This article was downloaded by: [University of Sussex Library] On: 11 February 2015, At: 00:29 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

http://www.tandfonline.com/loi/tfac20

Lingli Huang^{ab} & Zonghui Yuan^{ab}

Food Additives & Contaminants: Part A

^a The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, P.R.China
 ^b MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070, China

Huimin Wei^{ab}, Yanfei Tao^{ab}, Dongmei Chen^{ab}, Shuyu Xie^{ab}, Yuanhu Pan^{ab}, Zhenli Liu^{ab},

Publication details, including instructions for authors and subscription information:

Development and validation of a multi-residue screening method for veterinary drugs, their

metabolites and pesticide in meat using liquid chromatography - tandem mass spectrometry

Accepted author version posted online: 30 Jan 2015.

To cite this article: Huimin Wei, Yanfei Tao, Dongmei Chen, Shuyu Xie, Yuanhu Pan, Zhenli Liu, Lingli Huang & Zonghui Yuan (2015): Development and validation of a multi-residue screening method for veterinary drugs, their metabolites and pesticide in meat using liquid chromatography - tandem mass spectrometry, Food Additives & Contaminants: Part A, DOI: 10.1080/19440049.2015.1008588

To link to this article: <u>http://dx.doi.org/10.1080/19440049.2015.1008588</u>

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Publisher: Taylor & FrancisJournal: Food Additives & Contaminants: Part ADOI: 10.1080/19440049.2015.1008588

Development and validation of a multi-residue screening method for

veterinary drugs, their metabolites and pesticide in meat using liquid

chromatography - tandem mass spectrometry

Huimin Wei, Yanfei Tao, Dongmei Chen, Shuyu Xie, Yuanhu Pan, Zhenli Liu, Lingli

Huang, Zonghui Yuan*

The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, P.R.China / MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070, China

ABSTRACT

A rapid multi-residue screening method which includes 128 veterinary anti-parasitic drugs and metabolites in meat of chicken, porcine and bovine has been developed. The scope of the method focuses on screening the following main families of veterinary anti-parasitic drugs: avermectines, benzimidazoles, the polyether ionophore, anti-tapeworm, anti-trematode, anti-piroplasmosis and chemical classes of coccodiostats. The method described QuEChERS sample preparation procedure prior to LC-MS/MS analysis. The modified QuEChERS technology minimizes the sample complexity and ion suppression effects. The method was validated according to the

^{*} Corresponding author: Prof. Dr. Zonghui Yuan, Tel.: +86 27 87287186; Fax: +86 27 87672232. E-mail address: <u>yuan5802@mail.hzau.edu.cn</u>

EU guidelines (2002/657/EC) for a quantitative screening method. The validation results demonstrate that the described LC-MS/MS method provides sensitive, repeatable and meeting the residue screening monitoring requirements.

Key words: Veterinary antiparasite drugs; Screening; QuEChERS; HPLC-MS/MS; Multi-residues

1 Introduction

Veterinary anti-parasites are a kind of common medicine which can kill or/and remove parasite in animal vivo and/or vitro, or many other effects such as improving feed conversion rates. According to the pharmacological effects, they can also be divided into anthelmintic, coccidiostats and pesticide, and so on. Coccidiostats are widely used for prevention and treatment of coccidiosis, a disease, which causes serious economic consequences in animal production. Veterinary anti-parasites play an important role on animal husbandry, but incorrect use of drugs in veterinary anti-parasites practice may leave residues in edible tissues (McKellar, & Scott, 1990;

Mohammad, Faris, Rhayma, & Ahmed, 2006; Lankas, & Peter, 1992). These

residues may have direct toxic effects on consumer e.g. allergic reaction in hypersensitive individuals, or for example antibiotics may cause problems indirectly through induction of resistant strains of bacteria. The occurrence of unavoidable carry-over of feed additives in non-target feed may result in the presence of residues of veterinary anti-parasites in animal products like meat. The European Commission has set maximum levels (MLs) for coccidiostats in various foods from non-target animals [EMEA, 2377/90 (EEC), 1996, 1998, 2000, 2003, 2004, 2007].

In order to detect such residues in food and tissues, microbiological or bioassay techniques are widely used as screening methods. These methods generally do not distinguish between members of a class of veterinary anti-parasitic, but provide a semi-quantitative estimate of 'total' residues detected. A way to improve cost-effectiveness is maximize the number of analytes that may be determined by a single procedure or from a single portion of test material. Such an approach is extremely effective when multi-compound techniques, such as liquid chromatography combination with triple-quadrupole mass-spectrometric detection are used (Romero-González et al., 2011). There were many reports for multi-compound screening of veterinary drugs in animal tissue or product. A very interesting example for multi-compound screening of veterinary drugs in urine is described by Kaufmann (Kaufmann, et al., 2007). These methods covered more than 100 analytes belonging to different classes of veterinary drugs. But most of the interested coumpounds were antibiotic drugs, only including few of veterinary anti-parasite drugs. Whelan (Whelan et al., 2010) developed a quantitative and confirmatory method for 38 kinds of anti-parasites drugs including benzimidazoles, abamectin, and other anthelmintic drugs residues in milk using acetonitrile as extracting solvent and purified by dispersive solid phase extraction (D-SPE) as it is quicker and easier than traditional solid phase. It enables clean extracts to be obtained for the multiresidue analysis in an easy and quick procedure. The D-SPE involves, in general, the use of one or more sorbents together with magnesium sulfate anhydrous in a centrifuge tube to remove the residual water and the co-extractives from the organic extract. D-SPE reduces extraction time, troublesome, costs, solvent, waste, glassware and minimal training is required compared to SPE. Kinsella (Kinsella et al., 2009; Kinsella et al., 2010) developed another quantitative and confirmatory method for 38 kinds of antiparasites

drugs including benzimidazoles, macrolides, and other anthelmintic drugs residue in bovine liver and milk.

Sample preparation is the major bottleneck in analytical procedure for the screening determination of veterinary residues in animal-derived food. The complex biological matrix and various compounds with defferent chemical properties make sample preparation a challenge. The QuEChERS (quick, easy, cheap, effective, rugged and safe) method was initially applied to pesticide residue analysis. The OuEChERS approach has many advantages over extraction and clean-up strategies. because it could simplifies analytical and reduces the time (Anastassiades et al., 2003). And it is a flexible method that permits modifications depending on analytes, matrices or analyst preferences (León et al., 2012; Jeong et al., 2012). The QuEChERS approach consist of two steps: quick, easy extractions procedures which sample components such as water, proteins and fats are removed and analytes are extracted into extraction solvent and maintaining high recoveries. Recently, different QuEChERS procedures have been applied in the multi-determination of veterinary drugs residues in animal tissue (Zhao, et al., 2011; Stubbings et al., 2009; Pérez-Burgos et al., 2012; Park et al., 2012; Kang J et al., 2010), milk (Jeong et al., 2012; Martínez et al., 2010; Aguilera-Luiz et al., 2008), eggs (Wang et al., 2012; Olejnik et al., 2010) and other products (Romero-González et al., 2011; Tomasini et al., 2012)

The aim of the present study was, thus, to develop a multi-residue sreeening method for 128 kinds of veterinary antiparasite drugs (Avermectins, Benzimidazoles, Polyether antibiotics, Chemical synthesis coccidiostats, Sulfonamides, Organophosphorus, Pyrethroids, Organochlorine, Carbamates, Organic arsenic, other Pesticides, other antinematode drug, other Anthelmintic, Antiprotozoal) residues in meat using QuEChERS sample preparation and LC-MS/MS. The optimization of QuEChERS sample pretreatment and MS parameters was discussed in detail. The method has adequate specificity, sensitivity and selectivity without exhaustive clean-up step. Compounds were successfully identified in spiked samples from their accurate mass and LC retention times from the acquired full-scan chromatogram. Further analysis of the data for real samples allowed the identification of the targeted antiparasite residues but also non-targeted compounds, such as some of their metabolites.

