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SUMMARY
Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance,
including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics
on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical
approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination
were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically
manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression
in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive
resistance, which can be suppressed through combination drug therapy, including non-obvious drug
combinations.
INTRODUCTION

Glioblastoma (GBM), one of the most lethal human cancers, is a

paradigmatic example of intratumoral heterogeneity. The Can-

cer Genome Atlas (TCGA) has revealed that prevalent GBM mu-

tations and copy-number variations (CNVs) cluster along a small

set of druggable signaling pathways, including (1) receptor tyro-

sine kinase (RTK)/RAS/PI3K signaling, (2) p53 signaling, and (3)

Rb signaling (Brennan et al., 2013). However, clinical trials with
Significance

Genomic analyses of GBM tumors have revealed a core set of
targeted to those pathways have onlymarginally improved pati
being almost universal. Using genomics and single-cell phos
model of mTORki resistance, we show that drug resistance can
vated within days of drugging. The measured adaptive respons
shown to halt tumor growth. This single-cell analytic appro
designing combination therapy strategies for more effectively
targeted monotherapies against these mutations or their down-

stream effectors have yet to favorably affect patient outcomes,

as tumors rapidly acquire resistance (Cloughesy and Mischel,

2011; Nathanson et al., 2014). Intratumoral molecular heteroge-

neity may play a critical role in cancer drug resistance, and

new technologies that facilitate resolving such heterogeneity,

including single-cell RNA, DNA, and even protein analyses (Irish

et al., 2004; Kalisky et al., 2011; Shi et al., 2012; Wu et al., 2014)

are becoming increasingly available. Mining such information to
mutations that reside along druggable pathways, but drugs
ent outcomes, with the rapid development of drug resistance
phoproteomics analyses of a human-derived in vivo GBM
proceed via a non-genetic (adaptive)mechanism that is acti-
e points to combination therapies that are tested in vivo and
ach appears to provide clinically actionable insights into
treating GBM patients.
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Figure 1. Characterization of GBM39 In Vivo

Mouse Model

(A) Tumor growth curve for control (sample size

n = 11) and treated (n = 14) xenografts (n = 7 for

responsive and resistant groups, respectively;

variations expressed as mean ± SD; *p < 0.05, with

far right comparing sizes at day 19 versus day 39).

(B) 18F-FDG PET (left), PET-CT (middle), and CT

(right) scans for the three conditions (n = 4 per

condition). The arrow indicates the localization

of the tumor. PET and CT images demonstrate

significantly decreased metabolic burden and

tumor volume in the responsive state.

(C) IHC results for the three conditions. Scale bar,

100 mm.

See also Figure S1 and Table S1.
anticipate drug resistance and derive more effective combina-

tion therapies remains a serious challenge.

As a central signaling node of the RTK/RAS/PI3K signaling,

the mechanistic target of rapamycin (mTOR) pathway, which

is hyperactivated in approximately 90% of GBMs, constitutes

a compelling drug target (Cloughesy et al., 2013; Gini

et al., 2013). However, resistance to targeted monotherapies

against mTOR has been correlated to multiple genetic and

non-genetic processes (Cope et al., 2014; Gini et al., 2013;

Rodrik-Outmezguine et al., 2011, 2014). Specifically, studies

have shown that mutations in the mTORC1 regulators TSC1

and TSC2, or in the FKBP-rapamycin binding domain, confer

resistance to the allosteric mTOR inhibitor everolimus, which

has activity primarily against mTOR complex 1 (mTORC1)

(Iyer et al., 2012; Wagle et al., 2014). Moreover, breast cancer

cells carrying mutations in the catalytic domain of mTOR are

resistant to a dual ATP-competitive mTORC1/mTORC2 kinase

inhibitor (mTORki) (Rodrik-Outmezguine et al., 2014). These

results demonstrate that resistance to any single therapy can

occur when drug-resistant tumor cell subpopulations expand

to drive recurrence, akin to Darwinian-type evolution under

the selection pressure of the drug (Bozic et al., 2013). At pre-

sent, no GBM-associated genetic mutations conferring resis-

tance to the ATP-competitive mTORki have been identified,

and the mutational spectra that promote such resistance are

not well understood.

Tumors may also develop resistance through altered protein

signaling networks. Studies performed in breast cancer and

GBM cells treated with mTORki indicated the rapid induction

of a compensatory protein kinase B (Akt)-dependent signaling

and an autophagy-dependent tumor cell survival (Gini et al.,

2013; Rodrik-Outmezguine et al., 2011), respectively. These

studies demonstrate that protein network rewiring could lead

to resistance through which cancer cells quickly adapt to that

drug, so as to maintain the signal flux through those networks

required for tumor maintenance and growth (Bergers and Hana-

han, 2008; Elkabets et al., 2013; Krakstad and Chekenya, 2010;

Lee et al., 2012; Muranen et al., 2012). These resistance-promot-

ing networks may be differentially expressed by the cells within a

tumor (Marusyk et al., 2012).
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The time scale of the appearance of resistance can depend

upon the mechanism. For Darwinian selection, the relatively

long-term cell-cycle selection of the resistant subpopulation

can be limiting. Deep sequencing of tumors can potentially

detect those rare cell subpopulations, and thus help guide the

selection of a second drug that forestalls resistance by targeting

that population (Al-Lazikani et al., 2012; Brennan et al., 2013;

Chin et al., 2008; Wacker et al., 2012). By contrast, resistance

via adaptation can develop quickly. Thus the challenge is to

measure the structure and adaptive response kinetics of the

protein signaling networks that are influenced by the drug, and

thereby identify any druggable signaling pathways that are

active or activated during drugging. Such analysis might point

to therapy combinations that inhibit tumor growth and stave off

resistance.

