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SUMMARY

Nicotinic acetylcholine receptors (nAChRs) are vital
to neuronal signaling, are implicated in important
processessuchas learningandmemory, andare ther-
apeutic targets for neuraldiseases. Thea7nAChRhas
been implicated in Alzheimer’s disease and schizo-
phrenia, and allosteric modulators have become one
focus of drug development efforts. We investigate
the mode of action of the a7-selective positive allo-
steric modulator, PNU-120596, and show that the
higher potency of acetylcholine in the presence of
PNU-120596 is not due to an altered agonist binding
site. In addition, we propose several residues in the
gating interface and transmembrane region that are
functionally important to transduction of allosteric
properties, and link PNU-120596, the acetylcholine
binding region, and the receptor gate. These results
suggest global protein stabilization from a communi-
cation network through several key residues that alter
thegating equilibriumof the receptorwhile leaving the
agonist binding properties unperturbed.

INTRODUCTION

Nicotinic acetylcholine receptors (nAChRs) are pentameric ion

channels that are part of the Cys-loop superfamily of ligand-

gated ion channels, which includes receptors gated by other

neurotransmitters such as glycine, serotonin, and g-aminobuty-

ric acid. The a7 nAChR displays a large and dispersed presence

throughout the CNS (Millar and Gotti, 2009). It comprises five

identical subunits, an uncommon arrangement for nAChRs,

and each subunit contains an extracellular domain, a transmem-

brane domain, and a gating interface (Figure 1A) (Dougherty,

2008; Lemoine et al., 2012; Unwin, 2005).

The concepts of allostery, including cooperative transitions

between two states of multi-subunit proteins (Monod et al.,

1965), have been applied to nAChRs in two ways. First, the

nAChR itself has been identified as a protein containing two

distinct domains, a binding site for agonists and a conducting

pathway (Edelstein and Changeux, 1998; Karlin, 1967).
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Second, and more relevant to the present study, compounds

have been identified that do not produce activation on their

own, yet modulate activation and desensitization, and bind

at sites distinct from both the agonist site (the ‘‘orthosteric’’

site) and the channel pore. These are allosteric ligands. At a7

nAChRs, positive allosteric modulators (PAMs) are especially

well studied, and two classes can be distinguished. Type I

PAMs increase agonist-induced activation. Type II PAMs, such

as PNU-120596 (Figure 1B), increase agonist-induced activation

and also vastly prolong the waveform of agonist-induced cur-

rents; in the usual interpretation, PAMs favor the active states

at the expense of the desensitized states (Figure 1C) (Bertrand

and Gopalakrishnan, 2007; Faghih et al., 2008; Gronlien et al.,

2007; Hurst et al., 2005; Szabo et al., 2014; Williams et al.,

2011a, 2011b). The existence of one or more additional, de-

sensitized states was recognized early on (Heidmann and

Changeux, 1986; Katz and Thesleff, 1957).

Inherent to models of allostery is the notion of action at a dis-

tance, and it is of interest to ask whether the orthosteric binding

site, and/or the channel pore, is affected by the presence of an

allosteric modulator. Unfortunately no atomic-scale structural in-

formation is available for full a7 nAChRs in any state, let alone all

three states in the presence of either an agonist or allosteric

modulator. However, the high functional resolution of electro-

physiological data allows other approaches to this question.

For example, the structurally unrelated allosteric modulator

4PB-TQS has been shown to change the kinetics of gating as

well as single-channel conductance of a7 nAChRs (Pa1czy�nska
et al., 2012), indicating that an allosteric modulator can change

the structure of the conducting pore.

This study begins by determining towhat extent, if any, an allo-

steric modulator changes the orthosteric site (Figure 2). Previous

data suggested that an allosteric modulator can affect residues

within the extracellular domain, but outside the orthosteric site it-

self (Barron et al., 2009). Non-canonical amino acid mutagenesis

provides high-resolution data that complement those from X-ray

crystallography. The key binding interactions at the agonist bind-

ing site of nAChRs—a cation-p interaction and two hydrogen

bonds—can be probed in ways that would be sensitive to ligand

displacements of <1 Å (Dougherty and Van Arnam, 2014; Ta-

vares et al., 2012; Van Arnam et al., 2013). We have therefore

applied non-canonical amino acid mutagenesis to ask whether

the presence of a PAM in any waymodulates these binding inter-

actions at the orthosteric site.
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Figure 1. Rat a7 nAChR and PNU-120596 Response

(A) Homology model of the rat a7 nAChR. This ligand-gated ion channel consists of five subunits arranged in a pentameric fashion that forms a pore to transmit

cations across themembrane. Each subunit consists of a large extracellular domain where the agonist binding site lies between two subunits. In addition, there is

a transmembrane region consisting of four a helices and an intracellular portion used for receptor trafficking (not shown). The region where the extracellular

domain and transmembrane physically interact is considered the gating interface, and is thought to be important for signal relay from the agonist binding site to

the channel gate (Hanek et al., 2008; Tillman et al., 2014).

(B) Chemical structures of acetylcholine and PNU-120596.

(C) Sample traces of a7 receptor responses for wild-type and the cases designated as type A (Y232F) and type B (M276L) in Table 4. Acetylcholine is represented

by a black bar and 10 mM PNU-120596 is represented by a checker-patterned bar. EC50 doses of acetylcholine were used for each respective mutation.
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Our next goal was to map out the functional coupling pathway

from the orthosteric site to the allosteric binding site of PNU-

120596, which is thought to be in the transmembrane region

(Bertrand et al., 2008; Young et al., 2008), and/or from the allo-

steric site to the channel gate. We term our strategy, which again

uses functional measurements, double perturbation cycle anal-

ysis (see Figure 4 below). In this analysis, the first perturbation

is mutation of the protein (with conventional or non-canonical

amino acids); the second perturbation is not a mutation, but

the addition of PNU-120596. Non-additivity of the two perturba-

tions indicates that the protein mutation differentially affects re-

ceptor function depending on whether PNU-120596 is or is not

present, suggesting that the residue under study plays an impor-

tant role in allosteric modulation (Daeffler et al., 2012; Gleitsman

et al., 2009; Miles et al., 2012). The analysis parallels that of the
2 Chemistry & Biology 22, 1–11, August 20, 2015 ª2015 Elsevier Ltd
common double mutant cycle analysis, including the notion of

an interaction energy, designated DDG. From these studies,

we have identified several residues with significant DDG values,

suggesting a potential pathway of communication from the

agonist binding site to the PAM binding site and then on to the

receptor gate.