2 Materials and method

2.1 Chemicals and sample

Veterinary anti-parasitic drug reference standards used in this study were above 95% or available highest purity. Ivermeetin, avermeetin, dorameetin, eprinomeetin, moxideetin, emameetin, dinitolmide, 3-ANOT, methylbenzoquate, decoquinate, toltrazuril, diclazuril, cyromazine, clopidol, nicarbazin, amprolium, ethopabate, robenidine, niclosamide, fenbendazole, levamisol, pyrantel pamoate, morantel, salinomycin, maduramicin, halofuginone lactate, naphthalophos, acetofenate, cypermethrin, diethylcarbamazine citrate, praziquantel, closantel, rafoxanide, nitroxinil, oxyclozanide, imidocarb, arecoline hydrobromide were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany). Narasin, lasalocid, dithiazanine iodide, pyrantel, diminazene, monensin, carbofuran, bendiocarb were purchased from Sigma– Aldrich Chemie b.v (Zwijndrecht, the Netherlands). Methiocarb, propoxur, metacrate, carbaryl, etrofolan, pirimicarb, carbosulfan, furathiocarb, benfuracarb, amitraz, diazinon, phoxim, propetamphos, rogor, lindane, permethrin, fenvalerate, ronnel, fenthion, dibrom, crufomate, azamethiphos, tetramethrin were purchased from Accu. Standard Inc. (New Haven, USA). Artesunate, bithionol, metyridine, albendazole, sulfadimidine were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Nitroscanate were purchased from J&K Chemical Inc. (Beijing, China). Halofuginone, toltrazuril sulfone were purchased from Toronto Research Chemicals Amino-flubendazole, Inc. (Toronto, Canada). amino-Mebendazole, hydroxy-Mebendazole, fenbendazole sulphone, triclabendazole sulphone. triclabendazole sulfoxide were purchased from Witega Laboratories Berlin-Aldershof GmbH (Berlin, Germany). Milbertycin oxime, parbendazole were purchased from U.S. Pharmacopeia (MD, USA). Trichlorfon, dichlorvos, coumaphos, malathion, deltamethrin were purchased from Agro-Environmental Protection Institute of Ministry of Agriculture (Tianjin, China). Nanchangmycin were purchased from Selleck Chemicals LLC (Houston, TX, USA). Stock solutions with concentrations at 1000 mg/L for each veterinary antiparasitic drugs: Avermectin, doramectin, mamectin, moxidectin, milbemycin oxime, lasalocid, propetamphos, decoquinate, diclazuril, cyromazin, nicarbazin, closantel, febantel which were dissolved in Acetonitrile; Nitroscanate, imidocarb, albendazole, fubendazole, mebendazole, amino-Mebendazole, hydroxy-Mebendazole, fenbendazole, fenbendazole sulphone. oxfendazole. oxibendazole, thiabendazole which were dissolved in dimethyl sulfoxide; other drugs were dissolved in methanol and stored at -20°C. The working mixed standard solution was prepared by diluting the multi-analyte intermediate standard solutions or stock solutions.

All samples tested were collected from MAO Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residues (Wuhan, China). Meat samples were muscle, liver, from swine, chicken and bovine. The samples were stored in frozen conditions and were kept frozen (-20 °C) until analysis.

2.2.1 Chromatographic separation

Samples were analysed using high performance liquid chromatograph (Finnigan Surveyor LC consisting of: degasser, dual pump system, autosampler and column oven) coupled with ESI-TSQ Quantum Access MS/MS detector (Thermofisher, USA). Separations were performed using a Thermo® Hypersil C₁₈ column (150*2.1mm, 5µm) at a temperature of 40 °C. The mobile phase consisted of 12.5mM aqueous formate ammonium formate at pH4 (A) and 12.5mM ammonium acetonitrile/methanol (50/50, v/v) (B). The chromatographic separation was performed in a gradient mode (0 min: A/B 98/2, v/v; 10 min: A/B 0/100; 30min: A/B 0/100; 30.5 min: A/B 98/2; 40 min: A/B 98/2) at a flow of 0.2 mL/min for a total run time of 40min, and 10 µL of the extract were injected.

2.2.2 ESI-TSQ-MS/MS condition

Electrospray ionisation (ESI) was used in the MS with both positive and negative ionisation with polarity switching in a single chromatographic analysis with a spray voltage of 4500V, a capillary temperature of 350 °C, a sheath gas pressure of 50psi and an aux gas pressure of 15arbitrary units. The Sheath Gas and Aux Gas Pressure were carried out by using nitrogen and the Collision Gas was argon. The resolution of Q1 was 0.7 amu and Q3 was 0.7 amu. This method was based on the identification of the veterinary antiparasitic drugs using parent-ion scan, selecting one product ion or one common fragment for each kinds of veterinary anti-parasitic drugs. Table 1 shows the MS/MS conditions (selected product ion or common fragment, as well as the corresponding cone voltage and collision energies) for each kind of veterinary anti-parasitic drugs.

Veterinary anti-parasitic drugs were extracted from meat using an extraction procedure based on QuEChERS methodology. The procedure was as follows: 2g meat tissue homogenate was weighed into polypropylene centrifuge tubes (50mL), then 10mL acetonitrile/ethyl acetate (1/1, v/v) was added to the sample, vortexed for 30s and ultrasonic for 1min, and then 1.0g of anhydrous MgSO₄ was added. The samples were mixed with the vortex for a few seconds, then centrifuged at 5000g for 10min at room temperature. Transfer the upper layer into a polypropylene tube, then 1mL of 5% NH₃·H₂O aqueous was added to the tube and vortexed for 30s. The supernatant was transferred into another tube containing 200mg ODS and 1.5g anhydrous MgSO₄, then vortexed for 30s and centrifuged again at 5000g for 5min. Transfer the upper layer into a polypropylene tube and evaporated under nitrogen at 40 °C. Dissolve the residue with 1.0 mL mobile phase and ready for the LC-MS/MS system.

2.4 Validation

The method was validated by EU regulation 2002/657/EC for a quantitative screening method. It was more suitable than the classical approach of validation usually applied to quantitative physicochemical methods (trueness, precision, linearity, etc.). It was more relevant to monitor many samples at the level of interest in order to assess statistically the capacity of detection of the method. The requirement for screening methods as described in Decision 2002/657/EC is that these methods have the capability of a high sample throughput and allow the detection of all targeted substances with a false compliant rate below 5% at the level of interest. It means that the CC β of the method should be found below this level of interest. The analytical response (relative chromatographic peak area) was determined for each analyte at the

relative retention time (2.5%) of the corresponding MRM transition.

The method was considered validated for a target compound if none of the responses of the spiked samples fell within the range of responses of the blanks. VLs (validation levels, VLs) for meat of swine, chicken and bovine were chosen according to the MRL and MRPL values of the target drugs in the corresponding laws and regulations and were set at half the MRL or the MRPL (minimum required performance limit, MRPL) value (table 2). The blank samples of swine meat, chicken meat and bovine meat 20 pieces each were spiked at the level of interest (MRL or ¹/₂MRL) with the different analytes and tested within the same day. Generally, the samples were spiked at the MRL level. The half-MRL level was chosen for some compounds especially when the MRL is established for the parent drug plus its metabolite or for the sum of different compounds (e.g. Albendazole, Albendazole oxide, Fenbendazole, Flubendazole, Mebendazole, Morantel, sulfonamides, Zoalene). The validation was then carried out per family in order to obtain information about the potential interferences. The concentrations evaluated during the validation are given in table 2. This step was repeated three times in order to obtain independent data for each analyte at the level of interest. The repetitions were carried out on three different days distributed over three different weeks.

The selectivity/specificity of the method was established by checking for the absence of interfering peaks at the expected relative retention time in negative samples. The specificity of a method is its ability to distinguish one specific analyte from the other analytes. It can be determined as being the number of negative agreements divided by the number of true negative samples expressed as a percentage. The sensitivity of a method can be determined as being the number of positive agreements divided by the number of true positive samples expressed as a percentage.

The consequence is the $CC\beta$ is below the MRL level.

3 Results and discussion

3.1 The optimization of QuEChERS sample pretreatment

The challenge for the analysts in the development of a multi-residue method was to find suitable extraction conditions for a large range of targeted analytes displaying different chemical properties (lipophilicity, hydrophilicity, alcaline and acidic characteristics, etc.). Avermeetins were a class of macrocyclic lactone with the basic structure of macrolide antibiotics, which were easily soluble in methanol, ethyl acetate, DMF, DMSO. Benzimidazoles contained a benzimidazole structure and were moderate polarity easily soluble in DMSO, DMF, water insoluble in dilute acetic acid. Polyether antibiotics have a chain of four or five chain structure and an ether group, organic acid group and were fat-soluble hydrophobic. These drugs are generally soluble or soluble in organic solvents, such as acetonitrile, methanol, ethyl acetate, slightly soluble or insoluble in water. As it is almost impossible to optimize the clean-up process for all analytes, the purification step has generally to be as short and simple as possible. For sample preparation the QuEChERS approach was chosen due to its advantages in terms of speed, high throughput and low cost.

From the literatures in the field of veterinary antiparasitic drugs residues, the most extraction solvents such as acetonitrile, ethyl acetate, methanol and water were considered in muscle. For optimization, 2 g of sample was spiked with 128 kinds of veterinary antiparasitic drugs at the level of 10 μ g/kg were added to a glass mortar, then extracted with 10mL acetonitrile, ethyl acetate, methanol, water and acetonitrile/ethyl acetate (1/1, v/v) separately. Fig. 1 a showed the results of extraction effects. The first was acetonitrile extraction, which is a common solvent

used for many veterinary antiparasitic drugs. This solvent was found to be sufficiently effective for the extraction of avermectins, imidazo thiazole, synthetic coccidiostats, flooding nematode drugs, taeniafuge drugs, flooding fluke drugs and insecticides. The second was an extraction using ethyl acetate under basic conditions which was found to be suitable for benzimidazoles, polyether antibiotics and carbamates. cetonitrile/ethyl acetate (v/v, 1/1) have complementary advantages, so acetonitrile/ethyl acetate (v/v, 1/1) was considered to be extraction solvent. Considering some alkaline drugs such as benzimidazoles and niclosamide can reach higher recovery under alkaline conditions using ethyl acetate extraction. Before the ethyl acetate extraction, 5% of ammonia solution is adopted to build alkaline environment. For liquid samples, such as eggs and milk, by contrast, found that after the first step extracted by acetonitrile, the second step extract is not necessary. So in order to achieve simple and time saving, for several liquid samples using acetonitrile and ethyl acetate mixed solvent and one-time extraction.

