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Highlights 10 

 Inhibition of NOD1/NF-κB by ML130 decreases IκBα phosphorylation in crude 11 

lipopolysaccharide (cLPS)-stimulated bovine neutrophils. 12 

 Blocking the NOD1/NF-κB pathway inhibits bovine neutrophil migration and phagocytic 13 

killing capacity upon cLPS stimulation. 14 

 NOD1/NF-κB pathway inhibition promotes neutrophil death in response to cLPS 15 

stimulation. 16 

 Inhibition of the NOD1/NF-κB pathway depresses the functional responses of bovine 17 

neutrophils to cLPS. 18 

 Reduced neutrophil NOD1 expression during the periparturient period might play a role in 19 

the pathogenesis of coliform mastitis in cattle. 20 

Abstract 21 

Cytosolic nucleotide oligomerisation domain (NOD)-like receptors play an important role in 22 

host defence against infection. Reduced NOD1 expression has been observed in dysfunctional 23 

neutrophils derived from periparturient cattle known to be most susceptible to coliform mastitis. 24 

However, whether impairment of NOD1 suppresses the immune responses of bovine neutrophils 25 

during bacterial infections remains unknown. Crude (phenol extracted) lipopolysaccharide (cLPS), 26 

which often contains other immunostimulatory molecules, including NOD1 agonist, is known to 27 

induce almost the whole bacterial response. This study was conducted to explore the role of 28 

NOD1/nuclear factor (NF)-κB pathway in the cytokine and functional responses of bovine 29 

neutrophils challenged with Escherichia coli-derived cLPS. Freshly isolated blood neutrophils from 30 

healthy heifers were pre-incubated for 2 h with ML130, a selective inhibitor of NOD1/NF-κB 31 

pathway. Cells were then exposed to cLPS for additional 4 h. Inhibition of the NOD1/NF-κB 32 
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pathway resulted in a decrease in cLPS-induced phosphorylation of the inhibitor of NF-κBα (IκBα) 33 

in neutrophils. Impairment of the NOD1/NF-κB pathway also down-regulated mRNA levels of 34 

pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, chemokines 35 

IL-8 and C-X-C motif ligand 2 (CXCL2), and adhesion molecules CD11b and CD62L, in 36 

cLPS-challenged cells. Functional analyses showed that blocking the NOD1/NF-κB pathway 37 

inhibited neutrophil migration and phagocytic killing capacity, and promoted neutrophil death upon 38 

cLPS stimulation. The data presented here demonstrate that activation of NOD1/NF-κB pathway 39 

contributes to the functional responses of neutrophils to cLPS. 40 

 41 

 Keywords: Bovine; Cytosolic nucleotide oligomerisation domain 1; Immune response; Neutrophils  42 
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Introduction 43 

Mastitis is a common and costly disease affecting dairy cattle worldwide. Cows are most 44 

susceptible to intramammary infections caused by environmental bacteria, particularly Escherichia 45 

coli, shortly after calving and during early lactation (Stevens et al., 2012). In the mammary gland, 46 

an effective defence against invading pathogens depends on the rapid influx of neutrophils from the 47 

circulation and subsequent phagocytosis and killing of bacteria (Paape et al., 2002). Neutrophil 48 

dysfunction may contribute to the increased incidence and severity of coliform mastitis during 49 

periparturient period, although the mechanisms underlying neutrophil dysfunction have not been 50 

elucidated (Burvenich et al., 2003; Diez-Fraile et al., 2003a; Stevens et al., 2012; Zoldan et al., 51 

2014). 52 

 53 

The initial host defence against bacterial infections is executed essentially by a number of 54 

pattern recognition receptors (PRRs) involving the membrane-associated Toll-like receptors (TLRs) 55 

and cytosolic nucleotide oligomerisation domain (NOD)-like receptors (NLRs) (Mogensen, 2009). 56 

The two best-characterised members of the NLR family are NOD1 and NOD2, which recognise 57 

distinct sub-structures from the synthesis and/or degradation of bacterial peptidoglycan (PGN). 58 

While NOD1 senses γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP) derived primarily from 59 

Gram negative bacilli (Chamaillard et al., 2003), NOD2 is activated by muramyl dipeptide (MDP), 60 

a conserved structure common to all bacteria (Girardin et al., 2003). Similar to TLRs, activation of 61 