RESULTS

Methodology for Interpretation of Functional Coupling
Comparisons
As noted in the Introduction, we sought to identify mutations

of the receptor that differentially affect function when PNU-

120596 is or is not present. Since we wish to evaluate a

large number of sites throughout the protein, our metric is the
All rights reserved



Table 1. EC50 Values and Coupling Strengths of Aromatic Box Resi

a7 Mutants Acetylcholine

Aromatic Box

EC50

(mM ± SEM) Hill (± SEM)

Fold Shift

From WT n Imax (m

Wild-type (WT) 120 ± 8 1.8 ± 0.2 – 20 1.1

TyrA: TyrOMe 130 ± 8 2.3 ± 0.23 1.1 10 2.9

TyrA: 3-F-TyrOMe 79 ± 5 1.7 ± 0.2 0.7 11 0.22

TyrA: 3,5-F2-TyrOMe 290 ± 10 1.8 ± 0.1 2.4 18 1.0

TyrA: 4-F-Phe 2,400 ± 100 1.9 ± 0.1 20 17 0.11

TyrA: 4-Br-Phe 200 ± 8 1.9 ± 0.1 1.7 15 0.69

TyrA: 4-CN-Phe 1,800 ± 80 2.2 ± 0.2 15 17 0.11

TyrA: Phe 5,800 ± 200 1.7 ± 0.1 48 13 0.041

TyrA: 3,4,5-F3-Phe 5,800 ± 700 2.2 ± 0.4 48 9 0.034

TrpB: W 260 ± 20 1.5 ± 0.2 2.2 10 2.4

TrpB: 4,5,6,7-F4W 670 ± 20 1.6 ± 0.1 5.6 14 0.050

TrpB: Wah 13 ± 1 1.2 ± 0.1 0.1 (1/10) 14 0.98

TyrC2: TyrOMe 230 ± 10 1.6 ± 0.1 2 15 0.76

TyrC2: 3-F-TyrOMe 1,200 ± 120 1.5 ± 0.2 10 15 0.32

TyrC2: 3,5-F2-TyrOMe 1,500 ± 100 2.0 ± 0.2 12.5 13 0.091

TyrC2: 4-F-Phe 160 ± 10 1.4 ± 0.1 1.3 19 0.84

TyrC2: 4-Br-Phe 53 ± 2 1.7 ± 0.1 0.5 (1/2) 14 3.4

TyrC2: 4-CN-Phe 220 ± 10 1.8 ± 0.1 1.8 12 4.2

TyrC2: Phe 790 ± 40 1.9 ± 0.1 6.6 13 0.34

TyrC2: 3,4,5-F3-Phe 1,400 ± 60 2.4 ± 0.2 12 16 0.1

TrpD: W 160 ± 7 1.9 ± 0.1 1.3 9 0.59

TrpD: 4,5,6,7-F4W 90 ± 9 1.0 ± 0.1 0.75 (1/1.3) 20 0.15

TrpD: 1-Nap 450 ± 20 1.5 ± 0.1 3.7 13 0.10

TrpD: Wah 360 ± 20 1.3 ± 0.1 3 14 0.081

W77A 160 ± 10 2.4 ± 0.2 1.3 15 8.2

Figure 2. Agonist Binding Site for the a7 nAChR

Several tyrosine and tryptophan residues constituting the aromatic box for the

agonist binding site are shown. These residuesare labeledas such: TyrA (Y115),

TrpB (W171), TyrC1 (Y210), and TyrC2 (Y217) lie on the principal side (cyan) of

one subunit while TrpD (W77) lies on the complementary side (magenta) of

the adjacent subunit. Backbone hydrogen bonding interactions have been

implicated for the carbonyl of TrpB and the backbone amide of Leu141. Resi-

dues that have been shown to turn PNU-120596 into a weak agonist—Leu60,

Asn75, and TrpD—are highlighted to show the proximity to the aromatic box.

Chemistry & Biology

Please cite this article in press as: Marotta et al., An Unaltered Orthosteric Site and a Network of Long-Range Allosteric Interactions for PNU-120596 in
a7 Nicotinic Acetylcholine Receptors, Chemistry & Biology (2015), http://dx.doi.org/10.1016/j.chembiol.2015.06.018
half-maximal effective concentration (EC50), rather than more

tedious single-channel methods. We fully appreciate the com-

posite nature of EC50, and have in fact used it to our advantage

in evaluating an allosteric modulator.

As noted above, for a ligand-gated ion channel one can envi-

sion two limiting modes of allosteric activation. Binding of the

modulator could induce a conformational change in the protein

that propagates to the orthosteric site, altering the innate affinity

of that site for the natural agonist. Alternatively, the allosteric

modulator could affect the gating transition of the receptor, by

binding essentially at the ‘‘gate’’ or, again, by action through a

distance.

We have developed a strategy to distinguish these two

possibilities and, in so doing, have removed ambiguities

associated with EC50 measurements. Over the past 20 years,

we have developed methods for probing structure-function

relationships at the agonist binding site of nicotinic receptors

and related proteins with unprecedented precision (Dougherty

and Van Arnam, 2014). Using non-canonical amino acids,

we can reveal key drug-receptor contacts. We can identify

cation-p interactions using fluorination, and evaluate potential

hydrogen bonding interactions using backbone mutagenesis.