Then the selection test for the ratio between matrix and sorbent material was optimized. Four kinds of sorbent materials such as anhydrous MgSO₄-separate water from the organic solvent; PSA, NH₂-organic acids, pigments sugars and fatty acids; ODS-non-polar interfering substances like lipids; GCB-sterols and pigments were for the purification experiments. The 2 g samples were spiked with 128 kinds of veterinary anti-parasitic drugs at the level of 10 μ g/kg after been extracted by acetonitrile/ethyl acetate (v/v, 1/1), the extracting solvents were added to an equal amount 500mg of the adsorbent for purification of four impurities, after vortex, centrifuged, and the supernatant was dried by nitrogen gas stream at a low speed. The results were shown in fig 1 b, the adsorbents purification effect were: PSA, NH2, ODS, GCB. With the above optimization, the ODS can ensure high recovery,

purification capacity. Thus, ODS was selected for the purification. Then we also optimized the amount of ODS (200mg, 500mg, 800mg, 1000mg). Fig. 1 c showed that ODS (200mg) was the best selection.

The last procedure after optimization was as follows: 2g tissue was extracted by 10mL acetonitrile/ethyl acetate (1/1, v/v) with 5% NH_3 ·H2O aqueous, then 200mg ODS and 1.5g anhydrous MgSO₄ for purification.

3.2 The optimization of LC-MS/MS method

Reverse phase chromatography is a kind of liquid chromatographic separation mode, its surface nonpolar carrier as stationary phase, with relatively strong polarity solvent as mobile phase. This study involved more than drugs for small molecule medium polarity or weak polar compounds, so choose to adopt the most appropriate C₁₈ reversed-phase chromatography column. The liquid chromatographic analysis of the veterinary anti-parasitic drugs was studied in order to achieve fast detection and acceptable separation of analytes by this screening method developed in this manuscript. The polarity of the 128 drugs are not identical, although unlike affinity chromatography column, but in order to better split drugs, the gradient elution mode: in view of the reversed phase chromatographic column, first with a low ratio of water phase and the high proportion of organic phase, the polarity of the target was cleared out; Gradually reduce the proportion of water phase and improve the proportion of organic phase to 100%, using pure organic phase elution, the polarity weak target elution, finally return to the initial proportion of mobile phase. In different time Settings of different proportion of mobile phase, and then make the retention time of drug in the post, making drugs in different time the peak, improve the detection sensitivity. For that purpose,

The LC programmed method was optimized in order to achieve the good separation of analytes with widely differing polarities and the optimum conditions were found to be that the initial percentage of organic phase (12.5mM ammonium formate in MeCN:MeOH (50:50, v/v)) was modified from 10% to 2%, reaching 100% of organic phase.

MS/MS conditions for this screening method was designed by employing parent-ion scan mode of work in MS/MS for the identification of several families of veterinary anti-parasitic drugs namely avermectins, benzimidazoles, polyether antibiotics, chemical synthesis coccidiostats, organophosphorus, carbamates pyrethroids, organic arsenic and other pesticides. The selection of product ions was carried out injecting a standard solution of each veterinary anti-parasitic drug (1 mg/L) in a mixture of methanol-aqueous solution of 0.05% formic acid (50:50v/v). For screening purposes and because of structural variations within the same group, benzimidazoles were separated in two groups. On the other hand, the loss of CH₃OH was selected for fenbendazole, mebendazole, and albendazole. Afterwards, the cone voltages and collision energies were optimized for each one. Furthermore, MS/MS parameters, such as resolution of Q1 and Q3 and scan time were evaluated. It can be indicated that when the resolution of Q1 was modified, no significant differences on the intensity of the signals were observed. However, resolution of Q3 has a great impact on the intensity of the signals. When Q1 and Q3 were both 0.7 amu, the result was observed the higher intensity peak. Table 1 shows the MS/MS parameters to monitor each family of compounds, including the scan time and the mass range selected in Q1. Some analytes do not form protonated molecules, but Na or K or NH₃ adducts were used as precursor ions. The molecular formula of Ivermectin is $C_{48}H_{74}O_{14}$ (M = 875). The precursor ion is $[M+Na]^+$ as $C_{48}H_{74}O_{14}Na$ (M = 897).

Similarly, the precursors of Avermectin, Doramectin, Eprinomectin, Milbemycin oxime, Monensin, Salinomycin, Narasin, Maduramicin, Lasalocid, Nanchangmycin were $[M+Na]^+$. The precursors of Aldicarb, Metacrate, Deltamethrin, Fenvalerate were $[M+NH_4]^+$. The precursors of Permethrin and Lindane were $[M+K]^+$. The precursors of amprolium M = 278 and Robenidine M=370 were $[M-Cl]^-$

3.3 Method validation results

The validation process previously described had already been tested for biological screening methods but was totally new for an LC/MS-MS method. The suitability of this validation scheme applied to a physicochemical screening method was demonstrated and gave more useful information than the classical approach of validation usually applied to quantitative physicochemical methods. The limit of detection, specificity, sensitivity and CC β were assessed during the validation and the results are described below for each anti-parasitic family. The specificity of the method was checked by analysing 20 meat blank samples of different origins and the specificity was 100% for all the analytes as no peak was detected in these samples at the retention time corresponding to each analyte. This fact underlines the very high specificity of the tandem mass spectrometer. The chromatography is avermectins and benzimidazoles (Fig 2a), polyether antibiotics and chemical synthesis coccidiostats (Fig 2b), organophosphorus and carbamates(Fig 2c), pyrethroids, organic arsenic and other pesticides (Fig 2d) in spiked swine muscle.

For Avermectins, meat samples were spiked at 10 μ g/kg for ivermectin, 20 μ g/kg for avermectin, 40 μ g/kg for doramectin, 5 μ g/kg for eprinomectin, moxidectin, milbemycin oxime and emamectin. Results are presented in table 2. These results mean that the CC β of the seven avermectins are below the level of concentrations tested during the validation, i.e. below MRL for ivermectin, avermectin, doramectin.

The limits of detection were calculated and ranged between 2 and 5 µg/kg. Retention times ranged from 16.3 to 22.5 min. For Benzimidazoles, the level of validation for each analyte is given in table 2. The estimated $CC\beta$ was below the level of validation. The limits of detection were below 0.5 μ g/kg for most of the analytes and up to 2 µg/kg for fenbendazole, oxibendazole. Retention times ranged 12.5 to 17.1 min for benzimidazoles. For Polyether antibiotics, meat samples were spiked at 2 µg/kg for monensin, 600 µg/kg for salinomycin and narasin, 240 µg/kg for maduramicin, 20 $\mu g/kg$ for lasalocid and nanchangmycin. These results mean that the CC β of the six polyether antibiotics are below the level of concentrations tested during the validation. The limits of detection were calculated and ranged between 2 and 10 µg/kg. Retention times ranged from 20.7 to 25.4 min. For Synthetic coccidiostats, the levels of validation for each nitrobenzene amides, morpholino, triazines, pyridine, benzene urea, plant bases, antithiamine class, synergist class, guanidines, sulfonamides, imidazo and thiazole are given in table 2. Results were very satisfactory as the CC β was assessed to be below the level of validation for all analytes. The limits of detection were calculated and ranged between 0.5 and 5 µg/kg. Retention times ranged from 3.4 to 24.9 min. For Insecticides (Organophosphate insecticides, Pyrethroids, Organochlorine insecticides, Carbamates, Organic arsenic pesticides), the levels of validation for each insecticides were ranged from 1 to 10 μ g/kg. Results were very satisfactory as the CC β was assessed to be below the level of validation for all analytes (table 2). The limits of detection were calculated and ranged between 0.5 and 5 μ g/kg. Retention times ranged from 12.7 to 29.7 min. For Flooding nematode Taeniafuge Flooding fluke drugs, drugs, drugs. Anti-trypanosome drug, Piroplasma anti-drug, meat samples were spiked at 1-10 µg/kg for the left 20 kinds drugs. Twenty spiked samples were analysed per day and

during 3 days. In total, 60 samples were analysed for each analyte. These results mean that the CC β of the 20 kinds of drugs are below the level of concentrations tested during the validation. The limits of detection were calculated and ranged between 1 and 10 µg/kg. Retention times ranged from 7.3 to 19.2 min.

4 Conclusion

A simple method was developed for the screening of 128 veterinary anti-parasitic in animal meat. The QuEChERS sample preparation procedure made available the detection of the majority of the analytes with high specificity, sensitivity and selectivity. This technique requires no exhaustive clean-up steps and uses small amounts of solvent, being therefore simpler, cheaper and faster than the traditional procedure. This possibility, in conjunction with the opportunity of expanding the present screening methodology to other animal matrices, is under investigation in our laboratory.

