochrom, UK).

In the inhibition experiments an appropriate amount of inhibitors in
0.1 nM – 300 μMrangewas added in the assay straight before thrombin.
The inhibition coefficient was defined according to the Eq. (1):

IC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Wmax
S and tmax

S are the parameters of the turbidimetric curve for
the standard sample, and IC is the inhibition coefficient which reflects
decreasing of the active thrombin portion by the inhibitor. The inhibition
types as well as the constants were determined according to Zavyalova
et al. [13]. The following equations were applied for description of
different inhibition types:
1) complete competitive inhibition type

IC ¼ 1þ KI

1þ K0C
0
F

C0
I ; 2

2) complete non-competitive inhibition type

IC ¼ 1þ KIC
0
I ; 3
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3) partial non-competitive inhibition type

IC ¼ 1þ KIC
0
I

1þ βKIC
0
I

; 4

where CI
0 and CF

0 are the concentrations of inhibitor and substrate,
correspondingly; KI and K0 are apparent association constants of
thrombin-inhibitor and thrombin-fibrinogen complexes.

Hirudin curves were treatedwith tight-binding kinetic equations for
amidolytic assay published earlier [16,17]. Heparin apparent inhibition
constant was recalculated per one monosaccharide residue since
heparin binds through nonspecific electrostatic interactions [18].
Antithrombin III and GPRP-peptide curveswere treated in the following
way: concentration of inhibitors that doubled IC at different fibrinogen
concentrations were interpolated to zero fibrinogen concentration (the
dependence was linear, data are not shown). For antithrombin III the
simplified estimate of the second-order rate constant was performed.

Data Treatment

The data were treated with Origin 8.1 (OriginLab, USA). Non-linear
curve fitting using least squares and linear regression were used to
calculate the apparent inhibition constants. Images of X-ray structures
of thrombin complexes were extracted from PDB using PyMOL 0.99
software (DeLano Scientific LLC, USA).

Results and Discussion

A wide range of thrombin inhibitors along with a fibrin association
inhibitor has been studied with the turbidimetric assay. Experimental
curves are depicted in Figs. 1-4 as well as X-ray structures of thrombin-
inhibitor complexes reported earlier. Constants and inhibition types
Fig. 1. Active site-targeted inhibitors. The X-ray structures of the human thrombin-argatroban co
1PPB (b). Thrombin active site is shown in red, exosite I is shown in dark blue, exosite II is show
PPACK (d).
were determined as it was stated in ‘Materials and methods’. Novel
data are summarized in Table 1 along with constants determined earlier.
Obtained information on inhibition constants is mainly consisting with
previous data indicating a high relevancy of the turbidimetric assay.
Because of the persistent lack of the data on kinetics of inhibition of
fibrinogen hydrolysis per se, the most valuable profit of turbidimetric
assay is the ability to determine the inhibition types. Obtained data on
inhibition types are mostly unique and reveal interesting regularities
in thrombin function.

Another type of inhibitors, inhibitors of fibrin association, also can be
characterized with turbidimetric assay. GPRP-peptide impairs fibrin
association through its binding tofibrinogen D-domains, thus, replacing
N-terminal residues generated by thrombin in E-domain [32]. Inhibitors
of fibrin association can be distinguished by the curve non-linearity at
inhibitor concentrations much higher than the thrombin one. In this
concentration range the true competitive thrombin inhibitor has linear
relations [13].

Thrombin inhibitors were characterized to have competitive and
non-competitive inhibition types. Because of the large area of thrombin-
fibrinogen interacting surface it is hard for an inhibitor to compete with
fibrinogen binding directly. Therefore it is understandable that two
completely competitive inhibitors are the macromolecular substances:
hirudin (Fig. 2B) and antithrombin III (Fig. 4B); their interacting surfaces
are comparable with the fibrinogen one. Low-molecular weight
substances interacting with both active site and exosite I (Figs. 1A,
B, 2A, and 4A) are unable to hinder fibrinogen binding to thrombin,
but they do able to form nonproductive complexes yielding non-
competitive inhibition.

Interacting surface implication can be clearly seen from the
examples of DNA aptamers with different sizes targeted to the thrombin
exosite I [13]. 15-mer oligonucleotide, 15-TBA, is a complete non-
competitive inhibitor whereas its double-size derivative - 31-mer, 31-
TBA, is the complete competitive inhibitor.
mplex, PDB entry 1DWC (a), and the covalent human thrombin-PPACK complex, PDB entry
n in light blue, inhibitors are shown in yellow. The inhibition curves of argatroban (c) and



Fig. 2. Exosite I and Active site-targeted inhibitors. The X-ray structures of the thrombin-bivalirudin complex, PDB entry 2HGT (a), and the thrombin-hirudin complex, PDB entry 4HTC (b).
Thrombin active site is shown in red, exosite I is shown in dark blue, exosite II is shown in light blue, inhibitors are shown in yellow. Polyglycine linker between active site and exosite I-targeted
moieties of bivalirudin is fully disordered in crystal structure. The inhibition curves of bivalirudin (c), andhirudin (d):■ – 2.0 μMoffibrinogen;●– 1.0 μMof fibrinogen;▲– 0.5 μMoffibrinogen.