Importantly, both approaches provide information on the

magnitude of the non-covalent interaction between drug

and receptor. As such, we can detect subtle changes in
dues

Acetylcholine + PNU-120596 (10 mM)

A)

EC50

(mM ± SEM) Hill (± SEM)

Fold Shift

From WT n Imax (mA)

DDG

(kcal/mol)

–23 12 ± 0.4 3.0 ± 0.2 – 21 1.7–48 0.00

–48 10 ± 0.4 2.5 ± 0.2 0.8 13 4.5–51 0.15

–6.7 8.7 ± 0.5 2.9 ± 0.5 0.7 15 1.6–20 0.05

–11 20 ± 0.6 2.4 ± 0.1 1.7 23 1.0–41 0.21

–1.4 420 ± 40 2.3 ± 0.4 35 16 0.43–24 0.32

–15 14 ± 1 2.8 ± 0.2 1.2 16 9.3–35 0.20

–5.4 240 ± 10 3.5 ± 0.8 20 17 9.5–44 0.16

–2.1 1,000 ± 80 2.7 ± 0.5 83 14 0.57–53 0.31

–0.74 1,200 ± 80 4.0 (set) 100 14 0.53–25 0.41

–26 22 ± 0.3 3.1 ± 0.1 1.8 20 0.79–47 0.10

–4.8 60 ± 3 3.2 ± 0.4 5 16 0.45–68 0.06

–8.2 0.78 ± 0.04 2.1 ± 0.2 0.06 (1/15) 21 0.29–21 0.29

–36 18 ± 1 3.1 ± 0.2 1.5 15 0.19–90 0.14

–6.1 120 ± 5 4.4 ± 0.9 10 14 0.88–20 0.00

–5.1 200 ± 20 4.7 ± 1.6 17 13 0.66–44 0.16

–18 12 ± 0.4 4.5 ± 0.5 1 16 10–33 0.16

–21 5.1 ± 0.1 3.0 ± 2 0.4 (1/2.5) 16 10–39 0.02

–34 18 ± 1 3.1 ± 0.2 1.5 16 5.7–42 0.11

–12 110 ± 7 5.9 ± 3 9.2 16 0.36–21 0.19

–2.4 290 ± 20 4.4 ± 1.4 24 16 5.0–23 0.41

–11 18 ± 0.6 3.2 ± 0.2 1.5 13 0.31–23 0.07

–10 4.1 ± 0.1 2.2 ± 0.1 0.3 (1/3) 17 2.8–21 0.45

–4.4 40 ± 1 3.4 ± 0.3 3.3 16 3.6–17 0.07

–4.5 24 ± 1 4.0 (set) 2 15 0.21–24 0.23

–28 15 ± 1 2.1 ± 0.2 1.2 15 9.6–51 0.04
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Figure 3. Cation-p Plots for TyrA and TyrC2 in the Rat a7 Receptor

ACh, acetylcholine; PNU, PNU-120596 (Puskar et al., 2011).

(A) The cation-p interaction is present at TyrA and does not shift in its relative

strength when PNU-120596 is added.

(B) TyrC2 shows no cation-p interaction with acetylcholine, even in the pres-

ence of PNU-120596.
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the agonist binding site that would enhance (or diminish)

agonist binding in ways that are not possible with conven-

tional approaches. As described herein, we find no evidence

of alteration of the agonist binding site on addition of PNU-

120596.

EC50 describes a composite of several equilibria, some

involving agonist binding, some involving channel gating. Since

we can rule out alteration of binding equilibria, we can conclude

that changes in EC50 induced by PNU-120596 reflect changes in

the gating equilibria of the receptor. We have used such analyses

before, removing the innate ambiguity in EC50 by eliminating one

component of the measurement (Lummis et al., 2005; Xiu et al.,

2009).

Again, our goal is to identify residues that play a role in the

allosteric modulation provided by PNU-120596. To do this, we

compare the impact of a mutation on wild-type function versus

function when PNU-120596 is present. If the mutation does not

affect PNU-120596 in anyway, the impact of themutation should

be the same whether PNU-120596 is present or not. Stated

differently, the effects on wild-type EC50 of the mutation and of

PNU-120596 should simply have additive energies. Alternatively,

if amutation alters PNU-120596 function, then the effect of PNU-

120596 on receptor function should be different from that of
4 Chemistry & Biology 22, 1–11, August 20, 2015 ª2015 Elsevier Ltd
wild-type when the mutation is present. That is, the side-chain

mutation and the impact of PNU-120596 should be non-additive.

By analogy to conventional double mutant cycle analysis, the

non-additivity can be expressed as aDDG value (Figure 4), which

if markedly different from zero signifies the presence of non-local

conformational effects on a large and complexmembrane bound

protein.

The Orthosteric Site: Binding Interactions Are
Unaffected by PNU-120596
Previous studies of the a7 nAChR show that acetylcholinemakes

a single cation-p interaction with TyrA (Figure 2), which is one of

five aromatic residues at the orthosteric binding site (Puskar

et al., 2011). One possible way in which the allosteric binding

of PNU-120596 could affect receptor function is by influencing

the shape of the aromatic box, such that the strength of the

cation-p interaction to acetylcholine could change, or the site

of the cation-p interaction could move to another aromatic

residue instead of, or in cooperation with, TyrA. Other studies

show thatmutations outside the agonist binding site can reshape

the binding site and significantly alter agonist-receptor contacts

(Xiu et al., 2009). One can identify cation-p interactions using

progressive fluorination of the aromatic groups that contribute

the p electrons (Figure S1). We were able to probe four of the

five aromatic box residues for acetylcholine cation-p interac-

tions in the absence and presence of PNU-120596 (Table 1).

TyrC1 could not be probed because of the large loss of function

for any substitution made at this residue; TyrC1 has never been

implicated in a cation-p interaction in the dozens of studies of

Cys-loop receptors we have performed (Dougherty and Van

Arnam, 2014).

The first observation is that acetylcholine continues to make

a cation-p interaction with TyrA in the presence of PNU-

120596 (Figure 3A). In addition, the slopes of the two fluorina-

tion plots (with and without PNU-120596) are not meaningfully

different, which indicates that the strength of the cation-p

interaction was also unaltered (Dougherty and Van Arnam,

2014). Since the interaction with TyrA was unchanged, TyrC2

was probed next, because previous data show that a higher

sensitivity agonist, epibatidine, makes a cation-p interaction

with TyrC2 in addition to TyrA in the a7 nAChR (Puskar

et al., 2011). As seen in Figure 3B, a cation-p interaction still

does not exist between TyrC2 and acetylcholine in the pres-

ence of PNU-120596. Two additional observations can be

made regarding interactions with the TyrC2 residue. The near

wild-type receptor response for bulky substituent groups

(4-CN-Phe, 4-Br-Phe, and TyrOMe) and severe loss of function

for small/no substituents (4-F-Phe and Phe) suggest a large

substituent is needed at the 4-position in the aromatic ring to

maintain proper receptor function. In addition, the receptor

cannot tolerate substitutions at the 3- or 5-position in

the ring system, as indicated by the large loss of function for

3-F-TyrOMe and 3,5-F2-TyrOMe residues. These results sug-

gest a tight steric environment for TyrC2 at the orthosteric

site. Of more relevance here, however, is the fact that the

pattern of responses to substitution at TyrC2 is unaltered by

the presence of PNU-120596.