Acknowledgements

The authors thank the Special Fund for Agro-scientific Research in the Public Interest (201203040) which enabled this work to be carried out.

Reference

Aguilera-Luiz. M.M., Vidal. J.L., Romero-González. R., & Frenich. A.G. (2008).

Multi-residue determination of veterinary drugs in milk by ultra-high-pressure liquid chromatography-tandem mass spectrometry. *Journal of Chromatography A*. 1205 (1-2), 10-16.

- Anastassiades. M., Lehotay S.J., Stajnbaher. D., Schenck. F.J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. *J AOAC Int.* 6 (2), 412-431.
- Commission of the European Communities, Decision of 12 August 2002 (2002/657/EC). Off. J. Eur. Commun. 221 (2002) 8.
- EMEA (European Medicines Agency), 1996. Diclazuril summary report (1). Report of the Committee for Veterinary Medicinal Products. EMEA /MRL /086 /96-FINAL. http://www.emea.europa.eu/pdfs/vet/mrls/008696en.pdf.
- EMEA (European Medicines Agency), 1998. Halofuginone summary report (1), summary report of the Committee for Veterinary Medicinal Products, EMEA/MRL/485/98-FINAL.November1998.http://www.emea.europa.eu/index/i ndexv1.htm.
- EMEA (European Medicines Agency), 2000. Halofuginone summary report (2), Summary report of the Committee for Veterinary Medicinal Products, EMEA/MRL/741/00-FINAL,June.2000.http://www.emea.europa.eu/index/index v1.htm.
- EMEA (European Medicines Agency), 2003. Halocur: scientic discussion. CVMP/643/99-Rev.1.http://www.emea.europa.eu/vetdocs/PDFs/EPAR/halocur/ 064399en6.pdf
- EMEA (European Medicines Agency), 2004. Lasalocid sodium. Summary report of the Committee for Veterinary Medicinal Products. EMEA/MRL/912/04-FINAL, October 2004. http://www.emea.europa.eu/pdfs/vet/mrls/091204en.pdf.

- EMEA (European Medicines Agency), 2004. Diclazuril (extension to all ruminants and porcine species) summary report(2). Summary report of the Committee for Veterinary Medicinal Products. EMEA /MRL /895 /04-Final. http://www.emea.europa.eu/pdfs/vet/mrls/089504en.pdf.
- EMEA (European Medicines Agency), 2007. Summary report of the committee for medicinal products for veterinary use on the establishment of maximum residues emea.europa.eu/pdfs/ limits.Monensin. EMEA /CVMP /185123/2007-Final. http://www.vet/mrls/Monensin.pdf.

- Jeong. I.S., Kwak. B.M., Ahn. J.H., Jeong. S.H. (2012). Determination of pesticide residues in milk using a QuEChERS-based method developed by response surface methodology. *Food Chemistry*. 133, 473-481
- Kang. J., Fan. C.L., Chang. Q.Y., Bu. M.N., Zhao. Z.Y., Wang. W., Pang. G.F. (2014). Simultaneous determination of multi-class veterinary drug residues in dierent muscle tissues by modified QuEChERS combined with HPLC-MS/MS. *Analytical Methods*. 6, 6285-6293.
- Kaufmann. A., Butcher. P., Maden. K., Widmer. M. (2007). Ultra-performance liquid chromatography coupled to time of flight mass spectrometry (UPLC-TOF): a novel tool for multiresidue screening of veterinary drugs in urine. *Anal Chim Acta*. 14; 586(1-2):13-21.
- Kinsella. B., Whelan. M., Cantwell. H., McCormack. M., Furey. A., Lehotay.
 S.J., Danaher. M. (2010). A dual validation approach to detect anthelmintic residues in bovine liver over an extended concentration range. *Talanta*. 83(1):14-24.
- Kinsella. B., Lehotay. S.J., Mastovska. K., Lightfield. A.R., Furey. A., Danaher. M. (2009). New method for the analysis of flukicide and other anthelmintic residues in bovine milk and liver using liquid chromatography-tandem mass spectrometry. *Anal Chim Acta*. 637(1-2):196-207.

- Lankas. G.R., Peter. C.P. (1992). Induction of reversible urothelial cell hyperplasia in rats by clorsulon, a flukicide with weak carbonic anhydrase inhibitory activity. *Food Chemistry Toxicology*. 30(4):297-306.
- León. N., Roca. M., Igualada. C., Martins. C.P., Pastor. A., Yusá. V. (2012).
 Wide-range screening of banned veterinary drugs in urine by ultra high liquid chromatography coupled to high-resolution mass spectrometry. *Journal of Chromatography A*. 258:55-65.
- Olejnik. M., Szprengier-Juszkiewicz. T., Jedziniak. P. (2010). Confirmatory method for determination of coccidiostats in eggs. *Bull Vet Inst Pulawy*. 54, 327-333.
- Martínez. V.J.L., Garrido. F.A., Aguilera-Luiz. M.M., Romero-González. R. (2010). Development of fast screening methods for the analysis of veterinary drug residues in milk by liquid chromatography-triple quadrupole mass spectrometry. *Anal Bioanal Chem.* 397(7):2777-2790.
- McKellar. Q.A., Scott. E.W. (1990). The benzimidazole anthelmintic agents--a review. *J Vet Pharmacol Ther.*, 13(3):223-247.
- Mohammad. F.K., Faris. G.A., Rhayma. M.S., Ahmed. K. (2006). Neurobehavioral effects of tetramisole in mice. Neurotoxicology. 27(2):153-157.
- Park. K.H., Choi. J.H., Abd El-Aty A.M., Cho. S.K., Park. J.H., Kwon. K.S., Park. H.R., Kim. H.S., Shin. H.C., Kim. M.R., Shim. J.H. (2012). Development of QuEChERS-based extraction and liquid chromatography-tandem mass spectrometry method for quantifying flumethasone residues in beef muscle. *Meat Science*. 92(4):749-753.

- Pérez-Burgos. R., Grzelak. E.M., Gokce. G., Saurina. J., Barbosa. J., Barrón. D. (2012). Quechers methodologies as an alternative to solid phase extraction (SPE) for the determination and characterization of residues of cephalosporins in beef muscle using LC-MS/MS. *Journal of Chromatography B.* 899:57-65.
- Romero-González. R., Garrido. F.A., Martínez. V.J.L., Prestes. O.D., Grio, S.L. (2011). Simultaneous determination of pesticides, biopesticides and mycotoxins in organic products applying a quick, easy, cheap, effective, rugged and safe extraction procedure and ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of chromatography. A. 1218 (11): 1477-1485.
- Stubbings G, Bigwood T. (2009). The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC-MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach. *Anal Chim Acta.* 637(1-2):68-78.
- Tomasini. D., Sampaio. M.R.F., Caldas. S.S., Buffon. J.G., Duarte. F.A., Primel. E.G. (2012). Simultaneous determination of pesticides and 5-hydroxymethylfurfural in honey by the modied QuEChERS method and liquid chromatography coupled to tandem mass spectrometry. Talanta. 99, 380-386.

- Whelan. M., Kinsella. B., Furey. A., Moloney. M., Cantwell. H., Lehotay. S.J. Danaher M. (2010). Determination of anthelmintic drug residues in milk using ultra high performance liquid chromatography-tandem mass spectrometry with rapid polarity switching. *Journal of Chromatography A*. 1217(27):4612-4622.
- Wang. P.C., Lee. R.J., Chen. C.Y., Chou. C.C., Lee. M.R. (2012). Determination of cyromazine and melamine in chicken eggs using quick, easy, cheap, effective,
 rugged and safe (QuEChERS) extraction coupled with liquid chromatography-tandem mass spectrometry. *Anal Chim Acta*. 752:78-86.
- Zhao. H.X., Mun. H., Bai. Y.H., Yu. H., Hu. Y.M. (2011). A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection. Journal of Pharmaceutical Analysis. 18: 208-212.

Fig.1. a. The optimization of different extracting solvents;

Fig.1. c. The optimization of different addition amount.

