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Combining genomic and network characteristics for
extended capability in predicting synergistic drugs
for cancer
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The identification of synergistic chemotherapeutic agents from a large pool of candidates is

highly challenging. Here, we present a Ranking-system of Anti-Cancer Synergy (RACS) that

combines features of targeting networks and transcriptomic profiles, and validate it on three

types of cancer. Using data on human b-cell lymphoma from the Dialogue for Reverse

Engineering Assessments and Methods consortium we show a probability concordance of

0.78 compared with 0.61 obtained with the previous best algorithm. We confirm 63.6% of

our breast cancer predictions through experiment and literature, including four strong

synergistic pairs. Further in vivo screening in a zebrafish MCF7 xenograft model confirms one

prediction with strong synergy and low toxicity. Validation using A549 lung cancer cells

shows similar results. Thus, RACS can significantly improve drug synergy prediction and

markedly reduce the experimental prescreening of existing drugs for repurposing to cancer

treatment, although the molecular mechanism underlying particular interactions remains

unknown.
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C
ancer is a complex disease involving multiple factors and
pathways. In the clinic, treatment with anticancer drugs
through monotherapy has been frequently associated with

acquired resistance and side effects for a couple of years, whereas
combinational therapy has been widely explored as a better
alternative1. In recent years, particular attention has been paid
to synergistic drugs, which exhibit a greater overall therapeutic
effect than the sum of the individual effects and which present
largely reduced side effects because of the lower dosage of
each ingredient compared with that used in monotherapy2.
To facilitate the identification of potential synergistic agents,
high-throughput screening platforms have been established
with hundreds of matrix blocks designed for testing different
concentrations of each drug on various cell lines before
subsequent animal or clinical tests3,4,5. Thus, in silico
computational methods are fully expected to complement
laborious experiments and accelerate screening for the
identification of candidates with desirable effects on specified
cancers.

Mathematical models based on ordinary differential equations
have been successfully applied to the quantitative calculation
of cellular responses to drug intervention targeting specific
networks6. However, the application to cancer has been largely
restricted due to the difficulty in determining the dynamic
parameters of large cancer networks (CNs). Consequently,
without sufficient reaction parameters, alternative computa-
tional algorithms have to be developed to accelerate the
screening of synergistic drugs. Zhao et al.7 recently proposed a
useful method for predicting synergistic drug effects based on
transcriptomic profiles. Subsequently, the DrugComboRanker
platform was built based on the hypothesis that synergistic drugs
may target different signaling modules of the disease network.
Although promising, the few published models lack rigorous
experimental validation and are not generalizable to arbitrary
compound combinations8. To promote the development of
in-silico methods for computing drug synergy, the Dialogue
for Reverse Engineering Assessments and Methods (DREAM)
consortium launched an international open challenge for the
development of computational models that can be used to
objectively and systematically evaluate the accuracy and
specificity of drug synergy predictions. Despite a complete lack
of publications and established methodologies in this research
area, 31 individual methods from 413 countries were entered in
this challenge. Experimental data on drug synergy were collected
for 91 binary pairs derived from 14 compounds applied to
the human diffuse large B-cell lymphoma (DLBCL) cell line
OCI-LY3, and these data were complemented with information of
the gene expression profiles of the cells perturbed with these
individual compounds. Among the 31 methods, only three
techniques performed significantly better than random chance8,
suggesting that despite the availability of different source of
information, the overall accuracy of prediction of synergistic
drugs remains a significant challenge. Specifically, the current
models are either based on intuitive hypotheses or designed for
synergistic drugs for the treatment of all types of diseases but have
been validated under limited conditions. However, drug synergy
has emerged as strongly context-dependent, likely reflecting the
effects on not only a specific disease but also testing platforms for
different cell lines or even drug dosages8. Although promising,
hypothesis-driven, rather than data-driven, models may identify
only partially synergistic mechanisms, whereas other models
generalized for all diseases may miss some significant
characteristics contributing to drug synergy in specific diseases,
which would likely reduce their performance when applied to a
specific disease, such as cancer. Indeed, the best method reported
by DREAM obtained an overall probability concordance-index

(PC-index) of 0.613, compared with a PC-index of 0.50 obtained
from random chance and a ground truth PC-index of 0.90,
whereas Zhao’s method only achieved a PC-index of 0.575
(ref. 8). Using The Cancer Genome Atlas (TCGA) data on lung
adenocarcinoma and endocrine receptor (ER)-positive breast
cancer, 28 to 38% of the combinations predicted using
DrugComboRanker showed evidence of positive effects
consistent with the published literature9. These results suggest
that there remains a large gap between the power of
computational prediction and experimental validation. Thus,
continuing efforts to develop new methods to predict compound
synergy based on empirical data and experimental validation are
needed.

At present, a number of synergistic drug combinations have
been accumulated in databases or the literatures in the anticancer
field10. In addition, knowledge of the molecular mechanisms of
existing synergistic drugs has been partially summarized from
different perspectives. For example, synergistic drugs may target
multiple points in a pathway and its cross-talked pathways11.
Compensatory pathway interactions and adaptive resistance, as
well as molecular and pharmacological data12 and gene
expression similarities13 have also been suggested3. On the basis
of previous studies, the identification of additional synergistic
drugs among potential candidates is possible when useful clues
can be formulated into a prediction model.