Here we investigate the basic resistance mechanism

(Darwinian versus adaptation) in a patient-derived epidermal

growth factor receptor (EGFR)-mutated in vivo GBM model of

mTORki resistance. The findings inform a series of investigations

designed to provide a priori predictions of targeted monothera-

pies and therapy combinations that will or will not be effective

at staving off resistance. The resultant approach has implica-

tions for guiding combination therapies that can more effectively

treat certain classes of GBM patients.

RESULTS

Genomic Analysis and Stem Cell Marker Tracing in an
In Vivo Model of mTORki Resistance Suggest an
Adaptive Mechanism of Resistance
To generate amodel ofmTORki resistance in a clinically relevant,

patient-derived model, we treated mice bearing GBM39 xeno-

grafts with CC214-2, an ATP-competitive mTORki that crosses

the blood-brain barrier and inhibits mTOR kinase activity in

GBM cells (Gini et al., 2013). CC214-2 treatment (100 mg/kg,

once every 2 days by gavage) significantly decreased tumor

growth rate relative to control-treated mice (Figures 1A and

1B) and reduced tumor glucose uptake as measured by [18F]

fluorodeoxyglucose (18F-FDG) positron emission tomography

(PET) (Figures 1B and S1A). This initial response to CC214-2



Figure 2. Genomic Analyses of GBM39 PDXs

(A) Whole-genome SNPs and WES analyses reveal

characteristic CNVs and single-nucleotide variants

in untreated GBM39 PDXs. There is no genetic

variation between control and resistant samples

for the three major TCGA pathways (RTK, TP53,

and RB1). PIK(3)K*: PIK3R1 M56I/M26I/M326I;

PIK3C2G P146L (damaging, deleterious), A261E/

A39E, L669F/L710F/L488F (damaging, delete-

rious), non-frameshift deletion exon 2 c.385_387;

PIK3C2B P273H (damaging); PIK3R2 S313P,

A727T (damaging).

(B) Copy-number plot across the chromosomes for

control (C) and resistant (R) PDXs, highlighting their

genome-profile similarity.

See also Figures S2 and S3; Tables S2, S3, S4,

and S5.
was concordant with inhibition of mTORC1 and mTORC2

signaling, and decreased Ki-67 labeling, a measure of tumor

cell proliferation, as measured by immunohistochemistry (IHC)

analysis of tumor tissue (Figures 1C and S1B; Table S1). By

day 27, rapid tumor regrowth occurred with concomitant in-

creases in glucose uptake and tumor volume, reactivation of

mTORC1 and mTORC2 signaling, and marked increase in Ki-

67 labeling, thus modeling the clinical scenario of resistance

(Figures 1A–1C).

We sought to characterize the mechanism of acquired

mTORki resistance by GBM39 through genomic and phenotypic

analyses. Therefore, we performed DNA CNV and whole-exome

sequencing (WES) analyses to resolve the basal molecular state

of GBM39 patient-derived xenografts (PDXs) and to determine

whether a gain-of-function mutation or potential mTORki-pro-

moted mutation was responsible for acquired drug resistance.

CNV analysis and WES of tumor xenografts at baseline revealed

a typical mutational pattern of a GBM clustering around three

‘‘core pathways’’: RTK signaling, cell-cycle control, and TP53

signaling (Figure 2A). The CNV analysis showed that the RTK

signaling pathway contained EGFR amplification and EGFRvIII

mutation along with multiple non-synonymous mutations in

PTEN, NF1, and PIK(3)K genes. Analysis of the TP53 pathway

revealed one non-synonymous single-nucleotide variant in

TP53. Analysis of the cell-cycle regulation pathway revealed

CDKN2A/2B deletion and CDK6 amplification. We analyzed

the synonymous and non-synonymous mutations using the

PROVEAN/SIFT program and identified mutations generating

variants predicted to have a deleterious or damaging effect
C

only in the PIK(3)K genes, affecting

PIK3C2G (P146L), PIK3C2B (P273H),

and PIK3R2 (A727T and L669F/L710F/

L488F). We compared this baseline

genomic profile with that of (1) tumors

that initially responded to CC214-2 based

on reduced glucose uptake and lower

tumor volume, and (2) tumors that were

rapidly regrowing (Figure 1). No mutations

in genes whose proteins have been shown

to promote resistance to mTOR inhibitors,

including TSC1 and TSC2, orMTOR itself,
were detected in the tumors (Tables S2 and S3) (Iyer et al., 2012;

Wagle et al., 2014). Although responsive and resistant samples

shared several, non-synonymous loss-of-heterozygosity alter-

ations (Table S2), no new driver oncogenes were found that

could potentially be responsible for drug resistance. Further-

more, we performed whole-genome analysis and identified

CNVs in control and resistant GBM39 tumors (Figures 2B and

S2). We determined whether these CNVs were specific to a

particular sample or shared between samples that received the

same treatment (Figures 2B and S2A; Table S4). We reason

that this second category of treatment-specific CNVs (summa-

rized in Table S4) would be more representative of variations

consequent to the drug treatment. We then analyzed the corre-

sponding transcriptional profiles of the genes encoded within

those CNVs (Figure S2B and Table S5). No correlation between

CNVs and altered gene expression profiles were detected,

indicating that the CNVs were most likely only passenger varia-

tions (Figure S2C) and did not trigger the onset of the resistant

phenotype.