Fig.2.a. The chromatography of quantitative ions of Avermectins (10 μ g/kg for ivermectin, 20 μ g/kg for avermectin, 40 μ g/kg for doramectin, 5 μ g/kg for eprinomectin, moxidectin, milbemycin oxime and emamectin)

Fig.2.b. The chromatography of quantitative ions of Benzimidazoles (2µg/kg-25µg/kg) in spiked swine muscle;

Fig.2.c. The chromatography of quantitative ions of Polyether antibiotics $(2\mu g/kg-20\mu g/kg)$ in spiked swine muscle;

Fig.2.d. The chromatography of quantitative ions of chemical synthesis coccidiostats $(2\mu g/kg-4\mu g/kg)$ in spiked swine muscle;

Fig.2.e. The chromatography of quantitative ions of Organophosphorus $(2\mu g/kg-10\mu g/kg)$ in spiked swine muscle;

Recei

Fig.2.f. The chromatography of quantitative ions of Carbamates (2µg/kg-25µg/kg)in spiked swine muscle;

Fig.2.h. The chromatography of Organic arsenic (2µg/kg-25µg/kg) in spiked swine muscle

Fig.2.i. The chromatography of other pesticides (2µg/kg-50µg/kg) in spiked swine muscle

A Graphical Abstract

Table 1 Molecular weights, retention times, t_R (acceptable ranges, ±3 SD), ion transitions, optimized MS/MS parameters, and ion ratios (acceptable ranges, ±3 SD) vs. concentrations of theantiparasitic drugs and pesticides by LC–MS/MS

Nu mb er seri al	Analyte	Elemental composition	M. W	t _R (m in)	Quantifi cation transitio n(m/z)	CE (e V)	Confirm ation transitio n(m/z)	CE(eV)	Ion ratio (average of ion ratio% ±RSD% for 0.5MRL-1 .5MRL)
1	Ivermectin [M+Na] ⁺	C48H74O14	87 5. 1	22.5 ± 0.0	897.3> 311.1	48	897.3> 240.2	49	25%±8%
2	Avermectin [M+Na] ⁺	C48H72O14	87 3. 1	19.2 ± 0.0	895.5> 328.6	19	895.5> 327.1	42	34%±14%
3	Doramectin [M+Na] ⁺	C50H74O14	89 9. 1	21.5 ± 0.0	921.4> 217.2	46	921.4> 183.0	51	63%±16%
4	Eprinomectin [M+Na] ⁺	C50H75NO 14	91 4. 1	19.8 ± 0.0	936.3> 352.1	53	936.3> 223.9	52	39%±15%
5	Moxidectin	C37H53NO 8	63 9. 8	18.6 ± 0.0	640.3> 498.2	8	640.3> 199.3	27	34%±9%
6	Milbemycin oxime [M+Na] ⁺	C63H88N2 O14	10 97 4	16.3 ± 0.0	1119.4 >577.9	31	1119.4 >563.8	28	53%±10%
7	Emamectin	C49H75NO 13	88 6.	19.1 ± 0.0	886.6> 126.3	30	886.6> 82.4	48	25%±7%
8	Albendazole	C12H15N3 O2S	26 5. 3	15.7 ±0.0	266.2> 191.4	32	266.2> 159.3	39	78±8%
9	Albendazole sulphone	C12H15N3 O4S	29 7. 3	13.1 ±0.0 4	298.2> 224.3	25	298.2> 159.4	35	61%±12%
10	Albendazole sulfoxide	C12H15N3 O38	28 1. 3	12.5 ±0.0 4	282.2> 208.3	24	282.2> 159.4	33	63%±3%
11	Albendazole-2-a mino-sulfone	C10H13N3 O2S	23 9. 3	10.9 ± 0.0	240.2> 133.4	28	240.2> 106.5	41	60%±16%
12	Fubendazole	C16H12FN3 O3	31 3. 3	14.9 ± 0.0	314.2> 123.4	32	314.2> 95.4	45	74%±16%
13	Amino-flubenda zole	C14H10FN3 O	25 5. 3	13.4 ± 0.0	256.2> 113.5	33	256.2> 95.5	36	68%±3%
14	Mebendazole	C16H13N3 O3	29 5. 3	14.7 ±0.0	296.2> 105.4	31	296.2> 77.5	42	89%±13%
15	Amino-Mebenda zole	C14H11N3 O	23 8. 3	12.9 ±0.0	238.3> 95.6	27	238.3> 77.5	33	78%±20%
16	Hydroxy-Meben dazole	C16H14N3 O3	29 7.	13.7 ± 0.0	298.2> 160.4	32	298.2> 79.6	34	74%±9%
17	Fenbendazole	C15H13N3	29	16.2	300.2>	29	300.2>	34	64%±2%

Nu mb er seri al	Analyte	Elemental composition	M. W	t _R (m in)	Quantifi cation transitio n(m/z)	CE (e V)	Confirm ation transitio n(m/z)	CE(eV)	Ion ratio (average of ion ratio% ±RSD% for 0.5MRL-1 .5MRL)
		O2S	9.	±0.0	190.3		159.3		
18	Fenbendazole sulphone	C15H13N3 O4S	4 33 1. 4	$3 \\ 13.4 \\ \pm 0.0 \\ 3$	332.2> 175.1	20	332.2> 159.4	34	68%±18%
19	Oxfendazole	C15H13N3 O3S	31 5. 4	16.4 ± 0.0	316.2> 191.4	20	316.2> 159.3	34	56%±3%
20	Parbendazole	C13H17N3 O2	24 7.	14.7 ± 0.0	248.3> 173.3	30	248.3> 160.4	28	47%±19%
21	Oxibendazole	C12H15N3 O3	24 9.	12.9 ± 0.0	250.3> 176.3	27	250.3> 148.3	35	78%±10%
22	Thiabendazole	C10H7N3S	20 1. 3	$11.1 \pm 0.0 5$	202.2> 131.4	31	202.2> 92.5	33	67%±7%
23	5-Hydroxy Thiabendazole	C10H7N3O S	21 7. 3	14±0 .04	218.0> 147.1	31	218.0> 108.2	30	66%±16%
24	Triclabendazole	C14H9Cl3N 2OS	35 9. 7	$17.7 \pm 0.0 4$	359.0> 198.0	20	359.0> 165.4	41	56%±12%
25	Triclabendazole sulfoxide [M-H]	C14H9Cl3N 2O2S	37 5. 7	17.1 ±0.0 5	374.5> 213.5	33	374.5> 181.3	48	54%±10%
26	Triclabendazole sulphone	C14H9Cl3N 2O3S	39 1. 7	17.1 ±0.0 6	391.1> 242.4	34	391.1> 167.5	38	46%±8%
27	Benomyl	C14H18N4 O3	29 0. 3	15.7 ±0.0 6	290.4> 228.6	16	290.4> 146.3	15	35%±3%
28	Febantel	C20H22N4 O6S	44 6. 5	16.9 ±0.0 2	447.0> 382.9	18	447.0> 311.9	23	87%±6%
29	Monensin[M+N a] ⁺	С36Н62О11	67 0. 9	21±0 .02	693.5> 461.4	46	693.5> 321.2	49	91%±15%
30	Salinomycin [M+Na] ⁺	C42H70O11	75 1	$22.9 \pm 0.0 2$	773.5> 413.2	42	773.5> 265.4	44	58%±5%
31	Narasin[M+Na]	C43H72O11	76 5	23.3 ±0.0 1	787.6> 413.4	45	787.6> 279.2	50	62%±10%
32	Maduramicin [M+Na] ⁺	C47H80O17	91 7. 1	$22.3 \pm 0.0 1$	939.6> 877.3	23	939.6> 859.7	54	45%±12%
•33	Lasalocid [M+Na] ⁺	C34H54O8	59 0. 8	$20.7 \pm 0.0 5$	613.4> 377.5	32	613.4> 359.4	37	61%±19%
34	Nanchangmycin [M+Na] ⁺	C48H80O13	86 5. 1	25.4 ±0.0 4	889.4> 447.1	49	889.4> 292.8	64	42%±14%
35	Dinitolmide (-)*	C8H7N3O5	22 5. 2	$12.6 \pm 0.0 3$	224.0> 181.0	14	224.0> 151.0	20	14%±6%
36	3-ANOT	C8H9N3O3	19 5. 2	7.2± 0.04	195.8> 125.5	23	195.8> 106.4	10	24%±14%