Since PNU-120596 did not influence the two critical Tyr resi-

dues in the a7 nAChR, the Trp residues were also studied.
All rights reserved



Table 2. EC50 Values and Coupling Strengths of Extracellular Residues

a7 Mutants Acetylcholine Acetylcholine + PNU-120596 (10 mM)

Extracellular

EC50

(mM ± SEM) Hill (± SEM)

Fold Shift

from WT n Imax (mA)

EC50

(mM ± SEM) Hill (± SEM)

Fold Shift

from WT n Imax (mA)

DDG

(kcal/mol)

WT 120 ± 8 1.8 ± 0.2 – 20 1.1–23 12 ± 0.4 3.0 ± 0.2 – 21 1.7–48 0.00

L60A 27 ± 2 1.3 ± 0.1 0.2 (1/4) 15 1.2–44 2.0 ± 0.2 2.3 ± 0.3 0.2 (1/6) 15 3.9–50 0.17

Q61A 44 ± 4 1.4 ± 0.2 0.3 (1/3) 16 4.1–34 4.0 ± 0.1 3.2 ± 0.2 0.3 (1/3) 18 1.3–89 0.05

M63A 32 ± 1 1.9 ± 0.1 0.27 (1/4) 13 0.42–19 2.5 ± 0.03 3.4 ± 0.2 0.2 (1/5) 15 2.6–39 0.14

E67A 830 ± 30 1.8 ± 0.1 7 15 0.13–1.1 190 ± 30 3.6 ± 1.6 16 24 0.24–11 0.47

E67N 720 ± 100 1.5 ± 0.3 6 10 0.027–0.40 240 ± 20 2.4 ± 0.4 20 14 0.085–1.6 0.69

K68A 300 ± 20 1.9 ± 0.2 2.5 18 0.24–39 59 ± 1 3.7 ± 0.2 5 16 11–44 0.39

N69A 400 ± 30 1.8 ± 0.2 3.3 16 1.3–39 52 ± 3 2.7 ± 0.3 4.3 16 4.4–38 0.15

Q70A 450 ± 30 1.3 ± 0.1 3.8 20 0.10–6.8 29 ± 1 5.4 ± 1 2.4 15 0.56–18 0.25

T73A 210 ± 10 1.4 ± 0.1 1.8 13 0.19–8.6 22 ± 0.8 3.5 ± 0.4 1.8 16 0.98–23 0.03

N75A 8 ± 1 1.0 ± 0.1 0.067 (1/15) 15 1.6–27 0.29 ± 0.02 1.7 ± 0.2 0.025 (1/40) 16 4.6–25 0.58

P103G 180 ± 10 1.9 ± 0.2 1.5 15 2.3–26 21 ± 1 2.4 ± 0.3 1.8 16 5.7–45 0.09

H127A 48 ± 3 1.9 ± 0.2 0.4 (1/2.5) 14 2.4–35 5.8 ± 0.2 3.0 ± 0.3 0.5 (1/2) 16 3.8–42 0.11

Q139F 220 ± 10 1.8 ± 0.1 1.8 14 1.3–35 25 ± 1 2.5 ± 0.3 2.1 16 0.96–37 0.07

L141:Leu 120 ± 7 1.9 ± 0.2 1 15 0.48–17 15 ± 0.6 2.8 ± 0.2 1.2 16 1.3–41 0.13

L141:Laha 180 ± 10 1.9 ± 0.2 1.5 14 0.23–31 27 ± 1 5.0 ± 1.3 1.8 15 1.5–26 0.10

Y151A 120 ± 20 1.2 ± 0.1 1 15 3.2–43 8.3 ± 0.3 2.3 ± 0.2 0.7 12 11–37 0.21

D153A 170 ± 10 1.8 ± 0.2 1.4 15 0.27–9.6 25 ± 1 4.0 (set) 2.1 14 1.6–17 0.22

W156A 240 ± 30 1.9 ± 0.4 2 12 0.16–8.8 65 ± 3 1.9 ± 0.2 5.4 15 0.18–23 0.57

S172:Ser 480 ± 20 1.3 ± 0.1 4 15 0.21–4.8 23 ± 0.5 3.2 ± 0.2 1.9 16 0.30 - 7.8 0.42

S172:Saha 130 ± 10 1.2 ± 0.1 0.3 (1/3)a 15 0.088–3.1 8.4 ± 0.6 3.5 ± 0.8 0.36 (1/3)a 15 0.54–18 0.17

S172:Thr 120 ± 10 1.2 ± 0.1 1 15 0.28–35 8.0 ± 0.5 2.8 ± 0.5 0.67 (1/1.5) 16 5.3–31 0.23

S172:Taha 48 ± 10 0.93 ± 0.2 0.4 (1/2.5)a 13 0.18–7.9 1.6 ± 0.05 3.5 ± 0.2 0.2 (1/5)a 16 0.33–26 0.39

G175K 7.5 ± 0.7 1.6 ± 0.2 0.06 (1/17) 17 0.42–30 1.0 ± 0.2 2.5 ± 0.9 0.08 (1/12) 19 2.1–42 0.16

S189A 210 ± 20 1.4 ± 0.1 1.8 15 0.20–48 16 ± 0.7 2.9 ± 0.2 1.3 16 4.6–49 0.15

N193A 210 ± 5 1.7 ± 0.1 1.8 14 0.22–12 18 ± 1 2.4 ± 0.2 1.5 21 0.18–18 0.09

E195A 620 ± 60 1.7 ± 0.3 5.2 13 0.050–0.17 170 ± 8 3.6 ± 0.4 14 15 0.54–13 0.57

E195N 530 ± 20 1.4 ± 0.1 4.4 22 0.17–14 40 ± 2 2.7 ± 0.2 3.3 15 0.56–25 0.16

D197A 130 ± 10 1.6 ± 0.2 1.1 14 0.54–19 16 ± 0.4 3.0 ± 0.1 1.3 16 2.6–40 0.12

D219A 860 ± 20 2.1 ± 0.1 7.2 13 0.37–31 130 ± 5 5.1 ± 0.7 11 16 3.6–23 0.24
aFold shift from canonical amino acid incorporation (Ser and Thr) using the non-canonical amino acid method.
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Note that for most combinations of agonist and nAChR, the

cation-p interaction is to TrpB; a7 is unusual in employing

TyrA. For both TrpB and TrpD in the presence and absence of

PNU-120596, there was no meaningful shift in function when

we expressed the highly perturbing residue 4,5,6,7-F4-Trp

(Table 1) (Figure S1). This indicates that acetylcholine is not mak-

ing a cation-p interaction with either of these residues. Previous

studies showed that a much more dramatic mutation of TrpD—

to Ala—converted PNU-120596 into a partial agonist, while

maintaining its function as a positive allosteric modulator (Barron

et al., 2009; Papke et al., 2014). We find that this mutation shows

a DDG of essentially zero (Table 1).