We next analyzed a panel of GBM cancer stem cell phenotypic

markers that are correlated with resistance against a number of

therapies (Schonberg et al., 2014) (Figure S3). We did not detect

any changes in the expression of these markers, suggesting

that resistance is not mediated by preferential proliferation of a

drug-resistant stem cell population.

Taken together, these studies suggest the absence of genetic

selection of a resistant phenotype as a dominant resistance

mechanism. This points to the possibility of an adaptive mecha-

nism of resistance through protein signaling rewiring.
ancer Cell 29, 563–573, April 11, 2016 565



Figure 3. Assay Protocols and Single-Cell

Proteomic Analysis of GBM39 Tumors

(A) EGFR+ cells were separated from the GBM39

models and loaded onto an SCBC. Two SCBCs

were run in parallel for each test condition.

(B) Background-subtracted SCBC data repre-

sented as one-dimensional scatterplots (mean ±

SEMwas overlaid for each protein and is indicated

by the black horizontal bar). Gray bars indicate the

background level of each protein assayed. Statis-

tical uniqueness is evaluated by two-tailed Mann-

Whitney test for pairwise comparison (black

asterisks) and Kruskal-Wallis test for comparison

among three groups (blue asterisks). NS, not sig-

nificant; *p < 0.05; **p < 0.005; ***p < 0.0005.

(C) Digitized IHC results for selected proteins as-

sayed from tumor tissue slides (mean ± SD).

(D) Immunoblots of various proteins from bulk as-

says of GBM39 PDXs.

See also Figure S4.
Single-Cell Analysis of Phosphoprotein Signaling Levels
using an In Vivo Model of mTORki Adaptation
Guided by knowledge of signaling proteins commonly altered in

GBM (Brennan et al., 2013; Chin et al., 2008; Sarkaria et al.,

2007), we quantified the levels of 12 proteins and phosphopro-

teins in the GBM39 PDXs using single-cell IHC analysis (Figures

1C and S1B; Table S1). The protein panel included biomarkers

of mTOR activity, phospho (p)-mTOR, p70 ribosomal protein

S6 kinase phosphorylation (p-P70S6K), ribosomal protein S6

phosphorylation (p-S6), eukaryotic translation initiation factor

4E binding protein 1 (p-4E-BP1), protein kinase B phosphoryla-

tion (p-Akt1), proline-rich Akt substrate of 40 kDa (p-PRAS40),

and N-myc downstream regulated gene 1 (p-NDRG1) protein

phosphorylation (Gini et al., 2013); biomarkers of compensatory

transduction pathways downstream of EGFR, extracellular

signal-regulated kinase phosphorylation (p-ERK) (Mendoza

et al., 2011), sarcoma kinase phosphorylation (p-Src) (Lu et al.,

2009); a hypoxia index, hypoxia inducible factor 1a (HIF-1a);

and two functional readouts, Ki-67 for cell proliferation and

TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP

nick end labeling) assay for apoptosis.

During the responsive phase, CC214-2 treatment significantly

reduced mTORC1 and mTORC2 signaling and cellular prolifera-
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tion. Apoptotic cell death was registered

only in approximately 1.5% of the cell

population. Upon the onset of resistance,

mTOR signaling was reactivated, as well

as increased cellular proliferation, consis-

tent with the reconstitution of tumor

growth (Figures 1 and S1; Table S1). The

availability of tumor tissues at baseline,

during the midst of the response, and at

the time of tumor regrowth provided the

opportunity to compare and confirm the

single-cell IHC data using the single-cell

barcode chip (SCBC) platform.

mTOR signaling varies dramatically

from cancer cell to cancer cell in GBM39,
with EGFRvIII-positive tumor cells showing particularly high

levels of mTOR signaling and representing the most abundant

and aggressive phenotype (Gini et al., 2013; Nathanson et al.,

2014). EGFRvIII and EGFR wild-type-expressing (EGFR+) tumor

cellswere separated frommouse cells and debris, and sorted us-

ing an anti-EGFR antibody. EGFR+ cells were then passaged for

2 hr in culture to eliminate dead cells and then applied to the

SCBC platform (Figure 3A). The SCBC platform (Wei et al.,

2013) was designed with 310 1.5-nl volume microchambers,

each engineered for cell lysis and equipped with a full antibody

array used in the IHC analysis, with the addition of the tumor pro-

tein p53 (p53) pathway biomarkers, p53 and cyclin-dependent

kinase inhibitor protein 1A (p21) (Brennan et al., 2013), and cas-

pase-3 as an apoptosis marker. Following cell lysis, the proteins

were captured on the antibody array and each array element was

developed as a sandwich fluorescent immunoassay (Figure S4).

A one-chip dataset included the digitized fluorescence signals

from nine proteins measured from each of �100 one-cell micro-

chambers and �100 zero-cell microchambers (for signal back-

ground normalization). TwoSCBCswere used for each condition

studied. Scatterplots of one-cell data are provided in Figure 3B.

Comparing these single-cell results with single-cell IHC and

immunoblotting analyses performed on bulk tumor samples



Figure 4. Statistical Analysis of Single-

Cell Data Informs Targeted Combination

Therapies

(A) Protein-protein correlation networks, extracted

from SCBC data. Average protein levels are re-

flected in the sphere diameters, while correlation

strengths are reflected in the thickness of the

edges (see key). For the resistant state, existing,

new, and lost correlations, relative to control, are

indicated (see key). The relative change in average

protein abundance from SCBC data is shown in the

bar graphs above (p-P70S6K level is scaled by 1/4

on these graphs).