In this manuscript, we propose a model for the prediction of
synergistic drug combinations specifically for the treatment of
cancer. In the case of anticancer therapy, only a limited number
of synergistic drugs have been identified, but the combinations
between these drugs remain largely unknown or unexplored.
To manage this severe data imbalance, we establish a semi-
supervised learning model called Ranking-system of Anti-Cancer
Synergy (RACS) to address the limited positive/labelled samples
and the large set of unknown/unlabelled combinations. The drug
pharmacological characteristics, drug targeting networks and
transcriptomic profiles are initially tested to differentiate known
synergistic combinations among a set of unlabelled data.
Subsequently, the significant parameters are further formulated
into RACS to calculate the synergistic potential of these drug
combinations. The RACS results are extensively validated via
experiments on DREAM data of the human b-cell lymphoma cell
line OCI-LY3, the breast cancer cell line MCF7 and the human
lung adenocarcinoma cell line A549. In vivo validation of the
synergistic effects and potential toxicity is also examined using a
zebrafish-based human cancer cell xenograft model. The frame-
work of RACS can effectively improve drug synergy prediction
for guiding experimental searching despite of the unclear
synergistic mechanism.

Results
RACS to predict synergistic potential of drug combinations.
RACS was developed to predict the synergistic potential of the
available anticancer drugs. Given a limited number of known
synergistic combinations, RACS ranks drug pairs according
to similarities with known samples in a specified multi-feature
space. To achieve flexibility for compounds without sufficient
information, RACS is performed in two steps (Fig. 1):
(1) Preliminary ranking: RACS computes the synergistic potential
for queried drug pairs in terms of similarities to known/labelled
pairs relative to a targeted biological network; and (2) Secondary
filtering: The preliminary ranking is further refined based on
functional correlations between individual drugs by examining
the gene expression profiles of tested cell lines.

A total of 26 pairs of known synergistic anticancer drugs
among 33 tested drugs were collected as positive/labelled samples
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with corresponding drug targets and transcriptomic profiles of
single-drug treatment on specific cell lines. The reshuffling of the
33 drugs constitutes 502 pairs of unlabelled samples. Fourteen
features covering the chemical structure, pharmacology and
functional and network properties of the drug targets were noted
(Supplementary Table 1), but, only seven features were identified
as significantly different between the synergistic and unlabelled
pairs (Table 1). These seven features were subsequently selected
to formulate RACS. Similarly, five parameters describing
correlations between differentially expressed genes (DEGs) were
tested (Supplementary Table 2), and two parameters were
significantly different between the positive and unlabelled
samples (Supplementary Table 3). These two parameters were
used as further filters to improve the preliminary ranking.

All of the labelled samples and unlabelled tested pairs were
represented through the seven significant features for preliminary
ranking. Subsequently, a semi-supervised learning method
incorporating a manifold ranking technique was applied to
enrich the labelled/bait pairs at the top of the ranked list14.
The order of queried pairs in the optimized ranking list was
considered the preliminary ranking. Moreover, the transcriptomic
features were applied to filter out drugs pairs without significant
functional correlation.

Significant improvement on DREAM data of DLBCL cells.
To evaluate its prediction capacity, we applied RACS to the
standard data obtained from the DREAM consortium8. The
experimental data on the combinational activity of these drugs on
the human diffuse large B-cell lymphoma (DLBCL) cell line
OCI-LY3 together with the gene expression profiles upon drug
treatment at different times and under different concentrations

were reviewed to determine the effects of the binary combinations
of 14 distinct drugs/compounds. Because mitomycin C is a potent
DNA crosslinker and its targets have not been clearly specified15,
78 drug pairs among 13 agents were tested as unlabelled samples
using RACS (Supplementary Table 4). The performances of
peering methods, including DIGRE (the best-performing method
included in the DREAM report), SynGen (a method explicitly
proposed by the DREAM organizers), and additional online
methods, including DrugComboRanker and Zhao’s method, were
examined using the same set of data. An extensive comparison of
the models using DREAM data was performed based on the the
area under the curve (AUC) value, the true positive rate, and the
proposed PC-index, as shown in Fig. 2a.

RACS obtained a PC-index of 0.78 with an AUC value of 0.85,
indicating that this method displayed the best performance in
various tests. To further investigate the ability of each method to
predict synergy using DREAM data, the agreement between the
DREAM ranking and the predicted ranking was mapped for each
drug pair and each method, as shown in Fig. 2b. A higher number
of dots that aggregated into a diagonal line indicated a better
prediction. Among the 78 pairs, 16 drug pairs were confirmed to
have synergistic effects, which are illustrated as red dots. The
examination of the top 20 predictions detected five positive
pairs through DIGRE, seven positive pairs through SynGen,
DrugComboRanker and Zhao’s method, and successfully pre-
dicted 11 positive pairs through RACS. More details are described
in Supplementary Table 4.

The DREAM experiment also provides a solid reference by
which to investigate the contributions of transcription profiles
in the RACS model. The application of transcriptomic filters
increased the PC-index for DREAM data from 0.69 to 0.78, with
improvements in the AUC value from 0.783 to 0.853. Compared
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Figure 1 | Workflow for RACS. The pairs of red stars denote the known synergistic drug pairs (labelled pairs), while the pairs of gray ellipses denote

the unlabelled pairs. For any testing drugs provided by users, the household positive pairs are incorporated as baits into the data set. All the bait pairs

and unlabelled testing pairs will be ranked via manifold-ranking method in the space of multiple features. After removing the baits, the preliminary

ranking will be further refined by the gene expression filters.
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with random change, which showed a PC-index of 0.5 and an
AUC value of 0.5, an 18% improvement in the PC-index and a
14% improvement in the AUC were achieved through the
inclusion of transcriptomic filters. Interestingly, the positive pairs
were maintained during the filtering process, whereas the non-
synergistic pairs or true negatives according to the DREAM
results were removed (indicated as triangles in Fig. 2b4,b5). This
result suggests that the incorporation of transcriptomic filters can
notably improve the ranking results by greatly reducing the
number of false positives.