NODs initiates an intracellular cascade of events culminating in nuclear factor (NF)-κB activation 62 

via the phosphorylation of inhibitor of NF-κBα (IκBα) (Kawai and Akira, 2009). Although NODs 63 

act independently of TLRs, there is evidence that NODs are essential for efficient bacterial 64 

clearance and mouse survival when TLR signalling is compromised (Kim et al., 2008). More 65 
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specifically, NOD1 has been shown to be necessary for the phagocytic bacterial killing by mouse 66 

neutrophils (Clarke et al., 2010). 67 

 68 

Lipopolysaccharide (LPS) is an abundant glycolipid in the outer membrane of Gram 69 

negative bacteria and can induce powerful inflammatory responses through the TLR4 complex 70 

during bacterial infection. Impairment of the neutrophil TLR4 pathway may be involved in the 71 

pathogenesis of periparturient E. coli mastitis (De Schepper et al., 2008). However, no conclusive 72 

data are available for supporting this assumption, although decreased expression of some genes 73 

downstream of TLR4 in neutrophils derived from early lactating cows has been observed (Stevens 74 

et al., 2011). In addition to TLR4, bovine neutrophils express NOD1 and NOD2 (Worku and Morris, 75 

2009; Tan et al., 2012). 76 

 77 

Recently, we found that the expression of NOD1, but not NOD2, in blood neutrophils of 78 

periparturient cows was markedly reduced, resulting in diminished bacterial killing activity upon 79 

NOD1 agonist stimulation (Tan et al., 2012). However, as in infection, multiple PRRs may be 80 

simultaneously activated, but whether a down-regulation of NOD1 is sufficient to suppress the 81 

responses of bovine neutrophils to infection remains unknown. 82 

 83 

Crude (phenol extract) LPS (cLPS) is able to mimic whole bacteria and accounts for almost 84 

the entire bacterial response (Huang et al., 2001); cLPS is commonly used in vivo and in vitro to 85 

study the host innate immune response during coliform mastitis (Klesius et al., 1984; Sohn et al., 86 

2007a, b; Revelo and Waldron, 2012). Notably, cLPS often contains other immunostimulatory 87 

molecules, such as nucleic acids, capsular polysaccharides and PGN fragments (Tirsoaga et al., 88 
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2007), and can induce NOD1-dependent NF-κB activation (Inohara et al., 2001; Chamaillard et al., 89 

2003). Thus, cLPS-activated neutrophils could provide a good model to investigate the contribution 90 

of NOD1 in the responses of neutrophils to whole E. coli. The present study was conducted to 91 

investigate the effect of NOD1/NF-κB inhibition on cytokine responses, migration, phagocytic 92 

killing capacity and survival of neutrophils challenged by E. coli-derived cLPS. 93 

 94 

Materials and methods 95 

Blood collection 96 

This study was carried out using peripheral blood samples from Chinese Holstein heifers 97 

aged 8-9 months. Heifers were fed grass and corn silage and hay. Peripheral blood was collected 98 

from the tail veins into plastic tubes containing 10% by volume of acid citrate dextrose (ACD) 99 

anticoagulant. All heifers appeared to be clinically healthy on the day of sampling. The study was 100 

approved by the Ethical Committee for Animal Welfare of Zhejiang University (approval number 101 

120359; date of approval 10 November 2012) 102 

 103 

Preparation of cells 104 

Neutrophils were isolated as previously described (Tan et al., 2012). Whole blood was 105 

centrifuged at 1000 g for 20 min and the plasma, buffy coat and upper layer of packed red blood 106 

cells were removed. After hypotonic lysis of erythrocytes, the sample was centrifuged and the cell 107 

pellet was washed twice in cold phosphate buffered saline (PBS, pH 7.4). Viability of isolated 108 

neutrophils, as determined by trypan blue exclusion, was never <95%. Cells were suspended in 109 

RPMI 1640 containing 10% foetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL 110 

streptomycin. 111 
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 112 

Cell treatment 113 

Neutrophils were placed onto 24-well plates at 2 x 10
7
/well. The cells were incubated with 114 

or without 30 μmol/L ML130 (Selleckchem), a potent and selective inhibitor of NOD1-induced 115 