(B) Correlations between key functional proteins

and the PC1 for the control and responsive states

from in vivo and in vitro drug treatment tests. In

both cases, two independent signaling modes are

identified.

(C) Quantification of the heterogeneity of GBM39

PDXs cells at the three stages.

See also Figure S5.
confirmed that CC214-2 suppressed mTORC1 and mTORC2

signaling, which became reactivated during resistance (Figures

3B–3D). These results indicate that the SCBC assays on EGFR+

cells separated from the resected GBM39 tumors and the IHC

assays on tumor tissues from those samemodels yield similar re-

sults across the time course of therapy.

Single-Cell Analysis of Phosphoprotein Signaling
Coordination of the In Vivo Model of mTORki Adaptation
Identifies Drug-Activated Signaling Modes
The SCBC single-cell analysis yields two independent classes of

information: the protein levels and the protein-protein correla-

tions (Figures 4A and S5A). The latter can be mined to evaluate

the coordinated signatures of the signaling proteins (Figure 4B).

During response, CC214-2 profoundly diminished the levels of

most proteins, as seen in the changes in sphere sizes between

control and responsive plots of Figure 4A, but perhaps more

clearly in the uppermost bar graph in Figure 4A. CC214-2 also

strongly reduced the protein-protein correlations, as indicated

by the loss of network edges of responsive plot relative to con-

trol. To evaluate the change in tumor heterogeneity across the

three stages, we employed a functional heterogeneity index

(FHI). The FHI reflects the dispersion of the functional protein

levels across all single-cell assays at a specific condition. It is

defined as the dissimilarity value in the agglomerative hierarchi-

cal clustering (AHC) of mean normalized single-cell data based

upon Ward’s minimum variance method (Ward, 1963). In the

responsive state, there is a more than 4-fold drop in the FHI (Fig-

ures 4C and S5B).

The tumors were again probed at the resistant state (day 39

following the start of therapy). At this point, all protein levels
C

were at or above those observed for the

vehicle (Figures 3B and 3D, and upper

bar graph in Figure 4A). In addition, the

correlation network indicated increased

signaling activity, as reflected in the emer-

gence of nine new correlations (green
edges in the resistant plot of Figure 4A), eight of which were

associated with p-ERK1 and p-Src. These results suggest

that a gain of function through ERK/Src might be leading to

CC214-2 resistance by promoting downstream mTOR signaling

(Carracedo et al., 2008; Mendoza et al., 2011; Sunayama et al.,

2010). Resistance was also associated with a sharp increase in

the FHI (Figure 4C).

We analyzed how the overall protein signaling coordination

is altered by mTOR kinase inhibition. To this end we performed

principal component analysis (PCA), using the two-dimensional

matrix of measured protein-protein co-variances as input. We

then calculated the correlations between the assayed proteins

and the first principal component (PC1) in response to CC214-2.

PC1 captures themost essential feature of the signaling network,

so this analysis provides an estimate ofwhich proteins participate

moststrongly in that signaling. For thecontrol tumor,PC1 ispopu-

lated by p-ERK1, p-Src, p-Akt1, p-mTOR, and p-P70S6K (left

panel of Figure 4B). In response to CC214-2, these five proteins

bifurcate into two groups, or modes (a term used to imply

collective behavior). Following 19 days of treatment in vivo with

CC214-2, the influence of p-Akt1, p-mTOR, and p-P70S6K

(red mode of Figure 4B) on signaling coordination, relative to

p-ERK1 and p-Src (blue mode), is diminished. The implication is

that the drug diminishes the signaling coordination associated

with mTORC1/C2 signaling while activating ERK and Src

signaling. This observation suggested that the latter may have

gained the ability to maintain signal flux to key downstream

mTOR effectors. Strikingly, this same conclusion may also be

drawn through a similar analysis of EGFR+ cells that were ex-

tracted from the control and treated in vitro with 2 mM CC214-1

(the counterpart of CC214-2 for in vitro use) (Gini et al., 2013) for
ancer Cell 29, 563–573, April 11, 2016 567



Figure 5. In Vivo Validation of Seven Mono-

therapy or Combination Therapies

(A) In vivo test results for the seven monotherapy or

combination therapies based upon the predictions

from the SCBC data analysis. All seven predictions

proved correct. Data are shown as mean ± SD;

n = 11 for vehicle, n = 6 for C, n = 4 for D, n = 4 for U,

n = 4 for each combinatorial treatment group.

**p < 0.005 relative to samples after treatment stop

versus responsive samples; ***p < 0.001 relative to

responsive samples versus vehicle samples.

(B) IHC images of drug targets for the combinatory

treatments of CC214-2 and ERK and/or Src in-

hibitors. Scale bar, 100 mm.

See also Figures S1 and S6; Table S1.
only 2.5 days (right panel of Figure 4B). Thus, although the

changes in protein levels between the control and the responsive

tumors, or between the control and the cells treated for 2.5 days

in vitro, imply an effective drug response, the shift in signaling

network coordination points to the rapid emergence of a potential

compensatory mechanism (Figure S5C). We cannot exclude the

possibility that increased drug metabolism or drug efflux contrib-

utes to the tumor cell adaptation observed. However, our results

point to a facile resistance mechanism of adaptation, with the

drug-activated signaling networks providing potential targets for

combination therapy.