Significant ranking ability on breast and lung cancer cells.
RACS was further evaluated using the ER-positive breast cancer
cell line MCF7. A total of 118 anticancer agents (FDA-approved
or under clinical trial) were reshuffled into binary pairs. After
removing the 26 known synergistic pairs (Supplementary
Table 5), 6,877 pairs remained as unlabelled data. To gain a
more reliable ranking for experimental validation, RACS was
constructed for 30 times using different numbers of positive pairs,
and those that consistently appeared at the top 1% of the list were
compiled into a consensus rank via Spearman’s footrule distance
to obtain the preliminary ranking list16 (Supplementary Fig. 1,
Supplementary Table 6). After filtering based on the drug-
perturbated transcription profile of MCF7 cells (Supplementary
Table 7), 33 out of the 41 drug pairs were on the final ranking list
(Supplementary Table 6). Pairs for which an expression profile
was available for only one drug were still included in the list.
A literature search indicated five combinations with synergistic
anticancer effects, namely curcumin and resveratrol on colorectal
cancer17, trastuzumab and erlotinib on breast cancer18, topotecan
and vorinostat on small cell lung cancer19, estramustine and
docetaxel on breast cancer20 and bleomycin and etoposide on
endometrial carcinoma21 (Supplementary Table 6). The antibody
agents and those not commercially available were removed from
the list. The drugs in the remaining 17 pairs were purchased
and experimentally validated using the human MCF7 cell line
(Supplementary Note 1).

Two methods are commonly used to identify the expected
dose–response relationship for combination therapy compared
with monotherapy22. In the present study, the combination index
(CI) according to Chou and Talalay23 was considered for
measuring cooperative effects, but drug synergy was defined via
stricter criteria. A pair was only accepted as synergistic when the
CI values were all o0.9 for four combinational concentrations,
instead of the usual CI cut off of 1 for one combination. Based on
the stringent criteria, nine of the 17 pairs (52.94%) were newly
identified as synergistic in inhibiting MCF7 cell proliferation
(Fig. 3a, Supplementary Fig. 2). After addition of the five pairs
from the literature (Fig. 3b), 63.64% (14/22) of the predicted pairs
were confirmed to exert synergistic anticancer effects at the cell
line level, and 57.89% (11/19) experimentally showed synergistic
effects on MCF7 cells. Overall, the true synergistic combinations
with literature support and cell-line experimental confirmation
were all within the top 5% of the prediction results. Interestingly,
four of the nine (44%) synergistic agents showed strong
synergistic effects (with CIo0.3), and these molecules were
ranked in the top 2%. Notably, as shown in Fig. 3a, the
predictions of pairs with expression profiles for both drugs are
markedly better than that of those with expression profiles from
only one drug, further indicating the importance of incorporating
expression profile information.

As a control, 30 compound pairs were randomly selected from
the unlabelled samples, and the same experimental protocol was
applied. Only four of the 30 pairs (13.33%) showed synergistic
effects (Supplementary Figs 3 and 4), and none of these
compounds showed strong synergy. The pick-up rate (number
of experimentally confirmed pairs/total number of the to-be-
validated drug pairs) of RACS was significantly higher than that
of the randomly selected pairs (P-value¼ 0.006188; Fisher’s exact
test). RACS was also compared with one-class SVM24, which can
solve similar problems. The comparison showed that RACS is a
markedly better technique than one-class SVM as indicated
by the true positive rate, hit-rate and enrichment factor
(Supplementary Note 2). The substantial robustness of RACS
was determined by testing on a simulated CN through the

Table 1 | Network features formulating preliminary ranking system in RACS.

No. Newly
designed

Feature Mean
(Labelled
samples)

Mean
(Unlabelled

samples)

Z-score (labelled
samples versus

unlabelled samples)

Indication

1 � Dis (Distance) 2.48 2.59 �4.68 The average distance between the two groups of target
proteins for the paired agents in the context of PPI network.

2 O MP.U (Unrelated
mapped
pathways)

1.23E–3 4.32E–4 3.22 The proportion of unrelated pathways regulated by the targets
of the two agents.

3 O MI (GO-based
Mutual
Information
Entropy)

� 1.22E–3 4.75E–4 �4.04 The similarity between the biological processes (BPs)
regulated by the targets of the two agents.

4 O Eff.D (Efficacy) 0.23 0.16 5.61 The evaluation of the efficacy of drug pairs considering both
therapeutic effects and additional effects, calculated with
degree of the drug targets in the network.

5 O Eff.B (Efficacy) 0.17 0.12 4.34 The evaluation of the efficacy of drug pairs considering both
therapeutic effects and additional effects, calculated with
betweeness of the drug targets in the network.

6 O Eff.E (Efficacy) 0.23 0.19 3.12 The evaluation of the efficacy of drug pairs considering both
therapeutic effects and additional effects, calculated with
eigenvector centrality of the drug targets in the network.

7 O DCI (Drug
Combination
Interference)

1.33E–3 –7.97E–4 3.77 The change of network information-transmitting efficiency
between the combined treatment and the sum of individual
agent treatment.

The Z-score test was applied to check the statistical significance between the synergistic drug pairs and the unlabelled combinations (with |Z-score|43 as significant).
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random deletion of nodes from the network (Supplementary
Note 3). We examined the model performance of each individual
feature among the seven selected ones on different positive
samples (Supplementary Note 4). Other feature combinations
were also explored (Supplementary Note 5, Supplementary
Fig. 11). And the results showed that the combination of all
seven features generated the best performance. In addition,
reducing the number of features but increasing the number
of positive samples decreased the performance of RACS
(Supplementary Note 2). Moreover, the evaluation of RACS
through the sub-selection of target proteins also revealed
the robustness of this model (Supplementary Note 6 and
Supplementary Fig. 12).