Fig. 3. Exosite II-targeted inhibitors. The X-ray structures of the thrombin-heparin complex, PDB entry 1XMN (a), and the thrombin-Toggle-25 t, RNA aptamer, PDB entry 3DD2 (b). Thrombin
active site is shown in red, exosite I is shown in dark blue, exosite II is shown in light blue, inhibitors are shown in yellow. The inhibition curves of unfractionated heparin at the heparin
concentration ranges below 1 mg/ml and over 1 mg/ml (inset) (c), and Toggle-25 t (d).
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Fig. 4.Hirugen, antithrombin III, and GPRP-peptide. The X-ray structures of the thrombin-hirugen complex, PDB entry 1HGT (a), and the ternary thrombin-heparin-antithrombin III complex,
PDB entry 1 TB6 (b). Thrombin active site is shown in red, exosite I is shown in dark blue, exosite II is shown in light blue, inhibitor is shown in yellow. The inhibition curves of hirugen (c), of
antithrombin III in presence of 20 μg/ml of heparin (d), and GPRP-peptide, inhibitor of fibrin association: ■ – 2.0 μM of fibrinogen; ●– 1.0 μM of fibrinogen; ▲– 0.5 μM of fibrinogen.
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Thrombin exosite II ligands are generally considered not to be
inhibitors of fibrinogen hydrolysis. Though heparin and RNA aptamer
Toggle-25 t (Fig. 3A,B) exhibited some slight inhibition of the reaction,
Table 1
Comparison of inhibition constants and types from turbidimetric assay with previous data. ‘Comp
fibrin association but not thrombin; 2) thrombin inhibition with antithrombin III is interfered wit

Target Inhibitor Inhibition constants from
turbidimetric assay

Inh

Thrombin active site Argatroban Kapp
I ¼ 6:4� 0:5 nM com

non

PPACK Keff
I ¼ 20:8� 1:4 nM com

non
Thrombin exosite I Hirugen Kapp

I ¼ 1:50� 0:06 μM com
non

Thrombin exosite I
and active site

Bivalirudin Kapp
I ¼ 1:75� 0:04 nM com

non
Hirudin recombinant Kapp

I ¼ 3� 2 pM com
com

Thrombin exosite II Toggle-25 t Kapp
I ¼ 10� 3 nM

β = 0.33 ± 0.08

part
non

Heparin Kapp
I ¼ 2:65� 0:14 μM

β = 0.7 ± 0.2

part
non

Kapp
I ¼ 4:80� 0:10 mM com

non
Thrombin exosite II
and active site

Antithrombin III and
heparin

IC50 ¼ 1:4� 0:1 nM

kappcat ¼ 1:7� 0:5 � 109 M−1 ;min−1

pse
com

Inhibitor of fibrin
association

GPRP-peptide IC50 ¼ 27� 2 μM pse
com
but the kinetic details have not been determined [29,30]. Due to the
sensitivity of the turbidimetric assay it was possible to obtain kinetic
data for these inhibitors. Both ligands exhibit partial non-competitive
lete competitive’ inhibition type means pseudo-competitive type: 1) GPRP-peptide inhibits
h fibrin leading to complicated inhibition kinetics [19].

ibition type Constants from refs

plete
-competitive

Kd ¼ 5:0� 0:3 nM [20] (intrinsic fluorescence of thrombin)
KI ¼ 39� 2 nM [21]
(chromogenic assay)

plete
-competitive

KI ¼ 24−45 nM [22,23] (chromogenic assay)

plete
-competitive

KI ¼ 1:3� 0:2 μM [24]
(intrinsic fluorescence of thrombin)
KA ¼ 3:2� 0:2 μM [12]
(chromogenic assay)

plete
-competitive

KI ¼ 1:9−2:6 nM [25–27] (chromogenic assay)

plete
petitive

Kapp
I ¼ 19� 2 pM [28] (chromogenic assay, in 0.14 NaCl)

ial
-competitive

Kd ¼ 0:54� 0:10 nM [29] (affinity)

ial
-competitive

Partial inhibition of fibrinogen hydrolysis (1.2-1.6-fold), constants
weren’t determined [30];
Kd ¼ 6−10 μM [18] (affinity)

plete
-competitive

Not determined

udo-complete
petitive

kappcat ¼ 1:33� 0:15 � 109 M−1 ;min−1 [31] (chromogenic assay)

udo-complete
petitive

Kd ¼ 20� 2 μM [32]
(affinity)

image of Fig.�4
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inhibition type with the degrees of partiality of 0.70 for heparin and
0.33 for Toggle-25 t. This inhibition mode indicates clearly the close
allosteric linkage between two thrombin exosites. Allosteric regulation
of thrombin activity toward low-molecular substrates was previously
demonstrated for exosite I ligands and Na-binding site [1,12,33].
Described here exosite II ligands are another interesting example of
allosteric interplay in thrombin molecule.

This kinetic study has explored a repertoire of different inhibition
types for the set of inhibitors, and also has revealed a close allosteric
interplay within the thrombin macromolecule. The main conclusion
is a close relation between binding and inhibitory modes of the
thrombin ligands. Active site- and exosite I-targeted ligands are
able to inhibit fibrinogen hydrolysis completely. Macromolecular
ligands affect fibrinogen hydrolysis in a competitive manner due to crea-
tion of the interacting area comparable to the thrombin-fibrinogen one.
Low-molecular ligands probably form nonproductive complex interfer-
ing the appropriate orientation of substrate on the thrombin. Exosite II-
targeted ligands are capable for only partial inhibition, indicating the
fine tuning of the thrombin enzymatic activity via allosteric effects.
These results are undoubtedly important for understanding of the
thrombin activity regulation and the rational development of new
antithrombotic substances.
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