Combination Therapies Indicated by Changes in
Signaling Coordination Yield Effective In Vivo
Treatments
The data of Figure 4B suggest that targeting any one of the five

proteins is unlikely to exhibit a strong anti-cancer effect, and tar-

geting any two proteins from the same mode would also be ex-

pected to be a poor strategy. However, simultaneously targeting

one protein from each mode might be effective. Correspond-

ingly, we treated mice implanted with GBM39 using combina-

tions of CC214-2 (C), dasatinib (D, Src inhibitor), and U0126

(U, MEK inhibitor) to test four therapies or therapy combinations

expected to be ineffective, and three therapy combinations ex-

pected to be effective. Consistent with our model, treatment

with C, D, U, or D + U could not induce sustained tumor growth

inhibition in vitro or in vivo. In contrast, combining C with either D

and/or U completely suppressed tumor growth, with no adverse
568 Cancer Cell 29, 563–573, April 11, 2016
effects of the treatment observed (Figures

5A, 5B, and S6). In vivo treatment was

stopped after 47 days with no sign of

recurrence (Figure 5A). Removal of the

combination therapy resulted in rapid tu-

mor regrowth. This was concomitant

with reactivation of mTORC1/C2 signaling

pathways (Figure S1 and Table S1).

These results demonstrate that in

a therapeutically representative in vivo

model of GBM (Sarkaria et al., 2007),

long-term disease remission can be

induced and sustained if independent

signaling modes are identified and suffi-

ciently inhibited. Importantly, those inde-
pendent signaling modes were uniquely resolved via single-cell

proteomic analysis after only a couple of days of in vitro treat-

ment of EGFR+ cells separated from the untreated tumor. This

time frame is well before the emergence of observable therapeu-

tic resistance.

Analysis of the Functional Roles of the Signaling Modes
To develop deeper insight into the independent signaling modes

identified via single-cell analysis, we developed a partial least

squares (PLS) model to identify possible relationships between

the single-cell IHC data (Figure 5B) and tumor functional

behavior (Janes et al., 2005). PLS analysis is similar to PCA but

seeks to identify the principal components of one dataset (the

IHC analysis in Figure 5B) that can best predict a second dataset

(functional observations of the tumor). Quantitative IHC assays

of resected tumor tissues from all seven tested therapy combi-

nations and from the control were loaded into an explanatory

matrix (Figure 6A and Table S6). The dependent matrix was con-

structed from the transitory growth rate (TGR) at euthanasia and

a cell-cycle metric time constant t. The TGR is defined as the

average percentage of tumor volume change per day of the

last three time points measured before death. The cell-cycle

metric twas extracted by fitting the growth curveswith the expo-

nential growth function (Table S6; see Supplemental Experi-

mental Procedures for details).

The PLS model was developed using a subset of the data

and then validated through leave-one-out cross-validation and

predictions of the remaining measurements (Figure 6A). The



Figure 6. PLS Modeling Confirms the Presence of Independent

Signaling Modes

(A) Validation of the PLS modeling. The calibration phase of the model was

constructed by randomly choosing part of observations (orange part). The first

two PCs were used to perform a leave-one-out cross-validation to assess

the model stability. The established model was then employed to predict

the TGR at euthanasia and cell-cycle metric t for the remaining observations

(blue area).

(B) Correlations of the IHC-assayed proteins, as well as the functional obser-

vations, with PC1 and PC2. TGR strongly correlates with mTOR effectors

(mode 1: red), while p-Src and p-ERK (mode 2: blue) largely dominate PC2,

constituting an independent signaling mode that accounts for adaptive

response to mTOR kinase inhibitor.

(C) PLS modeling shows that for effective drug combinations projections are

qualitatively different from linear superposition of individual drugs, which in

turn implies that synergistic drug combinations do not simply act in a linearly

additive manner.

See also Table S6.
agreement between predictions and observations supports the

validity of the model. In Figure 6B we plot the correlations of the

assayed proteins, as well as the functional observations, with

the x axis and y axis as the first and second principal compo-

nents, respectively. The mTORC1/C2-associated proteins that

constitute mode 1 of Figure 4B lie principally along PC1, as

does the TGR. This means that the TGR can be estimated using

just the IHC measurements of the mTORC1/C2 proteins. Impor-

tantly, the TGRcorrelates with p-S6, p-4E-BP1, and p-Akt, which

are key factors regulating protein translation and cellular prolifer-

ation. The cell-cycle metric t is anti-correlated with the TGR and

the mTORC1/C2-associated proteins but also lies largely along

PC1. The application of effective drug combinations will slow tu-

mor growth, thus increasing the characteristic cell-division time.

Therefore, t is anti-correlated with the TGR. These relationships

indicate that mTORC1/C2 and their effectors are the primary

drivers that account for tumor growth. The functional proteins

p-ERKand p-Src constitute a second group largely aligned along
PC2, with only weak relationships to proteins in the first group.

This is consistent with a compensatory mechanism associated

with ERK signaling and Src signaling. This retrospective analysis

independently confirms the two signaling modes (Figure 4B)

resolved in the SCBC data analysis, and yields insights into their

respective functional roles (Figure 6B).

The PLS model allowed for a comparison of the therapy com-

binations, with each combination represented by its respective

IHC dataset (Table S1). Comparison of the projections of C

and U with C + U (Figure 6C) on the first two principal compo-

nents indicates that C + U projects qualitatively differently from

the linear superposition of single-input C and U. This indicates

a cooperative, non-linear influence of the two drugs on the tu-

mor. Note that the therapeutically ineffective D + U combination

is close to the linear superposition of D and U.