The network targeting modes of the synergistic drugs were
reviewed in the context of gene expression and the mutational
profile of the MCF7 cell line (Supplementary Fig. 13,
Supplementary Note 7). All of the synergistic drugs simulta-
neously targeted molecules upstream of cell membrane receptors
as well as important cancer cross-talk pathways in the cytoplasm.
A total of seven out of nine pairs inhibited the Ras and oxidative

stress pathways or the Ras and PI3K/Akt/mTOR signalling
pathways in a complementary manner. Interestingly, the strong
synergistic pairs simultaneously targeted more than two classes of
membrane receptors. This result may reflect the drug frequency
in the collected synergistic pairs. The most frequently observed
drug in all nine synergistic pairs was gefitinib, a compound
typically used to treat non-small-cell lung carcinoma through
targeting epidermal growth factor receptor (EGFR). The second
most frequently observed drug was tamoxifen, a drug commonly
used to treat breast cancer, which targets the estrogen receptor in
breast tissue (Fig. 3).

RACS was further validated using the human lung adenocar-
cinoma cell line A549. In this experiment, 11 drugs were analysed
based on their gene expression profiles and target information
(Supplementary Table 8). The same procedure and standards
were used to rank the 55 potential drug pairs. The results in the
top 10% and bottom 10% (six agent pairs) were experimentally
evaluated (Supplementary Note 8). The results showed that two
drug pairs (33.33%), namely gefitinib with quinacrine and
erlotinib with quinacrine, showed strong synergistic effects
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points: barplot for PC-index. (b) Detailed ranking agreement between DREAM and computational models. The red dots are true synergistic drug

combinations, while the grey dots are the non-synergistic ones confirmed from DREAM experiments. The desired models would be able to map dots into

the diagonal line as much as possible. The vertical black dashed lines indicate the boundary between the top 16 synergistic pairs and non-synergistic ones,

while the horizontal black dashed line illustrates boundary between the top 20 predicted ranking and the rest 58 ones. b5-b6: The dots with triangle are

those pairs being filtered out to down-list from the preliminary ranking in RACS.
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(with CIo0.3) on the inhibition of A549 cell proliferation
(Supplementary Fig. 14a, Supplementary Fig. 15). In contrast,
none of the six pairs in the bottom of the ranking showed
synergistic effects (Supplementary Figs 14b and 16). Surprisingly,
the first two pairs that included rosiglitazone showed antagonistic
effects. The cell line results obtained in the present study showed
that A549 cell proliferation is non-sensitive to rosiglitazone
treatment at low concentrations, whereas a high concentration of
40 mM only induced 20–30% inhibition of cell growth25. Thus,
the half inhibitory concentration (IC50) concentration of
rosiglitazone may not be detectable in this testing range,
generating bias in the calculation of the synergy score (CI
index) between rosiglitazone and other drugs, which is consistent
with the results of previous studies25.

Validation of drug synergy and potential toxicity in vivo.
Because anticancer effects often involve cytotoxicity, further

screening should be applied to identify strong synergistic com-
binations with low toxicity and few side effects on normal cells or
organs. To further validate the obtained results in vivo, four
compounds covering the four strong synergistic pairs shown in
Fig. 3a, namely gefitinib, erlotinib, sorafenib and tamoxifen, were
selected to examine their drug synergistic effects and potential
toxicity using a zebrafish-based human cancer cell xenograft
model (Supplementary Note 9)26,27. We observed that zebrafish
are tolerant to individual treatment with gefitinib or erlotinib at
the same concentration that was used in the cellular experiments,
as indicated. However, tamoxifen and sorafenib showed severe
toxicity in the zebrafish model (Supplementary Figs 17 and 18).
The LC50 and maximum non-lethal concentration (MNLC) on
zebrafish were measured as 1.37 and 0.96 mM, respectively, for
sorafenib and 5.35 and 3.19 mM, respectively, for tamoxifen. The
MNLC concentrations of sorafenib and tamoxifen were
subsequently used in combination with other compounds in the
zebrafish experiments.
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Rank Drug1# Drug2#
CI (1#+2#)

Result
4+1 3+2 2+3 1+4

1 Gefitinib Everolimus 0.67±0.03 0.73±0.02 0.74±0.05 0.66±0.04
2 Gefitinib Thalidomide 0.82±0.01 0.89±0.03 0.77±0.05 0.86±0.02
3 Gefitinib Tamoxifen 0.68±0.03 0.22±0.05 0.25±0.03 0.86±0.01
5a Erlotinib Tamoxifen 0.36±0.08 0.23±0.06 0.45±0.04 0.63±0.02
7 Sorafenib Tamoxifen 0.71±0.04 0.67±0.04 0.3±0.07 0.22±0.04
8 Gefitinib Toremifene 0.89±0.01 0.55±0.12 0.75±0.07 0.76±0.02
10a

12a

Erlotinib Sorafenib 0.61±0.09 0.55±0.05 0.28±0.01 0.21±0.03
13 Sorafenib Dasatinib 0.62±0.04 0.54±0.02 0.76±0.06 0.75±0.01
16 Gefitinib PD98059 0.61±0.05 0.73±0.01 0.8±0.04 0.89±0.02
6 Gefitinib Sorafenib 1.09±0.05 0.44±0.14 0.85±0.08 0.65±0.06

Gefitinib BIBW-2992 1.04±0.02 0.76±0.01 0.89±0.05 0.93±0.03
14 Sorafenib Everolimus 0.82±0.02 1.05±0.10 0.98±0.04 1.23±0.09
18a Everolimus BIBW-2992 3.47±0.07 0.78±0.07 1.31±0.02 0.94±0.04
19a Tamoxifen Flavopiridol 3.32±0.15 0.86±0.02 2.6±0.05 0.92±0.01
20a Erlotinib Flavopiridol 0.95±0.02 0.93±0.04 0.84±0.06 1.46±0.02
21a Gefitinib Erlotinib 1.18±0.04 0.97±0.02 0.96±0.05 0.96±0.02
22a Erlotinib Sunitinib 0.54±0.02 0.77±0.05 1.09±0.16 0.73±0.08