We also applied a previously described strategy for evaluating

the two key hydrogen bonding interactions at the agonist binding

site (Tavares et al., 2012; Van Arnam et al., 2013). In brief, a-hy-

droxy analogs of a-amino acids are incorporated in ways that are

known to strongly modulate the hydrogen bonding ability of the
Chemistry & Biology
protein backbone (Figure S1). We found that perturbation of the

hydrogen bond acceptor (L141) or the hydrogen bond donor

(S172) had little impact on PNU-120596 modulation (Figure 2)

(Table 2).

Overall, the high-precision methodology of non-canonical

amino acid mutagenesis allows us to conclude that the

presence PNU-120596 does not measurably alter the key

binding interactions to acetylcholine (ACh) at the orthosteric

site.

A Double Perturbation Cycle Analysis to Identify
Residues Critical to PNU-120596 Function
We assessed numerous residues throughout the a7 subunit

to determine whether they play a role in the allosteric modu-

lation by PNU-120596. Previous studies have emphasized how

mutations affect the potentiation produced by PNU-120596, an

approach that has produced useful insights such as
22, 1–11, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 5



Figure 4. Example of the Double Perturbation Cycle Analysis Based

on the Mutant Cycle Analysis

ACh, acetylcholine; PNU, PNU-120596. Two examples are given, showing

both negligible and significant DDG values. Room temperature (25�C) was

used for the value T.
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identification of the PNU-120596 binding site in the transmem-

brane region. We extended previous data by adopting the dou-

ble perturbation cycle analysis, which is appropriate for identi-

fying long-range communication between two sites of interest

(described in Figure 4). Results are tabulated for all residues

studied in Tables 1, 2, and 3. If the absolute value of the

calculated DDG is R0.5 kcal/mol, we consider the protein resi-

due to be functionally important to the allosteric modulatory ac-

tivity of PNU-120596. This approach may minimize possible

complications arising from changes to the receptor that do not

influence the allosteric communication pathway (Gleitsman

et al., 2009).

Previousexperiments probing agonist binding interactions ina7

nAChRswere aided by the inclusion of a poremutation (T60S) that
produces amodest gain of function and slows a7 desensitization,

allowingmore precisewaveform analysis (Puskar et al., 2011; Van

Arnam et al., 2013). However, this mutation is coupled to PNU-

120596, with a DDG of 0.68 kcal/mol. As such, this mutation was

notemployedexcept in twocaseswhere the introducedmutations

generatedanon-functional receptor thatwas recoverable through

the introduction of a gain-of-function pore mutation (Zhang et al.,

2011).

Measuring the Coupling at the Proposed PNU-120596
Binding Site
Several studies of the impact of mutations on PNU-120596

potentiation of acetylcholine response suggested that PNU-
6 Chemistry & Biology 22, 1–11, August 20, 2015 ª2015 Elsevier Ltd
120596 binds in the transmembrane region, across a helices

M1 (S245 and A248), M2 (M276), and M4 (F478 and C482) of a

single subunit (Figure 5) (Collins et al., 2011; Young et al.,

2008). Since the goal of the present work was to map out the

functional coupling pathway between the binding site for PNU-

120596 and the agonist binding site, we mutated a large number

of residues throughout the receptor (Tables 1, 2, and 3). For the

purposes of discussion, we will begin at the ‘‘bottom’’ and work

our way up to the agonist binding site.

Of the five residues thought to contribute to the PNU-120596

binding site, only two show a meaningful functional coupling.

However, several nearby residues did showmeaningful coupling

(Table 3). Interestingly, these residues generally lie ‘‘above’’ the

three residues that were previously implicated in binding but

show no coupling (A248, F478, C482). Further exploration of

the area around this region yielded several other residues—

C241 (M1), F275 (M2), and M301 (M3)—that resulted in a large

coupling, as reflected in the DDG values. As seen in Figure 5,

these residues lie outside the previously proposed PNU-

120596 binding pocket (Williams et al., 2011a, 2011b).

Some of these mutations produced altered response wave-

forms. F275A showed responses that, regardless of the addition

of PNU-120596, resembled the examples of wild-type a7 acetyl-

choline waveforms in Figure 1 (referred to as Type A in Table 4).

In contrast, M276L (example in Figure 1) and M301A markedly

lengthened the waveform for application of acetylcholine alone

(Type B).

Important Residues in the Gating Interface and the
Extracellular Domain
Previous cysteine-labeling experiments identified several extra-

cellular residues positioned at the interface of two adjacent sub-

units that underwent conformational changes in the a7 nAChR

when exposed to either PNU-120596 or acetylcholine (Barron

et al., 2009). These residues (L60, M63, E67, N75, N193, and

E195) were evaluated along with several others in the surround-

ing region (Table 2). Figure 5 shows the residues in the gating

interface with jDDGj R 0.5 kcal/mol (Hanek et al., 2008; Tillman

et al., 2014). Tillman et al. (2014) showed through chimera anal-

ysis that specific loops and linkers were necessary for PNU-

120596 potentiation of a7 receptors. Here, we were able to

isolate specific residues on some of these identified regions: in

loop 2, E67; in loop 9, E195; and in the M2-M3 Linker, S287.

Again, we observed distinct response waveforms. Results for

E67A/N, E195A, Y232F, N236A, and S287A all resembled a7

wild-type acetylcholine waveforms, even in the presence of

PNU-120596 (Figure 1; Table 4).