Generality of the Approach
A lesson from the GBM39 study is that, while the CC214-2 inhib-

itor targeted at mTORC1/C2 does repress mTOR signaling, the

cancer cells rapidly activate other signaling to promote drug

resistance. This activation may be detected after only a couple

of days of in vitro treatment of the tumor cells, via single-cell

analysis of protein signaling network coordination. This analysis,

in turn, points to combination therapies that stave off resistance

and thus provide for much more effective treatments. We

explored whether these findings have generality and potential

clinical utility. To this end, we investigated a low-passage cell

pcGBM2 derived from a patient GBM tumor, as well as tumor

cells from a patient’s recurrent-GBM biopsy, taken from the

operating room (Figures 7 and S7). In both cases, the cells

were treated in vitro for 2 days with a targeted inhibitor that

was chosen based upon existing knowledge of the tumor.

The pcGBM2 cells exhibited EGFR overexpression and thus

were treated with an EGFR inhibitor, lapatinib. While the drug

fully engaged the target, as assayed by changes in p-EGFR

levels (Figure 7A), there were new correlations, relative to con-

trol, that emerged between p-ERK1 and core mTOR effectors,

indicating a rapid cellular response to the drug through activa-

tion of ERK signaling (Figure S7A). This was detected in both

the levels of p-ERK and in its role in signaling coordination (Fig-

ure 7B). In fact, lapatinib might even promote tumor cell growth

through strengthening the interaction between PI3K/mTOR

signaling andMEK/ERK signaling (Mendoza et al., 2011). Several

core mTORC1/C2 effectors also increased their role in signaling

coordination (Figure 7B), even as the levels of these proteins

were repressed by the drug. Lapatinib also induced an increase

in glucose uptake (Figure S7B and S7C) (Wang et al., 2013).

This adaptive response indicated that inhibition of EGFR by

lapatinib at this dose would likely be an ineffective therapy. We

validated this prediction by assessing in vitro cell viability and

proliferation after 2 days of lapatinib treatment for both fresh

EGFR+ tumor cells and adapted EGFR+ tumor cells (2-day pre-

treatment with 2 mM lapatinib on fresh EGFR+ tumor cells was

used to establish the adapted EGFR+ tumor cells). Slight cell

death was observed in fresh tumor samples while an increase

in cellular proliferation was apparent in the adapted tumor sam-

ples, consistent with our predictions (Figure 7C). Thus, lapatinib

engaged its target, but the relatively short-term (96 hr) treatment

did not yield significant cell killing.
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Figure 7. Analysis of a Low-Passage

pcGBM2 Patient-Derived GBM Cell Line

(A) Single-cell data represented as one-dimen-

sional scatterplots for control-, lapatinib-, and XL-

765 + trametinib (XL-765+T)-treated samples. The

cells were stimulated with 100 ng/ml EGF at 37�C
for 10 min before on-chip cell lysis. The average

fluorescence intensity with SEM is overlaid for

each protein (black horizontal bars). Statistical

uniqueness is evaluated by two-tailed Mann-

Whitney test for pairwise comparison (*p < 0.05;

**p < 0.005; ***p < 0.0005; NS, not significant). The

downregulated p-EGFR levels shown in the inset

indicate that lapatinib has successfully engaged its

target (data are shown as mean ± SD).

(B) Correlation between key functional proteins and

the PC1 for control-, lapatinib-, and XL-765+T-

treated samples.

(C) The in vitro validation confirms that adapted tumor cells are more resistant to lapatinib treatment (data are shown as mean ± SD). Student’s t test is used to

evaluate the statistical significance (*p < 0.05).

(D) Cell viability test shows that XL-765+T can induce significant cell death after 60 hr of in vitro treatment.

See also Figure S7.
It is interesting to note that most pre-existing protein-protein

correlations associated with mTOR and its effectors were not

significantly altered by lapatinib (Figure 7B). This suggested

that a combination treatment of an mTOR inhibitor (XL-765, in

GBM clinical trials) (Cloughesy et al., 2013) with a MEK inhibitor

(trametinib, T) might be more effective. Consistent with this pre-

diction, treatment of fresh cells for 60 hr with this combination, at

a clinically relevant dose, did cause significant cell killing with

a reduction in the FHI (Figures 7D and S7D). Although the

p-ERK1 level in the surviving cells was higher than in the un-

treated cells, its influence over the signaling coordination was

significantly decreased following treatment (Figures 7B and

S7A). These data indicate that, for the EGFR+ pcGBM2 cells,

there are rapid adaptive responses to a targeted EGFR inhibitor,

and a quantitative analysis of those responses leads to a choice

of a therapy combination that yields improved cell killing and

represses the adaptive response, at least within the limits of

what was measured.

The freshly resected patient GBM biopsy was characterized

as having a phosphatase and tensin homolog (PTEN) G127E

loss-of-function mutation, a fibroblast growth factor receptor 3

(FGFR3) K650E gain-of-function mutation, and a tuberous scle-

rosis complex 1 (TSC1) loss-of-function splice site mutation. All

of these mutations can contribute to PI3K-Akt-mTOR pathway

activation (Fenton et al., 2012; Hu et al., 2014; Zhang et al.,

2003). We thus examined the effect of the PI3K/mTOR dual in-

hibitor XL-765. Single-cell analysis of a primary GBM biopsy is

challenging because of the limited quantity of tissue and the

smaller cell size (and thus lower protein levels). Thus, the freshly

resected GBM cells were analyzed using SCBCs with enhanced

antibody barcodes and a signal-amplification strategy. Analysis

of the control and treated cells (Figures S7E–S7H) revealed that

XL-765 treatment repressed all protein levels in the assayed

panel, but sharply activated signaling coordination through the

mTOR effector p-4E-BP1. Thus, from this limited dataset we

would anticipate that treatment of this tumor with XL-765 would

not be effective, as it fails to inhibit one of the key components of

mTORC1 signaling. Unfortunately, there was insufficient material
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from this tumor to permit additional tests with combination

therapies. However, these data show that an SCBC platform

can analyze a challenging GBM biopsy, revealing both drug-

repressed and drug-activated phosphoprotein signaling. This

type of analysis might constitute a valuable tool for clinicians to

predict more effective upfront treatments for cancer patients.