Nu mb er seri al	Analyte	Elemental composition	M. W	t _R (m in)	Quantifi cation transitio n(m/z)	CE (e V)	Confirm ation transitio n(m/z)	CE(eV)	Ion ratio (average of ion ratio% ±RSD% for 0.5MRL-1 .5MRL)
37	Methylbenzoqua te	C22H23NO 4	36 5. 4	17.2 ±0.0 2	366.2> 201.0	31	366.2> 145.0	43	34%±7%
38	Decoquinate	C24H35NO 5	41 7. 5	19.8 ±0.0 2	418.4> 206.2	33	418.4> 204.2	40	24%±16%
39	Toltrazuril (-)	C18H3N3O 4S	42 5. 4	12.8 ± 0.0	423.7	0	423.7	0	33%±6%
40	Toltrazuril sulfone (-)	C18H3N3O 6S	45 7. 4	16.6 ± 0.0	455.9	0	455.9	0	37%±15%
41	Diclazuril (-)	C17H9Cl3N 4O2	40 7. 6	$17.1 \pm 0.0 3$	404.8> 334.9	18	404.8> 333.9	20	47%±7%
42	Cyromazine	C6H10N6	16 6. 2	2.3± 0.03	167.0> 108.3	21	167.0> 85.4	17	58%±13%
43	Clopidol	C7H7Cl2N O	19 2	9.6± 0.02	193.9> 103.2	32	193.9> 100.8	25	25%±10%
44	Nicarbazin	C13H10N4 O5.C6H8	42 6. 4	16.3 ± 0.0	301.0> 137.1	20	301.0> 107.1	40	18%±12%
45	Amprolium	C14H19ClN 4	27 8. 8	1.3± 0.02	243.2> 135.4	24	243.2> 122.3	24	54%±17%
46	Ethopabate	C12H15NO 4	23 7. 3	13.6 ±0.0 6	238.0> 164.3	20	238.0> 136.4	21	60%±5%
47	Robenidine	C15H13Cl2 N5.HCl	37 0. 7	16.5 ± 0.0 3	334.0> 138.2	26	334.0> 111.2	52	23%±14%
48	Halofuginone	C16H17BrC IN3O3	41 4. 7	11.4 ±0.0 2	415.7> 120.0	17	415.7> 99.9	18	35%±22%
49	Sulfaclozine	C10H9ClN4 O2S	28 4. 7	$11.6 \pm 0.0 3$	285.0> 108.1	24	285.0> 92.2	27	51%±10%
50	Sulfaquinoxaline	C14H12N4 O2S	30 0. 3	13.4 ±0.0 4	301.0> 108.1	25	301.0> 92.1	29	52%±17%
51	Sulfadiazine	C10H10N4 O2S	25 0. 3	11.7 ±0.0 4	251.0> 108.1	21	251.0> 92.2	26	65%±26%
52	Sulfadimidine	C12H14N4 O2S	27 8. 3	1.5± 0.05	279.0> 186.0	16	279.0> 124.1	27	39%±7%
53	Sulfadimethoxin e	C12H14N4 O4S	31 0. 3	11.4 ± 0.0	311.0> 156.0	20	311.0> 108.1	26	32%±3%
54	Sulfamethoxazol e,	C10H11N3 O3S	25 3. 3	11.7 ±0.0 5	254.0> 108.1	23	254.0> 92.2	26	45%±12%
55	Sulfamonometho xine	C11H12N4 O38	28 0. 3	$13.4 \pm 0.0 4$	281.0> 215.0	15	281.0> 108.1	26	50%±6%
56	Sulfamethoxydia zine	C11H12N4 O3S	28 0. 3	18.8 ±0.0 6	281.0> 215.0	17	281.0> 108.1	27	34%±14%

Nu mb er seri al	Analyte	Elemental composition	M. W	t _R (m in)	Quantifi cation transitio n(m/z)	CE (e V)	Confirm ation transitio n(m/z)	CE(eV)	Ion ratio (average of ion ratio% ±RSD% for 0.5MRL-1 .5MRL)
57	Sulfamethoxypy ridazine	C11H12N4 O3S	28 0. 3	3.4± 0.05	281.0> 108.1	25	281.0> 92.1	27	43%±9%
58	Trichlorfon	C4H8Cl3O4 P	25 7. 4	1.1± 0.05	259.1> 221.3	12	259.1> 127.4	15	57%±20%
59	Dichlorvos	C4H7Cl2O4 P	22 1	17.4 ±0.0	221.1> 109.4	17	221.1> 79.4	26	39%±6%
60	Coumaphos	C14H16ClO 5PS	36 2. 8	$15.8 \pm 0.0 4$	363.1> 227.3	24	363.1> 211.3	30	56%±7%
61	Coumaphos-oxo n	C14H16ClO 6P	34 6. 7	$16.6 \pm 0.0 4$	347.0> 291.0	19	347.0> 211.2	30	43%±4%
62	Malathion	C10H19O6P S2	, 33 0. 4	17.6 ±0.0	331.2> 125.3	27	331.2> 99.4	25	72%±14%
63	Diazinon	C12H21N2 O3PS	30 4.	18.3 ± 0.0	305.2> 153.4	20	305.2> 97.4	33	28%±10%
64	Fenthion	C10H15O3P S2	27 8.	17±0 .01	279.2> 169.3	18	279.2> 105.5	28	46%±20%
65	Crufomate	C12H19CIN O3P	29 1.	16.6 ± 0.0	292.2> 126.4	25	292.2> 108.5	26	22%±2%
66	Phoxim	C12H15N2 O3PS	29 8. 2	24.9 ± 0.0	299.2> 97.2	29	299.2> 77.5	30	86%±2%
67	Propetamphos	C10H20NO 4PS	3 28 1.	17±0 .04	282.2> 124.4	23	282.2> 110.3	29	31%±4%
68	Dibrom	C4H7Br2Cl 2O4P	38 0.	12.7 ± 0.0	380.9> 127.4	12	380.9> 109.5	38	64%±13%
69	Rogor	C5H12NO3 PS2	8 22 9.	15.8 ± 0.0	230.2> 171.3	14	230.2> 125.3	23	24%±6%
70	Azamethiphos	C9H10CIN2 O5PS	32 4.	14.3 ±0.0	325.1> 139.3	24	325.1> 112.4	32	43%±18%
71	Temephos	C16H20O6P 2S3	46 6.	6 22.3 ±0.0	466.7> 404.8	15	466.7> 124.7	32	52%±18%
72	Ronnel	C8H8Cl3O3 PS	5 32 1.	5 12.9 ±0.0	323.0> 264.9	11	323.0> 223.2	20	36%±19%
73	Aldicarb $[M+NH_4]^+$	C7H14N2O 2S	6 19 0.	6 13.7 ±0.0	208.1> 89.3	15	208.1> 61.3	22	54%±12%
74	Propoxur	C11H15NO 3	3 20 9.	3 14.4 ±0.0	210.0> 93.2	26	210.0> 65.3	33	37%±12%
75	Carbofuran	C12H15NO 3	2 22 1.	4 14.6 ±0.0	222.0> 123.1	22	222.0> 77 2	38	62%±18%
76	Metacrate $[M+NH_4]^+$	C9H11NO	3 16 5.	2 14±0 .01	183.1> 109.2	14	183.1> 94.2	32	53%±17%

Nu mb er seri al	Analyte	Elemental composition	M. W	t _R (m in)	Quantifi cation transitio n(m/z)	CE (e V)	Confirm ation transitio n(m/z)	CE(eV)	Ion ratio (average of ion ratio% ±RSD% for 0.5MRL-1 .5MRL)
			2						
77	Carbaryl	C12H11NO 2	20 1. 2	14.7 ±0.0 1	202.0> 127.1	27	202.0> 117.1	22	53%±5%
78	Etrofolan	C11H15NO 2	19 3. 2	15.3 ± 0.0	194.1> 95.2	14	194.1> 77.3	33	60%±7%
79	Pirimicarb	C11H18N4 O2	23 8. 3	14.9 ± 0.0	239.1> 182.2	15	239.1> 72.3	20	16%±5%
80	Diethofencarb	C14H21NO 4	26 7. 3	15.9 ± 0.0	268.0> 152.1	22	268.0> 124.1	31	64%±2%
81	Furathiocarb	C18H26N2 O5S	38 2. 5	18.6 ± 0.0	383.0> 167.0	25	383.0> 162.0	31	66%±15%
82	Methiocarb	C11H15NO 28	22 5. 3	16±0 .03	226.0> 121.2	18	226.0> 91.2	32	29%±17%
83	Bendiocarb	C11H13NO 4	22 3. 3	14.4 ± 0.0	224.0> 109.1	18	224.0> 81.2	33	34%±18%
84	Fenobucarb	C12H17NO 2	20 7. 3	16±0 .02	208.3> 95.5	15	208.3> 77.5	34	62%±26%
85	Carbosulfan	C20H30N2 O3S	38 0. 5	17±0 .02	381.3> 118.4	18	381.3> 76.4	30	36%±13%
86	Benfuracarb	C20H30N2 O5S	41 0. 5	18.7 ± 0.0 2	411.3> 162.4	31	411.3> 102.4	29	51%±14%
87	Deltamethrin $[M+NH_4]^+$	C22H19Br2 NO3	50 5. 2	20.9 ±0.0 6	523.1> 506.3	6	523.1> 280.6	5	81%±21%
88	Permethrin [M+K] ⁺	C21H20Cl2 O3	39 1. 3	17±0 .06	432.3> 135.5	20	432.3> 119.5	18	50%±3%
89	Tetramethrin	C19H25NO 4	33 1. 4	21±0 .05	332.3> 286.4	10	332.3> 164.4	24	76%±5%
90	Fenvalerate [M+NH ₄] ⁺	C25H22CIN O3	41 9. 9	16.8 ±0.0 4	437.3> 317.6	18	437.3> 303.5	27	57%±12%
91	Cypermethrin [M-Cl] ⁻	C22H19Cl2 NO3	41 6. 3	18.4 ±0.0 5	381.3> 285.0	18	381.3> 253.3	31	61%±13%
92	Cyfluthrin	C22H18Cl2 FNO3	43 4. 3	$17.1 \pm 0.0 3$	437.1> 303.1	23	437.1> 273.1	21	45%±13%
93	Arsanilic acid	C6H8AsNO 3	21 7. 1	$15.3 \pm 0.0 2$	246.1> 108.4	22	246.1> 80.5	37	58%±25%
94	Roxarsone	C6H6AsNO 6	26 3	$28.1 \pm 0.0 4$	292.1> 198.1	18	292.1> 91.2	28	51%±2%
95	4-nitrophenylars onic acid	C6H6AsNO 5	24 7	25.9 ±0.0 4	276.1> 168.3	17	276.1> 140.3	27	42%±2%