Rank Drug1# Drug2# Cancer type Result

4 Gefitinib Everolimus Breast cancer
11 Gefitinib Thalidomide Breast cancer
9 Gefitinib Tamoxifen Colorectal cancer
15a Gefitinib Erlotinib Small cell lung cancer
17a Erlotinib Sunitinib Endometrial cancer
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Figure 3 | Validation of the prediction result on ER positive breast cancer cell line MCF7. (a) Seventeen agent pairs tested by experiment on MCF7 cell

line. CI for each drug pair was summarized in a heat map. Green indicates synergy (CIo0.9); dark green indicates strong synergy (CIo0.3); yellow

indicates additive (0.9oCIo1.1); and red indicates antagonism (CI41.1). ‘4þ 1’, ‘3þ 2’, ‘2þ 3’, and ‘1þ4’ indicate combinations of same drug pairs at four

different concentration ratios: 4:1, 3:2, 2:3, and 1:4. The results summary table was rearranged according to the CI values in the order of ‘Strong synergy -

synergy - Additive effect - Antagonism’. aThere involves single agent without MCF7 expression profile. (b) Five agent pairs reported in literatures.

(c) Co-administrations of Erlotinib and Sorafenib inhibited tumour growth and dissemination in a zebrafish-based human cancer cell xenograft model.

(I-VII) MCF-7 cells were labelled with red fluorescence for easy observation in the zebrafish tumour xenograft model. Compared with vehicle control

treated embryos, Erlotinib combined with Sorafenib significantly inhibited tumour growth and dissemination in 4-dpi zebrafish embryos. White arrowheads

indicate disseminated tumour foci. H, heart; L, liver. (VIII,IX) Quantification of tumour growth and numbers of disseminated tumour foci. Columns,

mean; bars, s.e.m. (n¼ 9; ANOVA). RFI, relative fluorescence intensity; dpi, days post injection. ns: not significant, *P valueo0.05, **P valueo0.01,

***P valueo0.0001.
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As indicated in Fig. 3c, the combination of erlotinib and
sorafenib showed a significant synergistic effect on the inhibition
of xenografted MCF-7 cell proliferation in zebrafish, with no
apparent side effects. In contrast, treatment with each individual
compound showed no effects on tumour mass compared with the
vehicle control. Notably, sorafenib alone reduced the dissemina-
tion of MCF-7 cells in zebrafish, indicating that this drug inhibits
the metastasis of breast cancer, consistent with the results
obtained in recently published studies28,29. Interestingly, the
other three combinations containing tamoxifen showed severe
toxicity to zebrafish and caused 100% lethality, although each
compound alone at the experimental concentration showed no
harmful effect on the fish (Supplementary Fig. 19). This finding
also suggested that the tamoxifen combinations exerted synergetic
cytotoxic effect on normal cells. Thus, the zebrafish-based in vivo
study provides additional information for screening drug
combinations with potentially severe side effects.

Discussion
Few studies or established methods have achieved the successful
prediction of drug synergy. According to DREAM data, the
current best method performs only slightly better than random
chance, indicating a need for improvement8. To save time and
facilitate wet-lab screening, an effective model, denoted RACS,
was established in this study to predict drug synergy in terms of
anticancer effects. Extensive validation of the synergistic effects
on three types of cancers showed that the proposed data-driven
model, compared with the hypothesis-driven model, markedly
increased the prediction power of drug synergy calculation. RACS
is based on similarities to positive samples in the space of multiple
features empirically derived from differentiating synergistic and
non-synergistic drug combinations on cancer. The initiating
features for the RACS model cover indices of molecular and
pharmacological characteristics, drug-targeting networks, and
gene expression profiles in drug responses. A statistical analysis
showed that the molecular structure and pharmacology features
of the drugs had no significant correlation with drug synergy in
this dataset, in contrast with the results of a previous report12.
However, the results of the present study are consistent with the
findings from the DREAM analysis, showing that synergy is not a
universal property derived from chemical, structural or substrate
information8. Targeting modes on biological networks and
genomic features of gene expression play important roles in
determining drug synergy. Notably, the incorporation of gene
expression profile information markedly reduced the number of
false positive results, which may reflect the fact that the
synergistic drug agents may need to alter gene expression in a
correlated manner to produce synergistic effects.

Previous models were formulated based on different hypoth-
eses. Some of these models, such as Zhao’s method and DIGRE,
primarily consider similarities between genomic changes on
treatment with different drugs. In contrast, other methods
consider additional information; for example, DrugComboRanker
utilizes disease-specific signalling networks and the SynGen
model considers cellular phenotyping data. A complementary
concept was also highlighted in both DrugComboRanker and
SynGen. We strongly agree that the drug mechanism of action is
critical to drug synergy. Because drug targets play fundamental
roles in the MOA, we described the MOA of drugs through
mapping targets to the commonly accepted CN. Thus, the
functional influence of combinational targeting modes under
drug perturbation can theoretically be compared in a quantitative
manner using the same network. Because genomic expression
profiles are highly dynamic and context dependent, we can use
this feature as a second filter to refine the ranked list. In general,

the difference between RACS and other top-performing
algorithms may lie in two aspects: the positive data set of
synergistic combinations on different cancers, which facilitates
the statistic derivation of a whole set of significant features for
further model formulation and the incorporation of the drug
targeting network to describe the MOA of drugs, which covers
complementary and non-complementary mechanisms3,7,11,12.