DISCUSSION

For a patient-derived GBM39 model of mTORki resistance, we

show that compensatory rewiring of signaling pathways during

the responsive state of the treatment acts as a dominant mech-

anism of resistance. These resistance-leading protein networks

are readily resolved using SCBCs through analysis of the differ-

ential responses in signaling coordination, but not through anal-

ysis of changes in corresponding average protein levels. Such

drug-activated networks can subsequently be co-targeted to

arrest tumor growth in vivo. The same compensatory protein

signaling is also detected within 3 days of in vitro drug treatment

of tumor cells resected from an untreated model.

Our approach has been applied in analyzing additional GBM

patient samples. We have observed adaptive responses in these

samples as reflected by the activation of specific signaling path-

ways upon in vitro or in vivo drug treatment with different tar-

geted inhibitors. However, the precious nature of the patient

samples precluded testing any combination therapy hypothe-

ses. Thus, as an additional demonstration of generality,

we applied the same SCBC technology and associated algo-

rithm toward investigating a dedifferentiation-based adaptive

response mechanism to patient-derived BRAFV600E mutant mel-

anomas treated with BRAF inhibitor (vemurafenib) or certain im-

munotherapies (data not shown). The resulting analysis of

changes in protein signaling coordination yielded a successful

prediction of a combination targeted therapy that arrested the

cellular dedifferentiation. This result demonstrates the applica-

bility of our approach in models of other cancers, but this

work, and work reported elsewhere (Bergers and Hanahan,

2008; Nathanson et al., 2014; Pisco et al., 2013), also highlights



the facile ability of many cancers to adapt to targeted inhibitors.

For the cases explored here, measurements of drug-activated

signaling networks can provide actionable insight into the adap-

tive response. This is particularly relevant for GBM tumors,

where the development of drug resistance is seen in virtually

every patient.

SCBCs have been compared against related single cell

methods in the recent literature (Heath et al., 2016). Advantages

of SCBCs for analysis of patient materials include the require-

ment of only a small amount of cells (�1,000), and that cells

are imaged prior to analysis. This combination is crucial for tumor

biopsy samples that usually contain non-cellular debris. The pro-

tein panels explored here were chosen using prior knowledge of

the nature of the tumors and tumor models under study. A more

comprehensive panel would permit an unbiased analysis of all

four of the GBM-associated signaling networks identified by

the TCGA working group (Brennan et al., 2013). The results indi-

cate that single-cell quantitative proteomics may provide useful

information for guiding the choice of targeted therapies and ther-

apy combinations. This hypothesis will need to be tested in a

clinical trial, and the work reported here motivates additional

pre-clinical work to set the stage for such a trial.

EXPERIMENTAL PROCEDURES

The experimentalmethods are briefly summarized here, with full details in Sup-

plemental Experimental Procedures.

Cell Lines, Primary Cells, and Reagents

GBM39 primary neurospheres were previously described by our group (Na-

thanson et al., 2014) and authenticated by luciferase reporter expression

before the beginning of the in vivo experiments. The pcGBM2 cell line derived

from a 15-year-old male patient bearing an EGFRvIII+ GBM tumor was a kind

gift from Dr. Michelle Monje (Stanford University) upon informed consent

following the Stanford University Ethical Committee regulations. The cells

were cultured in tumor sphere media. The patient samples were collected

from freshly resected brain tumors upon informed consent following the Uni-

versity of California, Los Angeles (UCLA) Ethical Committee regulations. The

resected tumors were blood cell depleted and dissociated into single-cell sus-

pension immediately after collection from the operating room.

Targeted Inhibitors

CC214-1 and CC214-2 were provided by Celgene (Mortensen et al.,

2013). Lapatinib ditosylate (GW-572016), trametinib (GSK1120212), XL-

765 (SAR245409), U0126, erlotinib, and dasatinib were obtained from

Selleckchem.

GBM39 Flank Xenografts

GBM39 flank xenografts were obtained in full compliance with the UCLA Divi-

sion of Laboratory Animal Medicine regulation and with the University of Cal-

ifornia, San Diego Institution of Animal Care and Use Committee regulations.

One million GBM39 cells were injected in the flank of each 4-week-old female

athymic mouse (Gini et al., 2013). Single drug treatments were as follows:

CC214-2 (oral gavage, 100 mg/kg, once every 2 days); dasatinib (oral gavage,

30 mg/kg, once every 2 days); U0126 (intraperitoneal injection, 25 mmol/kg,

once every 2 days). Mice were euthanized when tumors reached 15 mm diam-

eter. Combination drug treatments followed similar dosages and schedules.

MicroPET/CT Imaging

Four mice from each group were anesthetized with isoflurane (2% in 100% ox-

ygen), warmed, and injected with 20 mCi of 18F-FDG. After 60 min, mice were

placed in a chamber for both PET and computed tomography (CT) imaging.