Nu mb er seri al	Analyte	Elemental composition	M. W	t _R (m in)	Quantifi cation transitio n(m/z)	CE (e V)	Confirm ation transitio n(m/z)	CE(eV)	Ion ratio (average of ion ratio% ±RSD% for 0.5MRL-1 .5MRL)
96	Carbarsone	C7H9AsN2 O4	26 0. 1	29.4 ±0.0 2	289.1> 182.3	23	289.1> 108.4	28	57%±21%
97	Lindane [M+K]	C6H6Cl6	29 0. 8	20.5 ± 0.0	330.4> 85.6	26	330.4> 70.5	28	63%±16%
98	Acetofenate	C10H7Cl5O 2	33 6.	14.9 ± 0.0	337.0> 280.8	20	337.0> 204.3	17	56%±2%
99	Amitraz	C19H23N3	29 3.	17.2 ± 0.0	294.3> 122.4	29	294.3> 107.5	37	47%±12%
100	2,4-DMA	C10H14N2	12 1. 2	13.7 ± 0.0	122.3> 105.5	15	122.3> 77.5	30	54%±16%
101	Diflubenzuron (-)	C14H9ClF2 N2O2	31 0. 7	16.9 ± 0.0	309.0> 113.1	32	309.0> 93.1	55	48%±17%
102	Fluazuron (-)	C20H10C15 N3O3	50 6. 2	18.6 ± 0.0	503.8> 304.9	17	503.8> 261.9	29	75%±19%
103	Chlordimeform	C10H13CIN 2	19 6. 7	12.3 ±0.0	196.7> 116.9	29	196.7> 90.0	43	60%±7%
104	Metronidazole	C6H9N3O3	17 1. 2	4.1± 0.06	171.9> 111.1	19	171.9> 82.2	22	53%±16%
105	Dimetridazole	C5H7N3O2	14 1. 1	11.1 ±0.0	141.9> 95.2	20	141.9> 81.2	25	47%±6%
106	Levamisol	C11H28N2S	20 4.	10.6 ± 0.0	205.2> 123.4	27	205.2> 91.5	34	23%±4%
107	Pyrantel	C11H14N2S	20 6.	11.5 ± 0.0	207.1> 109.2	45	207.1> 97.4	21	53%±3%
108	Morantel	C12H16N2S	19 0.	12.6 ± 0.0	221.0> 123.2	35	221.0> 111.1	21	63%±9%
109	N-methyl-1, 3-propane	C4H12N2	88 .2	1.9± 0.04	89.0> 58.4	11	89.0> 57.4	20	39%±16%
110	Diethylcarbamaz ine citrate	C16H29N3 O8	39 1. 4	8.6± 0.01	200.4> 127.3	12	200.4> 100.3	14	82%±13%
111	Dithiazanine Iodide	C23H23N2S 2I	51 8. 5	17±0 .02	391.3> 214.3	30	391.3> 188.2	26	48%±8%
112	Metyridine	C8H11NO	13 7. 2	9.3± 0.03	138.1> 106.3	13	138.1> 78.3	28	53%±15%
113	Praziquantel	C19H24N2 O2	31 2. 4	16.1 ± 0.0	313.2> 202.3	4	313.2> 173.8	40	72%±13%
114	Niclosamide	C13H8Cl2N 2O4	32 7.	17.9 ± 0.0	324.8> 171.0	28	324.8> 135.0	42	40%±13%
115	Bithionol	C12H6Cl4O 2S	35 6.	18.8 ±0.0	354.7> 191.9	27	354.7> 161.0	26	63%±1%

Nu mb er seri al	Analyte	Elemental composition	M. W	t _R (m in)	Quantifi cation transitio n(m/z)	CE (e V)	Confirm ation transitio n(m/z)	CE(eV)	Ion ratio (average of ion ratio% ±RSD% for 0.5MRL-1 .5MRL)
			1	1					
116	Nitroscanate	C13H8N2O 3S	27 2. 3	$17.3 \pm 0.0 1$	274.2> 106.4	21	274.2> 88.3	22	53%±14%
117	Arecoline hydrobromide	C8H14BrN O2	23 6. 1	11.7 ±0.0 2	156.1> 124.2	11	156.1> 113.2	14	47%±13%
118	Closantel (-)	C22H14Cl2I 2N2O2	66 3. 1	18.6 ±0.0 4	660.7> 278.9	42	660.7> 126.9	46	76%±17%
119	Rafoxanide (-)	C19H11Cl2I 2NO3	62 6	19.2 ±0.0 5	623.6> 344.6	33	623.6> 126.9	43	55%±2%
120	Nitroxinil (-)	C7H2O3	29 0	13.5 ±0.0 5	288.8> 162.0	22	288.8> 126.9	28	59%±14%
121	Oxyclozanide (-)	C13H6Cl5N O3	40 1. 5	17.2 ±0.0 6	400.0> 201.9	24	400.0> 175.9	29	21%±6%
122	Disophenol (-)	C6H3I2NO3	39 0. 9	14.7 ±0.0 4	389.7> 234.8	33	389.7> 126.9	43	66%±9%
123	Diminazene	C14H15N7	28 1. 3	10.3 ±0.0 4	282.0> 236.8	3	282.0> 220.0	6	53%±7%
124	Imidocarb	C19H20N6 O	34 8. 4	10.4 ±0.0 6	349.3> 188.2	26	349.3> 162.4	21	75%±14%
125	Artesunate	C19H28O8	38 4. 4	$16.5 \pm 0.0 \\ 3$	267.3> 117.0	28	267.3> 105.4	22	52%±14%
126	Piperazine	C4H10N2	86 .1	7.3 ± 0.02	87.0> 68.4	17	87.0> 44 5	17	23%±6%
127	Clorsulon (-)	C8H8Cl3N3 O4S2	38 0. 6	13.5 ± 0.0 1	377.8> 276.8	22	377.8> 241.9	23	39%±8%
128	Pyrimethamine	C ₁₂ H ₁₃ ClN ₄	24 8. 7	13.7 ±0.0 2	248.8> 128.0	46	248.8> 110.9	43	48%±7%
	*(-), the Ionization	n mode is ESI-; o	others	are ESI-	+.				

		Swine mean	t		chicken meat		DI	bovine meat	
Analyte	RL in meat (µg/ kg)	Validatio n concentra tion (VL) (µg/kg)	CCß (µg/k g)	RL in meat (µg/kg)	Validation concentratio n (VL) (µg/kg)	CCß (µg/ kg)	RL in mea t (μg/ kg)	Validation concentrat ion (VL) (µg/kg)	CCß (µg/ kg)
Ivermectin	/	20	20.14	/	20	20.2	10	10	10.1
Avermectin	/	20	20.16	/	20	20.2	/	10	10.1
Doramectin	40	40	40.11	/	40	40.1 7	40	40	40.1 1
Eprinomect in	/	10	10.22	/	10	10.2 4	50	50	50.1
Moxidectin	/	10	10.12	/	10	10.2 3	50	50	50.1 3
Milbemyci n oxime	/	10	10.27	/	10	10.2 3	1	10	10.0 7
Emamectin	/	20	20.17	/	20	20.3 1	Ĭ	10	10.0 7
Albendazol e	/	10	10.17	/	10	10.3 4	100	50	50.3 8
Albendazol e sulphone	/	4	4.25	/	4	4.29	100	50	50.3
Albendazol e sulfoxide	/	2	2.31	1	2	2.3	100	50	50.3 3
Albendazol e-2-amino- sulfone	/	10	10.31	/	10	10.2 8	100	50	50.4
Fubendazol e	50	25	25.28	50	25	25.2 7	/	10	10.3 6
Amino-flub endazole	50	25	25.29	50	25	25.3 3	/	10	10.2 5
Mebendazo le	/	20	20.36	/	20	20.4 1	/	10	10.3
Amino-Me bendazole	1	2	2.38	/	2	2.22	/	10	10.2
Mebendazo le		4	4.36	/	4	4.21	/	10	10.1 7
Fenbendaz ole	50	25	25.13	/	4	4.4	50	25	25.3 7
Fenbendaz ole sulphone	50	25	25.35	/	50	50.2 5	50	25	25.3 6
Oxfendazol e	50	25	25.34	/	50	50.3 5	50	25	25.3 2
Parbendazo le	/	2	2.37	/	2	2.25	/	10	10.4
Oxibendaz ole	100	50	50.37	/	100	100. 28	/	10	10.1 8
Thiabendaz ole	100	50	50.34	/	100	100. 37	100	50	50.3 3
Thiabendaz	100	50	50.36	/	100	100. 34	100	50	50.1 6

Table 2. Regulatory limits (RLs), Validation concentration (VL) and CCB for meat tissues.