In the present study, different evaluation parameters and
methods were adopted according to different testing scenarios.
Typically, the true positive rate and AUC value are adopted to
evaluate the performance of prediction models. The true positive
rate is usually calculated under a certain cut-off, whereas the AUC
value represents the overall performance of a model under a
varied cut-off. To evaluate the ranking model of drug synergy, the
DREAM consortium proposed a new parameter, the PC-index, to
avoid the noise of experimental replications. The analysis of 78
pairs using DREAM data revealed that the PC-index is much
more rigorous than the AUC value as an overall indicator for
evaluating model performance. The prominent advantage of the
PC-index compared with the AUC value is its anti-resistance to
data perturbation. For instance, the AUC value of the DIGER
method decreased from 65 to 48% after removal of mitomycin C
from the set of 14 drugs. However, the PC-index of DIGER and
Zhao’s method remained consistent or almost the same,
indicating the stability of the PC-index to compound perturba-
tion. However, the PC-index may not fit the results for breast or
lung cancer, for which multiple combinations of different
concentrations were used instead of biological replicates. As
illustrated in Fig. 3, the biological effects of the same drug
combination can either be synergistic, additive or even antag-
onistic on the same cell line at different concentrations.
In addition, the AUC value is not suitable, because only partial
drug pairs were experimentally examined. Thus, we simply
adopted the true positive rate, consistent with previous studies.
Indeed, because compound synergy is highly context-specific,
robust evaluation metrics generalized for different experiment
designs are still expected. Furthermore, DREAM data provide
abundant information, including dose-response curves for cell
viability, gene expression profiles (GEP) of baseline cells, and
time-series GEP following each drug perturbation, together with
the baseline genetic profile previously reported. Only this set
of robust data allows the application of different methods
and comprehensive comparisons between models. Thus, the
performance of RACS on the analysis of DREAM data was
compared with those of four different methods, namely SynGen,
DIGRE, DrugComboRanker and Zhao’s method. However,
other public datasets often miss some information, preventing
thorough comparisons. For example, the best method from
DREAM (DIGRE) requires the gene expression profiles obtained
after individual drug treatment, which is information that is
lacking in the MCF7 and A549 datasets obtained in the present
study.

A number of previous studies have discussed the synergistic
mechanisms of drug combinations11. Because different datasets in
different contexts may show different results, various molecular
patterns underlying the targets of drugs on biological pathways or
networks have been described. The synergistic drug pairs
identified in the present study were found to modulate both
pathways upstream of cell membrane receptors and downstream
cross-talk cancer pathways in the cytosol, likely reflecting the fact
that many of the available anticancer drugs are designed based on
membrane receptors. Because intracellular pathways are typically
regulated through signals upstream from membrane receptors,
the inhibition of membrane receptors together with effects
at intracellular sites may lead to strong inhibition of cell
proliferation. In addition, strong synergistic pairs that targeting
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more types of membrane receptors may enhance the inhibition of
the downstream Ras signalling pathway, which may further
amplify the drug synergy.

Antagonism was also observed in the top ranked potentially
synergistic drug pairs. The data for most of these drugs, such as
BIBW-2992 and everolimus, included only partial information of
the gene expression profiles after drug treatment. BIBW-2992 is
an irreversible multi-target tyrosine kinase inhibitor designed
directly for EGFR mutations. Because EGFR mutations have not
been reported in MCF7 cells, BIBW-2992 may exert off-target
effects in MCF7 cells, resulting in an antagonistic effect when
combined with everolimus. Indeed, the combination of BIBW-
2992 and everolimus, which is ranked No. 31 in Fig. 3, showed a
typical context-dependent effect, in which the combinations of
different concentrations induced different effects, including
antagonism, addition, or synergism on the MCF7 cell line. The
results shown in Supplementary Table 9 revealed that everolimus
inhibits MCF7 cell proliferation in a dose-dependent manner,
whereas BIBW-2992 does not. Everolimus inhibits the mTORC1
protein complex, resulting in the hyper-activation of AKT kinase
via the mTORC1 negative-feedback loop30. In addition,
BIBW 2992 may target various oncogenic signaling pathways in
different cancer types, including PI3K/AKT. It has been reported
that BIBW 2992 decreases AKT phosphorylation, even in
afatinib-resistant cells31,32,33. However, an inhibition of AKT
phosphorylation was observed with a sensitizing concentration
in different cell lines34. We suspected that concentration
sensitization may contribute to the different effects observed for
the combination of BIBW-2992 and everolimus, but the detailed
mechanism needs further validation. It is not certain whether
these effects will be predicted through the gene expression
signatures of the drugs, because the expression profile of BIBW-
2992 in MCF7 cells was not obtained. This finding indicates that
mutational and concentration-dependent data could also be
incorporated to increase the performance of the computational
model. Drug targeting patterns in the context of disease-specific
pathways, the gene expression profiles induced by drug treatment,
the drug-dose responses and genome mutation information may
improve drug synergy predictions and should be incorporated for
future improvements.

Synergistic mechanisms, such as pharmacokinetic potentiation
with absorption, distribution, metabolism and excretion (ADME),
coalistic mechanisms and pharcodynamically synergistic mechan-
isms, have been surveyed in several studies11. Notably, however,
the RACS approach described in this manuscript addressed only
the issue of pharmacodynamic synergy with protein/gene drug
targets and DEGs from expression profiles of individual drugs in
the same cell line. Pharmacokinetic and coalistic synergy models
are currently not applicable in RACS, but both models should be
amenable to future improvements.

In summary, in the present study, we proposed a set of features
associated with drug synergy in cancer and formulated an
efficient model, denoted RACS, for the prediction of synergistic
drug combinations for cancer treatment. Through validation of
the predicted interactions on three types of cancer cell lines and a
fish model, we showed that RACS displays a high capacity to
rank potential combinations that exert synergistic anticancer
effects. As new discoveries of individual drugs become
increasingly difficult, combinations of available drugs provide
critical opportunities for treating cancer. With the increasing
accumulation of patient data from TCGA and patient-derived
xenograft (PDX) models, the workflow from RACS prediction to
cell line validation and further in vivo model screening may
accelerate the identification of personal combinational therapy
through a reduction of the search space when repurposing
existing drugs.

Methods
Datasets. A total of 41 known synergistic anticancer agents pairs that have
entered clinical trials were initially obtained from the Drug Combination Database
(DCDB)10 and the literatures in PubMed (Supplementary Table 5). Because some
drug targets of the pairs cannot be successfully mapped to Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, these drugs pairs were removed from the
initial list. In total, 26 pairs were considered as the final positive/labelled samples
for further modelling in this study.