Acquisition of PET images was performed for 10 min followed by 8 min of

CT acquisition.
IHC

IHC stains of paraffin-embedded GBM39 xenograft blocks were stained as

described by Mellinghoff et al. (2005). In the IHC quantification, the following

number of xenografts was considered for each group: n = 7 (control), n = 6

(CC214-2 responsive), n = 5 (CC214-2 resistant), n = 4 (dasatinib), n = 4

(U0126), n = 4 (U0126 plus dasatinib), n = 2 (each combination with

CC214-2), and n = 2 (each drug removed group).

Whole-Exome Sequencing Analysis

A range of 6–14 mg of gDNAs was extracted from the GBM39 xenografts

at control, responsive, and resistant stages using a QIAamp DNA Mini kit

(Qiagen). Whole-exome DNA was captured from total genomic DNA using

the SeqCap EZ System from NimbleGen according to the manufacturer’s

instructions. Libraries were then sequenced with an average coverage

for each tumor R1003 on the NextSeq 500 platform from Illumina, using

100-bp pair-ended reads.

SNP and Gene Expression Analyses

Two controls and two CC214-2-resistant PDXs were used for DNA extractions,

using theQiagenQIAampDNAMini kit protocol; 500ngofDNA fromcontrol and

resistant sampleswere analyzed by theSNP6.0 Array (200 kb filter, 50markers;

Affymetrix) at theClinicalMicroarrayCore,UCLA.Gene expression analysiswas

performed at the same core by theAffymetrix U133plus2.0 array using 200 ng of

RNA extracted from the same two controls and two CC214-2-resistant xeno-

grafts used in the SNP screening (Qiagen micro RNA extraction kit).

Microchip Fabrication

SCBCs were fabricated as previously described (Wei et al., 2013). All DNA and

antibody reagents have been checked for cross-reactivity and are listed in

Supplemental Experimental Procedure.

Tumor Cell Sorting and Preparation for the SCBC Test

Single-cell suspensions were prepared from xenograft tumors or the patient

samples, using procedures described in Supplemental Experimental Proce-

dures. For the xenografts, cell sorting was carried out with the Human EGFR

PlusCellect Kit from R&D systems (catalog #PLS1095) following the manufac-

turer’s protocol. For both types of tumor samples, cells were plated on a lam-

inin-coated Petri dish and incubated for 2 hr. Dead cells were removed via

aspiration and the live cells were subsequently transferred into the SCBCs.

Cell viability was >95% after employing the surface-plating step.

Protocols of Single-Cell Proteomic Assay

The antibody arrays within the SCBC were prepared immediately prior to use.

Cells were randomly loaded into the 310microchambers of the SCBC. Eachmi-

crochamber has an assay component and a separate reservoir of lysis buffer,

and was photographed after cell loading. The SCBC was then cooled on ice

for cell lysis. Following a 2-hr protein-capture period at room temperature, the

microchambers were flushed and the antibody arrays were developed using a

cocktail of detection antibodies. The developed antibody barcode arrays were

digitized by a Genepix scanner. Each array was matched with the micrograph

of that array for preparing a table that contains the microchamber address, the

numbersof cells, and themeasuredfluorescence levelsof eachassayedprotein.

In Vitro Assays of GBM39 Tumor Cells

GBM39 neurospheres were treated with therapy or therapy combinations for

24 hr, followed by immunoblotting of selected proteins (Figure S6A). EGFR+

cells from GBM39 neurospheres that were treated for 4 days with the same

therapies and therapy combinations were surface captured using the DEAL

technique (Bailey et al., 2007), followed by trypan blue staining and counting

the numbers of live and dead cells (Figure S6B). In parallel, all cells, regardless

of EGFR expression, were cultured in a 12-well plate under standard condi-

tions (Figure S6C). These cells were treated with the various therapies and

therapy combinations for 3 days, followed by trypan blue staining and counting

the numbers of live and dead cells (Figure S6D).

In Vitro Assay of the pcGBM2 Cell Line

pcGBM2 cells were grown in neurosphere culture. Neurospheres were disso-

ciated, and EGFR+ cells sorted using magnetic bead-based techniques
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following the protocols described above. One set of cells was treated with

lapatinib (2 mM) to establish the adapted cells. The other set was treated

with DMSO for 2 days. The culture medium was flushed, and both sets of cells

were treated for 2 days with 2 mM lapatinib. Cell viability and proliferation were

measured at each stage.

RIMChip 18F-FDG Assays

RIMChip 18F-FDG assays were carried out as previously described (Dooraghi

et al., 2013; Wang et al., 2013). EGFR+ pcGBM2 cells were treated with lapa-

tinib for 0.5, 1, 1.5, and 2 hr and then loaded to the RIMChip (Figures S7B and

S7C). The level of the glucose uptake was normalized by cell number to yield a

quantitative comparison for all time points.

Mathematical Analysis and Statistical Methods

All p values for group comparisons were evaluated using one-way ANOVA and

Student’s t test with Bonferroni correction unless otherwise noted. PCA, AHC,

and PLS analyses were performedwith XLSTAT (Addinsoft) (see Supplemental

Experimental Procedures for details).

ACCESSION NUMBERS

Microarray gene expression andSNPanalysesdata havebeendeposited in the

Gene Expression Omnibus. The accession numbers are GEO: GSE63387 and

GSE53042. WES analysis data have been deposited in the Sequence Read

Archive, and the accession number is SRP062496.
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