All the mutations that had jDDGj R 0.5 kcal/mol, or that

rendered PNU-120596 an agonist, define a network of resi-

dues necessary for propagation of the PNU-120596 effects

throughout the full receptor (Figure 5). These results suggest a

conformational wave of movement upon activation, and give

insight to the molecular motions that potentially take place

between the closed and open forms of the receptor.

DISCUSSION

The present work aims to evaluate the influences of the positive

allosteric modulator PNU-120596 on a7 nAChRs. Through the
All rights reserved



Table 3. EC50 Values and Coupling Strengths of Transmembrane Residues

a7 Mutants Acetylcholine Acetylcholine + PNU-120596 (10 mM)

Transmembrane

EC50

(mM ± SEM) Hill (± SEM)

Fold Shift

(WT) n Imax (mA)

EC50

(mM ± SEM) Hill (± SEM)

Fold Shift

(WT) n Imax (mA)

DDG

(kcal/mol)

WT 120 ± 8 1.8 ± 0.2 – 20 1.1–23 12 ± 0.4 3.0 ± 0.2 – 21 1.7–48 0.00

T60S 64 ± 1 2.4 ± 0.1 0.5 (1/2) 15 4.8–67 21 ± 2 3.2 ± 0.7 1.8 16 0.48–23 0.68

R229A 78 ± 8 1.3 ± 0.1 0.6 12 0.42–42 8.1 ± 0.3 2.6 ± 0.2 0.7 14 0.12–8.1 0.02

Y232F 52 ± 2 1.9 ± 0.2 0.4 (1/2.5) 15 2.4–20 73 ± 2 2.1 ± 0.1 6 17 0.85–20 1.50

N236A 480 ± 40 1.2 ± 0.1 4 17 0.32–6.8 430 ± 40 1.1 ± 0.1 36 16 0.087–0.77 1.25

C241A 180 ± 10 3.1 ± 0.4 1.5 16 0.19–31 73 ± 3 4.1 ± 0.5 6 15 0.61–15 0.80

S245A 160 ± 10 1.3 ± 0.1 1.3 15 1.2–15 3.2 ± 0.2 2.5 ± 0.4 0.27 (1/4) 15 13–57 0.92

A248D 92 ± 5 1.3 ± 0.1 0.8 12 0.16–7.7 10 ± 0.4 2.8 ± 0.3 0.8 16 0.089–10 0.05

S271A 110 ± 7 2.2 ± 0.2 0.9 14 9.1–32 14 ± 0.3 2.6 ± 0.1 1.2 15 1.2–58 0.14

F275A 280 ± 20 1.8 ± 0.2 2.3 15 0.35–23 510 ± 30 1.4 ± 0.1 43 18 0.16–18 1.65

M276L 46 ± 1 3.0 ± 0.1 0.4 (1/2.5) 15 9.9–39 32 ± 2 2.0 ± 0.2 2.7 16 7.3–43 1.10

M283A T60Sa 2,100 ± 70 2.3 ± 0.1 33a 14 0.52–18 440 ± 30 4.4 ± 1.2 21a 16 3.6–37 0.26

S287A 40 ± 2 2.0 ± 0.2 0.3 (1/3) 16 8.7–36 72 ± 7 1.3 ± 0.1 6 15 3.1–31 1.65

D288A T60Sa 750 ± 30 2.3 ± 0.2 12a 13 4.8–46 230 ± 10 5.7 ± 3 11a 16 1.6–84 0.04

S289A 52 ± 2 1.7 ± 0.1 0.4 (1/2.5) 16 3.3–51 6.6 ± 0.5 2.1 ± 0.3 0.5 (1/2) 15 6.4–42 0.14

F297A 150 ± 10 1.8 ± 0.2 1.3 15 0.93–52 16 ± 1 2.6 ± 0.2 1.3 16 6.9–45 0.04

M301A 19 ± 1 2.1 ± 0.1 0.2 (1/5) 10 11–53 23 ± 1 1.7 ± 0.1 1.9 15 8.2–60 1.42

F475A 78 ± 3 1.8 ± 0.1 0.6 16 1.3–22 5.8 ± 0.7 2.0 ± 0.4 0.5 (1/2) 16 13–30 0.17

F478A 74 ± 1 2.3 ± 0.1 0.6 16 1.3–30 12 ± 0.7 3.4 ± 0.6 1.0 15 8.1–48 0.28

C482Y 210 ± 20 2.0 ± 0.3 1.8 19 0.84–27 44 ± 1 3.0 ± 0.2 3.7 16 2.4–37 0.42
aFold shift from the T60S value, since it is a background mutation for the point in question.
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use of non-canonical amino acids, the binding region of acetyl-

choline was probed for potential changes in interactions with

acetylcholine when PNU-120596 was introduced. These studies

produced three key results: (1) the cation-p interaction with

the TyrA residue is not perturbed by the introduction of PNU-

120596; (2) no other cation-p interactions are gained when

PNU-120596 is present; and (3) the overall shape of the agonist

binding site seems unperturbed. The aromatic fluorination series

and introduction of a-hydroxy acid residues give compelling ev-

idence that no significant rearrangements propagate to the

orthosteric binding site from the allosteric binding site of PNU-

120596.

Since no distinct change to the agonist binding motif was

observed, we suggest that PNU-120596 does not alter the bind-

ing step of the agonist to the receptor, and instead exerts its

effects only on the gating equilibrium. As explained above, this

result effectively removes the ambiguity in comparing EC50

values for various mutations. Since the agonist binding site is

unperturbed, it is reasonable to assume that PNU-120596 pri-

marily, if not solely, influences receptor function by perturbing

gating equilibria. The binding of PNU-120596 apparently affects

important residues required for signal transduction from the

agonist binding site to the channel gate. In evaluating long-range

interactions between residues, functional coupling comparisons

based on a double perturbation cycle analysis provide an appro-

priate and rigorousmethod (Daeffler et al., 2012; Gleitsman et al.,

2009; Miles et al., 2012). The functional coupling comparisons

were used to probe for mutations that coupled acetylcholine
Chemistry & Biology
and PNU-120596 together, thus allowing for identification of res-

idues necessary for proper PAM function and influence. Table 4

summarizes the major results of this study. From these data,

several observations and conclusions can be drawn to elicit

new information on allosteric modulation of a7 nAChRs by

PNU-120596.