A total of 14 individual drugs/compounds were provided by the NCI-DREAM
consortium8. As protein targets were observed for only 13 of the 14 agents,
78 pairwise combinations derived from these 13 agents were used as the testing
dataset for the human b-cell lymphoma cell line OCI-LY3.

A total of 142 FDA-approved anticancer agents and those under clinical
trials were initially retrieved from DrugBank version 3.0 (ref. 35), TTD (ref. 36),
and PubMed (Supplementary Data 1). The key words include ‘antineoplastic’,
‘anticancer’, ‘antitumor’, ‘oncology drug’, ‘cancer drug’, ‘anticarcinoma’,
‘anticarcinogen’, ‘cancer fighting’ and derivative words. Subsequently, 118 agents
remained after removing agents without gene ontology (GO) annotations or KEGG
pathway information for the targets. Reshuffling of the 118 drugs produced 6,877
unlabelled pairs as the testing data for the lung adenocarcinoma cell line A549 and
the ER-positive breast cancer cell line MCF7. The target proteins for all of the drugs
were retrieved from DrugBank version 3.0, TTD, and PubMed.

Features of the preliminary ranking model. We initially prepared a candidate list
of 14 features to describe the synergistic characteristics of drug pairs in our pre-
diction model. These 14 features were designed to cover the comprehensive
molecular and pharmacological characteristics of each drug as well as their target
pathways in a systematic manner. A Z-score test was then performed to select those
features that significantly differed between the synergistic drug pairs and the
unlabelled combinations (|Z-score|43, All were normalized to [0,1]), generating
the seven features listed below:

(1) GO-based Mutual Information Entropy (MI): This feature indicates the
similarity between the biological processes (BPs) regulated by the targets of the two
agents. Larger values often imply higher functional similarity. The features were
calculated as follows: First, 1,006 GO terms of BPs were retrieved as the cancer-
related BPs for genes in the KEGG ‘Pathways in cancer’ using the online tool
DAVID37 with P valueo0.05; Modified Fisher’s exact test (Supplementary Data 2).
Second, the target proteins of each agent were mapped to cancer-related BPs to
form a 1,006-dimensional binarized fingerprint, with the element ‘1’ indicating an
existing of drug target. Third, the relationships between the cancer-related BP
fingerprints of paired agents were calculated using mutual information entropy.
Here the GO-based mutual information entropy for agent x and agent y was
defined as

MI x; yð Þ ¼ P x; yð Þ�log
Pðx; yÞ

PðxÞ � PðyÞ ð1Þ

where P(x) is the ratio of mapped GO terms in cancer-related BPs for agent x, P(y)
is the ratio of mapped GO terms in cancer-related BPs for agent y, and P(x,y) is the
ratio of the common GO terms mapped to cancer-related BPs between x and y.

(2) Distance (Dis): This feature represents the average distance between the
target proteins of the two agents in the context of a protein–protein interaction
(PPI) network. This distance was defined as the average distance between two
groups of target proteins:

Dis x; yð Þ ¼
Pi¼M

i¼1

Pj¼N
j¼1 disði; jÞ

M � N
ð2Þ

where dis(i, j) is the shortest path between the ith target protein of agent x and
the jth target protein of agent y in the background PPI network (Supplementary
Note 6). M and N represent the numbers of target proteins of agents x and y,
respectively.

(3) Drug Combination Interference (DCI): This feature represents the variance
between the combined agent pairs and the sum of the individual agents in the
effect on network information-transmitting efficiency. According to the DCI, the
synergistic combinations tend to produce more effects on the information-sending
efficacy of the CN than the sum of the individual drugs. DCI was calculated based
on the relative efficiency change (DE) of the CN (Supplementary Note 10) in
sending information after combined drug treatment38:

DCI x; yð Þ ¼ DExþ y � DEx þDEy
� �

ð3Þ

DE for agent x is calculated as:

DEx ¼
E � Ex

E
ð4Þ

E represents the information-sending efficacy of the CN without agent perturbation
and was calculated as the arithmetic mean of all of the shortest distances between
each pair of nodes in the CN. Ex was calculated as the information-sending
efficacy of the network derived after removal of all the targets of agent x from the
original CN.

(4) Efficacy (Eff.D, Eff.B and Eff.E): These features represent the efficacy of drug
pairs considering their therapeutic effects as well as additional effects and were
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calculated based on the degree/betweenness/eigenvector centrality of the drug
target in the network. These three features were designed based on the assumption
that good combinations generate maximum therapeutic effects and minimum
additional effects. The efficacy (Eff) was designed for hitting critical targets in the
CN while avoiding hitting targets in non-cancer networks (NCNs):

Eff ¼ l
P

i2CN WiP
i2BD Wi

� 1� lð Þ
P

i2NCN WiP
i2V Wi

ð5Þ

The first part of the formula represents therapeutic effects, whereas the second part
of the formula represents additional effects. lA[0,1] is used to balance the two
parts of the formula. Here l is set to 0.1, which is the value that can best distinguish
the known anticancer synergistic agents from the unlabelled/background samples.
Different weights of node i (Wi) were calculated as the degree, betweenness, and
eigenvector centrality of the target node in the network to form the three different
Effs (Eff.D, Eff.B, Eff.E).

CN: target proteins in the cancer network;
BD: target proteins in the background PPI network including the CN;
NCN: target proteins within BD but outside of the CN;
V: all nodes in the background PPI network including the CN.
(5) Unrelated mapped pathway pairs (MP.U): Unrelated pathways pairs are

defined as pathway pairs that are not identical, not cross-talking, and not
interacting (please refer to Supplementary Note 11 for the definitions of identical,
cross-talking and interacting pathway pairs) according to KEGG pathway
information. For an agent pair, MP.U was calculated as the proportion of unrelated
pathway pairs among the total number of pathway pairs targeted by each drug.