NF-κB activation (Khan et al., 2011), for 2 h at 37 °C, and then exposed to 100 ng/mL cLPS (E. 116 

coli serotype 0111:B4, phenol extract, Sigma-Aldrich) (Sohn et al., 2007b) or 10 μg/mL NOD1 117 

agonist C12-iE-DAP (InvivoGen) (Tan et al., 2012), or were left non-stimulated at 37 °C for a 118 

further 4 h. In our preliminary studies, we treated neutrophils with 10, 30 or 90 µmol/L ML130 for 119 

2 h and we determined that this molecule alone did not have a significant effect on the 120 

phosphorylation of inhibitor of NF-κBα (IκBα) or neutrophil phagocytosis (data not shown); 121 

therefore, we used 30 µmol/L ML130 to inhibit NOD1/NF-κB pathway in activated neutrophils. 122 

 123 

Western blot analysis 124 

Protein expression was detected in whole cell lysates. Cells were lysed using ice cold 125 

radioimmunoprecipitaion assay (RIPA) buffer. The total protein concentration of the lysates was 126 

determined using the bicinchoninic acid (BCA) protein assay (Beyotime Institute of Biotechnology). 127 

Samples were separated at equal protein concentrations (50 μg) by sodium dodecyl 128 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on 12% gels and transferred to 129 

nitrocellulose membranes. Membranes were blocked with bovine serum albumin (BSA) and 130 

incubated at 4 °C overnight with a polyclonal antibody against phosphor (p)-IκBα (1:1000, Ser 131 

32/36, Santa Cruz Biotech), NOD1 (1:500, E-14, Santa Cruz Biotech) or a monoclonal antibody 132 

against β-actin (1:500, AC-74, Byotime Biotechnology, China). The primary antibody was detected 133 

using an appropriate horseradish peroxidase-conjugated secondary antibody (Byotime 134 
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Biotechnology, China) and signals were visualised using an electrochemiluminescent (ECL) 135 

detection system (Roche Diagnostic). Densitometry was performed using Quantity One software 136 

(Bio-Rad Laboratories). 137 

 138 

RNA preparation, cDNA synthesis, reference gene selection and quantitative real-time PCR analysis 139 

Total RNA extraction was performed by adding 1 mL of TRIzol (Takara) to each well. The 140 

cDNA was reverse transcribed with 0.5 μg RNA using the PrimeScript RT reagent Kit with genomic 141 

DNA (gDNA) Eraser (Takara), which includes a gDNA elimination pre-treatment of RNA sample. 142 

Intron-spanning oligonucleotide primers for quantitative real-time PCR (qPCR) were designed 143 

using the Primer-BLAST programme
1
 (see Appendix: Supplementary Table S1). 144 

 145 

Four reference genes (ACTIN, 18S rRNA, RLP19 and YWHAZ) for normalisation of qPCR 146 

measurements were selected from seven candidate genes on the basis of their stable expression 147 

profiles across treatments, as recommended by the geNorm analysis using the Biogazelle qbase+ 148 

software (Biogazelle NV) (see Appendix: Supplementary Fig. S1). Amplification efficiencies were 149 

determined for all qPCR assays by calculating a five-point calibration curve (10-fold serial dilution) 150 

from pooled cDNA using the equation E = 10
[-1/slope]

-1. For all the primer sets, PCR efficiencies 151 

ranged between 92 (CXCL2) and 114% (CD62L) (see Appendix: Supplementary Table S1). 152 

 153 

The resulting cDNA (2 μL, 1:20 diluted) was applied to qPCR analyses (20 μL final volume) 154 

with 0.3 μmol/L gene-specific primers (see Appendix: Supplementary Table S1) in 10 μL SYBR 155 

                                                             
1
 See: http://www.ncbi.nlm.nih.gov/tools/primer-blast. 
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green Master Rox (Roche Diagnostic) and amplified with the standard temperature profile (10 min 156 

at 95 °C, 40 cycles at 15 s for 95 °C, then 45 s at 58-60 °C) in an ABI Prism 7500 Sequence 157 

Detection System (Applied Biosystems). A negative control using pure water instead of cDNA was 158 

used to exclude contamination. An additional step involving the generation of a melt curve 159 