An interesting observation concerned the mutations M276L

and M301A, which changed the decay current rate of acetylcho-

line-only waveforms (Table 4). This effect is quite similar to that

seen with the T60S mutation. Coupling was seen in the double

perturbation cycle analysis for all three residues, because all of

these mutations apparently alter the gating equilibrium and

thus diminish the total effect that can be exerted on the system

by PNU-120596. M301A (adjacent to the putative PNU-120596

binding site) and M276L (on the M2 pore-lining helix) most likely

contribute to structural rearrangements in the transmembrane

region. In addition, the mutation L60 shows a large gain of func-

tion for acetylcholine alone, which suggests a possible restruc-

turing coupled to the agonist binding site. Thus, the allosteric

propagation between acetylcholine and PNU-120596 is disrup-

ted, and PNU-120596 becomes a weak agonist.

Another surprising result seen here is that several residues

previously implicated in PNU-120596 binding do not show func-

tional coupling with respect to transmitting the effects of PNU-

120596. Previously, the binding pocket had been proposed to

lie in the transmembrane region and to interact with residues

on the M1, M2, and M4 a helices (Collins et al., 2011; Young

et al., 2008). Even though these residues were implicated in
22, 1–11, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 7



Figure 5. Summary of Residues that Generated a DDG Greater than

0.5 kcal/mol in the Double Perturbation Cycle Analysis
Only two subunits are shown for clarity. The color scheme is as follows.

Magenta: PNU-120596 becomes a partial agonist; orange: T60S on the M2

helix; blue: new residues discovered to have a jDDGj R 0.5 kcal/mol; green:

residues previously studied that also show a jDDGj R 0.5 kcal/mol; yellow:

residues previously implicated in the PNU-120596 binding site that do not

show a jDDGj R 0.5 kcal/mol.
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comprising the PNU-120596 binding, they may not contribute to

allosteric propagation in the protein, which is analogous to the

residues critical for acetylcholine binding shown above. Resi-

dues adjacent to the proposed binding pocket were implicated

in the communication pathway: N75 lies on the b2 strand con-

nected to loop 2; C241 and S245 lie on the M1 helix, and F275

on the M2 helix. Remarkably, both of these edges of the binding

sites seem to be oriented for interaction with residues at the

gating interface. The residues E195 (loop 9), Y232 (M1), and

N236 (M1) of one subunit are located in the vicinity of E67

(loop 2), W156 (loop 7), and S287 (M2-3 linker) of the adjacent

subunit. This suggests the presence of a collection of residues

in the gating interface region that communicates the allosteric

potentiation between the extracellular and transmembrane

regions (Figure 5). This interpretation is reinforced by the fact

that five of these six residues (excluding W156) show nearly a7

wild-type response waveforms even when PNU-120596 is

present (Table 4). Even though the residue N193 is not included

in this complex despite its proximity, a possible explanation for

the effects previously seen by Barron et al. is that its physical

location can be reorienting because the aforementioned com-

plex movements change the solvent exposure (Barron et al.,

2009).

PNU-120596 thus exerts positive allosteric modulation by

binding in the transmembrane region, which stabilizes the gating

interface and changes the gating equilibrium of the receptor, al-

lowing for a lower concentration of the agonist to open the chan-

nel. Also, stabilizing this interaction prolongs channel activation,
8 Chemistry & Biology 22, 1–11, August 20, 2015 ª2015 Elsevier Ltd
presumably by decelerating desensitization of the a7 receptor,

which is the most rapidly desensitizing nAChR known (Zhang

et al., 2011). Naturally this suggests a global interaction involving

a complex change in the stability of the wild-type receptor after

agonist binding. Here, we have provided a quantitative analysis

for identification of residues necessary for proper propagation

of allosteric effects.
SIGNIFICANCE

nAChRs are critical contributors to neuronal communica-

tion, which also implicates them in vital normal brain

processes and neural diseases. The a7 nAChR in particular

has been implicated in Alzheimer’s disease and schizo-

phrenia; thus, the molecular understanding of how com-

pounds affect this receptor has attracted much interest

(Narla et al., 2013; Pandya and Yakel, 2013; Parri et al.,

2011; Tong et al., 2011; Young and Geyer, 2013). Attempts

to design small molecules that are specific to a7 have

yielded numerous agonists, with some therapeutic success

(Horenstein et al., 2008). As an alternative to selective

agonist design, ongoing research has targeted the develop-

ment and understanding of allosteric modulators, which

have the potential to be more target specific and thus pro-

duce fewer side effects (Christopoulos, 2002; Williams

et al., 2011a, 2011b). In this study, the use of non-canonical

amino acids allowed individual chemical interactions of the

agonist binding to the protein to be probed in the presence

of the a7-specific positive allosteric modulator PNU-

120596. The conclusion from this analysis is that PNU-

120596 does not alter the agonist binding pocket. To further

probe the molecular basis of the properties of PNU-120596,

conventional mutagenesis throughout the receptor was per-

formed. Several gating interface residues as well as trans-

membrane residues were identified as vital for propagating

PNU-120596 properties throughout the receptor. This

network of residues links the agonist binding site to the

PNU-120596 binding site and to the channel gate in the

pore of the receptor, influencing the global stabilization of

the gating equilibria.
EXPERIMENTAL PROCEDURES

Residue Numbering and Protein Modeling

Residue numbering was based on the full-length protein containing the

signaling sequence as found on the Ligand Gated Ion Channel Database

(http://lenoverelab.org/LGICdb/LGICdb.php). The figures were generated

using PyMOL and a homology model (generated via MODELLER) of the rat

a7 receptor based on the GluCl crystal structure (PDB: 3RHW) (Hibbs and

Gouaux, 2011).
Molecular Biology

The QuikChange protocol (Stratagene) was used for site-directed mutagen-

esis of the rat nAChR a7 subunit (pAMV vector). NotI was used to linearize

the circular plasmid. The DNA was purified (Qiagen), and in vitro transcription

of mRNA from the linearized DNA templates was performed using the

T7mMessageMachine kit (Ambion). The resultingmRNAwas purified and iso-

lated using the RNeasy RNA purification kit (Qiagen). The same linearization

and mRNA synthesis protocols were used for the human Ric3 (pAMV) acces-

sory protein.
All rights reserved
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Table 4. Summary of Residues that Show Coupling of PNU-120596 and Acetylcholine