Preliminary ranking system. A well-defined semi-supervised learning method
incorporating a manifold ranking algorithm14 was applied as a preliminary ranking
system according to similarities with positive samples in the seven-feature space
(Supplementary Note 12). All of the positive and unlabelled samples are
represented based on the aforementioned seven features to formulate the model.
The performance of manifold ranking was assessed using different numbers and
compositions of positive samples as bait to build the model (Supplementary
Note 2). Detailed information on the manifold ranking can be accessed in
Supplementary Materials.

Secondary filtering system. Two parameters derived from gene expression
profiles were identified to further filter the ranked results obtained from the
primary ranking system. (P valueo0.05, Permutation Test; Supplementary
Note 13):

DEG_Overlap was calculated as:

DEG Overlap x; yð Þ ¼ jA \ Bjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj � jBj

p ð6Þ

where A and B represent the DEG sets perturbed by agent x and y, respectively.
Pathway_Coverage was defined as:

Pathway Coverage ¼ jðA [ BÞ \ Nj
jNj ð7Þ

where A and B represent the DEG genes upon treatment with agents x and y,
respectively. N denotes all of the genes covered by the specific cancer pathway
(Supplementary Note 7).

These two parameters were calculated for each drug pair. The drug pairs with
P valueso0.05, Permutation Test; for both of these parameters were retained after
filtering (please refer to Supplementary Note 13 for the P value calculation).

Validation of drug synergy in vitro. Human breast cancer cell line MCF7 was
obtained from American Tissue Type Culture Collection (ATCC, Rockville, MD)
and maintained in a humidified 37 �C atmosphere containing 5% CO2 and
cultured in DMEM supplemented with 10% fetal bovine serum (FBS). NSCLC cell
lines A549 was obtained from the Shanghai Cell Bank, Chinese Academy of
Sciences and grown in F12K mediums supplemented with 10% FBS and
100mg ml� 1 penicillin and 100 mg ml� 1 streptomycin at 37 �C under 5% CO2.
Dasatinib, erlotinib, everolimus, gefitinib, sorafenib, sunitinib, azacitidine,
cycloleucine, cytarabine, decitabine, etoposide, genistein, ifosfamide, melatonin,
parthenolide, resveratrol, tamibarotene, terazosin, tretinoin, quinacrine, rosiglita-
zoneand tamoxifen were purchased from Biovision (Mountain View, CA).
BIBW-2992, flavopiridol, PD98059, thalidomide, lapatinib, dexamethasone,
imatinib, and toremifene were purchased from Selleckchem (Houston, TX, USA).
The purity of each drug is above 98%. Drugs were dissolved in cell culture medium.
The drug was used alone or in combination with the other drug at 4 different
concentration ratios: 4:1, 3:2, 2:3, and 1:4. The cytotoxicity of each drug or
combination was evaluated by MTT assay. To calculate the IC50, the single drug or
the combined drug pair at the four different concentration ratios were diluted 1:4
with cell culture medium into six concentration gradients. For each concentration
gradient, there were three replicates, and each experiment was repeated three times.
The CI was introduced to determine whether a pair of drug combinations could
produce synergy. Generally, it is considered that a CI value o0.9 indicates
synergism, 0.9oCIo1.1 indicates an additive effect, and CI41.1 indicates

antagonism. Here an agent pair was recognized as synergistic if all of the four
CI values calculated from the four different concentration ratios were o0.9.

Validation of drug synergy and potential toxicity in vivo. Cell Tracker
CM-DiI was purchased from Invitrogen. Zebrafish were raised and maintained
under standard conditions39. Embryos were staged according to the work of
Kimmel et al.40 The establishment and characterization of the fli1a-EGFP; Casper
transgenic lines has been described elsewhere41,42. The zebrafish facility at
Shanghai Research Center for Model Organisms is accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care (AAALAC)
International. All animal experiments were approved by the Institutional Animal
Care and Use Committee of Shanghai Research Center for Model Organisms
(IACUC NO.2015-0012).

To determine the Maximum non-lethal concentration (MNLC) and LC50 of
lead compounds, zebrafish were treated from 2-dpf to 5-dpf and mortality was
recorded every 24 h. Dead zebrafish was defined as the absence of heartbeat under a
dissecting stereomicroscope (Nikon SMZ645; Japan). Mortality curves were
generated using GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA)
and the MNLC was determined with logistic regression. Zebrafish embryos were
obtained using standard mating conditions and staged for cell xenotransplantation
at 48 h post fertilization. Cancer cells were stained with 5 mg ml� 1 CM-DiI diluted
in PBS and washed four times and kept on ice before injection. Embryos were
dechorionized using micro-forceps and anaesthetized with 0.0016% tricaine and
positioned on their right side on a wet 1.0% agarose pad. Approximately 200 cancer
cells were injected into the yolk sac. Injected embryos were transferred to a six-well
plate (BD Falcon) containing drug of interest diluted in 5-ml fresh fish water and
maintained at 31 �C for up to 4 dpi. Embryos and larvae were analyzed with Nikon
SMZ 1500 Fluorescence microscope and subsequently photographed with digital
cameras. Quantitative image analyses were performed using image based
morphometric analysis (NIS-Elements D3.1, Japan). A subset of images was
adjusted for levels, brightness, contrast, hue and saturation with Adobe Photoshop
7.0 software (Adobe, San Jose, California) to optimally visualize the expression
patterns.

All data are presented as mean±s.e.m. Statistical analysis and graphical
representation of the data were performed using GraphPad Prism 5.0 (GraphPad
Software, San Diego, CA). Statistical significance was performed using a ANOVA
or w2-test as appropriate. Statistical significance is indicated by *Po0.05, **Po0.01
and***Po0.0001.

Code availability. The program code is available at GitHub (https://github.com/
DrugCombination/RACS).
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