Triclabenda zole	/	2	2.35	1500	750	750. 37	200	100	100. 27
Triclabenda zole sulfoxide	/	2	2.36	1500	750	750. 23	200	100	100. 41
Triclabenda zole sulphone	/	10	10.32	1500	750	750. 24	200	100	100. 38
Benomyl	/	20	20.34	/	20	20.2 1	/	10	10.2 7
Febantel	/	2	2.19	/	2	2.36	/	10	10.2 5
Monensin	/	4	4.19	1500	1500	1500 .08	2	2	2.09
Salinomyci n	/	10	10.19	600	600	600. 14	/	10	10.1 9
Narasin	/	4	4.24	600	600	600. 16	/	10	10.1
Maduramic in	/	20	20.19	240	240	240. 09	h	10	10.0 9
Lasalocid	/	10	10.22	20	20	20.1 6	1	10	10.1 4
Nanchang	/	4	4.3	1500	1500	1500 14	Y	10	10.1
Dinitolmid e (-)	/	20	20.27	3000	1500	1500 .16	1	10	10.1 9
3-ANOT	/	10	10.06	3000	1500	1500 .16	/	10	10.1 7
Methylben zoquate	/	10	10.31	1	10	10.0 5	/	10	10.1 9
Decoquinat e	/	4	4.26	2000	2000	2000 .07	/	10	10.1 5
Toltrazuril (-)	100	50	50.24	100	50	50.1	100	50	50.2 2
Toltrazuril sulfone (-)	100	50	50.2	100	50	50.1 3	100	50	50.1 4
Diclazuril (-)	/	100	100.2	500	500	500. 15	/	10	10.3
Cyromazin e	1	2	2.27	50	50	50.1 7	300	300	300. 27
Clopidol	200	10	10.24	5000	5000	5000 .15	200	200	200. 16
Nicarbazin	1	200	200.1 2	200	200	200. 2	/	10	10.1 4
Amprolium	1	10	10.2	/	10	10.1 4	10	10	10.1 7
Ethopabate	/	10	10.26	/	10	10.1 8	500	500	500. 26
Robenidine	/	20	20.19	500	500	500. 16	/	10	10.2 4
Halofugino ne	/	4	4.2	100	100	100. 18	/	10	10.1 5
Sulfaclozin e	100	50	50.15	100	50	50.1 7	100	50	50.2
Sulfaquino xaline	100	50	50.13	100	50	50.0 9	100	50	50.1 3
Sulfadiazin e	100	50	50.25	100	50	50.2 4	100	50	50.1 2
Sulfadimidi ne	100	50	50.26	100	50	50.2 1	100	50	50.1 8

Sulfadimet hoxine	100	50	50.22	100	50	50.2 3	100	50	50.1 2	
Sulfametho xazole,	100	50	50.24	100	50	50.1 2	100	50	50.2	
Sulfamono methoxine	100	50	50.14	100	50	50.1 9	100	50	50.2 5	
Sulfametho xydiazine	100	50	50.27	100	50	50.1	100	50	50.1 4	
Sulfametho xypyridazi ne	100	50	50.26	100	50	50.2 3	100	50	50.1 5	
Trichlorfon	/	100	100.3	/	20	20.2 1	50	50	50.1 6	
Dichlorvos	100	20	20.22	50	50	50.1 8	/	10	10.1 6	
Coumapho s	/	100	100.2 4	/	10	10.2	/	10	10.1 2	
Coumapho s-oxon	/	2	2.26	/	2	2.23	/	10	10.2 1	
Malathion	4000	20	20.15	4000	4000	4000 .07	400 0	4000	4000 .12	
Diazinon	20	4000	4000. 26	/	10	10.2 2	20	20	20.1	
Fenthion	/	20	20.14	/	10	10.1 7	1	10	10.1 7	
Crufomate	100	10	10.27	100	100	100. 2	100	100	100. 17	
Phoxim	/	100	100.1 7	/	10	10.2 1	/	10	10.1 3	
Propetamp hos	20	20	20.24	25	25	25.2 2	50	50	50.1 7	
Dibrom	/	20	20.22	/	20	20.2 9	/	20	20.1	
Rogor	/	10	10.28	P	10	10.1 7	/	10	10.1 6	
Azamethip hos	/	20	20.13	1	20	20.2 8	/	20	20.2 4	
Temephos	/	4	4.24	/	4	4.17	/	4	4.14	
Ronnel	/	2	2.17	/	2	2.31	/	2	2.1	
Aldicarb	1	4	4.3	/	4	4.25	/	4	4.2	
Propoxur	/	4	4.16	/	4	4.18	/	4	4.16	
Carbofuran		2	2.19	/	2	2.29	/	2	2.24	
Metacrate		4	4.16	/	4	4.23	/	4	4.15	
Carbaryl	/	4	4.29	/	4	4.15	/	4	4.18	
Etrofolan	/	4	4.16	/	4	4.13	/	4	4.12	
Pirimicarb	/	4	4.26	/	4	4.2	/	4	4.28	
Diethofenc	/	2	2.27	/	2	2.18	/	2	2.21	
Furathiocar	/	10	10.29	/	10	10.0 9	/	10	10.1 9	
Methiocarb	/	10	10.28	/	10	10.2 2	/	10	10.1 4	
Bendiocarb	/	10	10.28	/	10	10.2 5	/	10	10.1 6	
Fenobucarb	/	4	4.29	/	4	4.18	/	4	4.15	
Carbosulfa n	/	4	4.27	/	4	4.07	/	4	4.09	

Benfuracar b	/	20	20.28	/	20	20.2	/	20	20.2 4
Deltamethr in	/	10	10.21	30	30	30.1 5	10	10	10.1 6
Permethrin	/	4	4.24	/	4	4.16	50	50	50.2 2
Tetramethri n	/	4	4.26	/	4	4.19	/	10	10.2 5
Fenvalerate	1000	10	10.24	/	10	10.1 6	25	25	25.1 7
Cypermeth rin	/	10	10.14	/	10	10.0 9	20	20	20.1 8
Cyfluthrin	/	2	2.13	/	2	2.16	10	10	10.1
Arsanilic acid	500	500	500.2 2	500	500	500. 16	/	10	10.2
Roxarsone	500	500	500.2	500	500	500. 12	/	10	10.2 4
4-nitrophen ylarsonic acid	500	500	500.2 1	500	500	500. 19	ſ	10	10.1 9
Carbarsone	500	500	500.1 7	500	500	500. 21		10	10.1 3
Lindane	/	2	2.17	/	2	2.23	1	10	10.2 5
Acetofenat e	/	10	10.15	/	10	10.1 7	/	10	10.1 9
Amitraz	/	2	2.19	10	10	10.2 4	/	10	10.1 6
2,4-DMA	/	2	2.3	10	10	10.2 1	/	10	10.1 9
Diflubenzu ron (-)	/	2	2.24	/	2	2.15	/	10	10.2 8
Fluazuron	/	2	2.24	ľ	2	2.27	/	10	10.1 7
Chlordimef	/	10	10.23	/	10	10.2 5	200	200	200. 14
Metronidaz ole	bann ed		1.16	banne d	1	1.17	ban ned	1	1.12
Dimetridaz ole	bann ed		1.26	banne d	1	1.28	ban ned	1	1.16
Levamisol	_10	2	2.27	10	10	10.2	10	10	10.1 1
Pyrantel	1	2	2.21	/	2	2.26	/	2	2.2
Morantel	/	10	10.17	/	10	10.2 5	100	100	100. 22
N-methyl-1 , 3-propane diamine	/	2	2.17	/	2	2.27	100	100	100. 23
Diethylcarb amazine citrate	/	4	4.2	/	4	4.17	/	10	10.1 9
Dithiazanin e Iodide	/	4	4.22	/	4	4.22	/	10	10.1 4
Metyridine	/	10	10.18	/	10	10.2 2	/	10	10.1 5
Praziquante 1	/	4	4.2	/	4	4.15	/	10	10.2 1
Niclosamid e	/	10	10.13	/	10	10.2 9	/	10	10.1 6

Bithionol	/	10	10.31	/	10	10.2 4	/	10	10.2 5
Nitroscanat e	/	2	2.25	/	2	2.11	/	10	10.1 5
Arecoline hydrobromi de	/	2	2.26	/	2	2.23	/	10	10.1 6
Closantel	/	20	20.26	/	20	20.2 1	100 0	1000	1000 .22
Rafoxanide	/	20	20.25	/	20	20.3 1	30	30	30.1 3
Nitroxinil	/	20	20.2	/	20	20.2	400	400	400.
Oxyclozani de	/	10	10.27	/	10	10.1 8	20	20	20.0 8
Disophenol	/	10	10.23	/	10	10.2 8	/	10	10.1
Diminazen e	/	2	2.2	/	2	2.29	500	500	500. 12
Imidocarb	/	20	20.18	/	20	20.2 9	300	300	300. 13
Artesunate	/	40	40.23	/	40	40.2		10	10.1 9
Piperazine	400	400	400.1 9	/	400	400. 16	1	10	10.1 7
Clorsulon	/	20	20.29	/	20	20.2	35	35	35.1
Pyrimetha mine	/	4	4.29	/	4	4.14	/	10	10.1 7

RL: Regulatory limits and others with MRL according to EU regulation No 2010/37. e contraction cont

Downloaded by [University of Sussex Library] at 00:29 11 February 2015