Coupled

Mutations

(Location)

jDDGj
(kcal/

mol)

Previously

Probed:

Reference Electrophysiology

Uncoupled

Mutations

(Location)

jDDGj
(kcal/

mol)

Previously

Probed:

Reference Electrophysiology

F275A (TM) 1.65 – type A L60A (EC) 0.17 a PNU partial agonist

S287A (GI) 1.65 b type A M63A (EC) 0.14 a

Y232F (GI) 1.50 – type A W77A (EC) 0.04 c PNU partial agonist

M301A (TM) 1.42 – type B N193A (GI ) 0.09 a

N236A (GI) 1.25 – type A A248D (TM) 0.05 d,e

M276L (TM) 1.10 d,e type B F478A (TM) 0.28 d,e

S245A (TM) 0.92 d,e C482Y (TM) 0.42 d,e

C241A (TM) 0.80 –

E67N (GI) 0.69 a,b type A

T60S (TM) 0.68 –

N75A (EC) 0.58 a PNU partial agonist

E195A (GI) 0.57 a,b type A

W156A (GI) 0.57 –

E67A (GI) 0.47 a,b type A

The first four columns list, in descending order, mutations found to have a jDDGj R 0.5 kcal/mol, and thus are considered here to be important for

allosteric modulation. They also contain the abbreviation for the relative location on the protein (Figure 5). The second four columns contain the

residues (listed in residue numerical order) previously probed and implicated in PNU-120596 function but did not show a jDDGj R 0.5 kcal/mol.

Both the left and right parts of the table also contain references associated with each mutation and the effect on the electrophysiology observations

that were seen when comparing traces from the EC50s measured (see Figure 1C for examples). Mutations without a reference are newly discovered

locations that showed importance to allosteric function.

TM, transmembrane; EC, extracellular; GI, gating interface.

Type A: Addition of PNU-120596 does not alter waveform compared with acetylcholine alone.

Type B: Mutation alters waveform for application of acetylcholine alone.
aBarron et al. (2009).
bTillman et al. (2014).
cPapke et al. (2014).
dCollins et al. (2011).
eYoung et al. (2008).
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For non-canonical amino acid incorporation, the amber (UAG) stop

codon was used for all a7 subunit incorporation. The 74-nt THG73 tRNA and

76-nt THG73 tRNA were in vitro transcribed using the MEGAshortscript T7

(Ambion) kit and isolated using Chroma Spin DEPC-H2O columns (Clontech).

Synthesized non-canonical amino acids coupled to the dinucleotide dCAwere

enzymatically ligated to the 74-nt tRNA as previously described (Nowak et al.,

1998; Xiu et al., 2009).

ND96 medium was used for all experimental running/wash buffers (96 mM

NaCl, 1.8 mM CaCl2, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES [pH 7.5]).

ND96+ medium was used for oocyte storage media (2.5 mM sodium pyruvate

and 6.7mM theophylline). No gentamicinwas added to theND96+ storageme-

dium to avoid distorting acetylcholine-induced responses (Amici et al., 2005).

Oocyte Preparation and Injection

Xenopus laevis stage V and VI oocytes were harvested via standard proto-

cols (Nowak et al., 1998) and in compliance with policies approved by the

Caltech Institutional Animal Care and Use Committee (IACUC). For conven-

tional mutagenesis, mRNA mixtures of a7 and Ric3 (Ben-Ami et al., 2005;

Castillo et al., 2005; Cheng et al., 2005; Halevi et al., 2002; Williams et al.,

2005) were mixed a ratio of 1:1 by weight to a final concentration of

0.8 ng/nl. Each oocyte received a 50-nl injection for a 40-ng total mRNA

mass delivery. Oocytes were incubated at 18�C for 24–48 hr. For non-canon-

ical amino acid incorporation, mRNA mixtures of a7 and Ric3 were made in a

1:1 ratio to a final concentration of 1.6 ng/nl. These mRNA mixtures were

then mixed in a 1:1 volume ratio with deprotected (photolysis) tRNA, and

50 nl was injected into each oocyte. Oocytes were incubated at 18�C for

24 hr. For non-canonical amino acids that showed no response after 24 hr,
Chemistry & Biology
the oocyte was subjected to a second injection and incubation following

the aforementioned procedure. Readthrough/re-aminoacylation tests (76-nt

THG73 tRNA) were performed to confirm non-canonical amino acid incorpo-

ration (Van Arnam et al., 2013).

Chemical Preparation

Acetylcholine chloride (Sigma-Aldrich) was dissolved to 1 M stock solutions in

ND96 buffer. PNU-120596 (Selleckchem) was dissolved in DMSO to 150 mM

stock solutions. Further dilution was performed to make a solution of 10 mM

and 0.1% v/v DMSO for experimentation.

Electrophysiology

The two-electrode voltage clampmode of an OpusXpress 6000A (Axon Instru-

ments) was used. A holding potential of�60mV and ND96medium for running

buffer were used.

For acetylcholine EC50 measurements, 2-fold and 2.5-fold acetylcholine

concentration steps were applied over several orders of magnitude for

dose-response measurements. Drug applications consisted of applying

1 ml of solution over 8 s. Then the oocytes were washed with buffer for

3 min at a rate of 3 ml min�1 before the next application of drug. For the

acetylcholine and PNU-120596 EC50 measurements, a similar protocol was

used. PNU-120596 at 10 mM was pumped in at a rate of 3 ml min�1 for

30 s (1.5 ml total volume per oocyte) prior to the co-application of acetylcho-

line and 10 mM PNU-120596. The co-application dose was 1 ml of solution

over 15 s followed by an additional 15-s pause to allow each response to

reach its maximum value. Then the oocytes were washed with buffer for

5 min at a rate of 3 ml min�1 before the next co-application of drug. Again,
22, 1–11, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 9
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2-fold and 2.5-fold acetylcholine concentration steps were used over several

orders of magnitude.

Data were sampled at 50 Hz and then low-passed filtered at 5 Hz. Data were

normalized on a per-cell basis, responsewas averaged on a per-concentration

basis, and then fit to a single Hill term to generate EC50 and Hill coefficient (nH)

values. Error bars represent the SEM.
SUPPLEMENTAL INFORMATION
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