(60-95 °C) was performed to ensure that the correct product was amplified and quantified. The 160 

relative expression of target genes was calculated by the Pfaffl method (2001) using the geometric 161 

mean of the cycle threshold (Ct) values of the four selected reference genes for normalisation. Data 162 

reported are the fold change in the expression of the target genes in the treated samples relative to 163 

the controls. 164 

 165 

Migration assay 166 

Cell migratory ability was assessed using the 24-well Transwell plate system (Corning 167 

Costa). The lower well was separated from the upper well by a polycarbonate filter with an 8 µm 168 

pore diameter. Neutrophils (3 x 10
4
) in 150 µL serum-free medium were placed into the upper well, 169 

then 0.5 mL of RPMI 1640 containing 10% FBS was added into the lower well. After incubation for 170 

4 h at 37 °C, the cells that had migrated through the filter into the lower well were counted using a 171 

haemocytometer. The experiments were performed in triplicate. 172 

 173 

Detection of apoptosis 174 

Apoptosis was determined using the Annexin V-fluorescein isothiocyanate 175 

(FITC)/propidium iodide (PI) kit (Beyotime Institute of Biotechnology), which distinguishes 176 

apoptotic cells (Annexin V-FITC positive, PI negative) from necrotic cells (Annexin V-FITC 177 

positive, PI positive). Following treatments, cells were collected and washed with PBS, then 1 x 10
5
 178 
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cells were incubated with 200 μL Annexin V-FITC buffer for 20 min at room temperature, followed 179 

by 10 μL of PI solution for another 10 min. The samples were subsequently analysed using a 180 

FACScan flow cytometer (Becton Dickinson). 181 

 182 

Determination of phagocytosis and phagocytosis-dependent oxidative burst 183 

Fluorescent microspheres (φ=1.81 μm, Spherotech) were used to measure phagocytosis, 184 

while dihydrorhodamine 123 (DHR123, Sigma-Aldrich) was used to quantify oxidative burst (Tan 185 

et al., 2012). ACD anticoagulated blood (100 μL) was pre-treated with or without ML130 (30 186 

μmol/L) for 2 h at 37 °C. After incubation in the presence or absence of 100 ng/mL cLPS for 187 

another 2 h, DHR 123 was introduced into the samples and the mixture was incubated for 15 min at 188 

37 °C. Samples were then incubated with opsonised fluorescent microspheres for 30 min at 37 °C. 189 

The phagocytic activity and reactive oxygen species (ROS) generation was monitored on a 190 

FACScan flow cytometer (Beckman Coulter). Histograms were used to plot the percentage of 191 

fluorescence positive cells and mean fluorescence intensity (MFI, correlated with the mean number 192 

of beads ingested by single phagocytes), and the mean oxidative burst activity of single phagocytes 193 

(change from dihydrorhodamine 123 to rhodamine 123). An index of overall phagocytic or 194 

oxidative burst activity was calculated by multiplying the percentage of responding cells by the 195 

corresponding MFI: Index = (% positive cells) x (log MFI)/100 (Tan et al., 2012). 196 

 197 

Statistical analysis 198 

Data are reported as means ± standard deviations (SDs). Differences in gene expression 199 

were compared using the non-parametric Mann-Whitney U test. The statistical significance of cell 200 

apoptosis was determined using Kruskal-Wallis test, since the data were not normally distributed. 201 
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Other data were analysed using one-way analysis of variance (ANOVA) followed by the Bonferroni 202 

post-hoc test. The software used was SPSS 16.0 for Windows. Differences were considered to be 203 

significant at P < 0.05. 204 

 205 

Results 206 

To determine whether ML130 inhibits NOD1-activated NF-κB pathway in neutrophils, we 207 

treated neutrophils with ML130 for 2 h prior to addition of the NOD1 agonist iE-DAP. iE-DAP 208 

induced a significant increase in IκBα phosphorylation, which was inhibited by ML130. cLPS 209 

stimulated IκBα phosphorylation as well (P <0.001 vs. basal). However, the cLPS-induced 210 

phosphorylation of IκBα was significantly blocked by ML130 (Fig. 1). 211 

 212 

The effect of ML130 on NOD1expression in cLPS-stimulated neutrophils was also 213 

determined. Exposure of bovine neutrophils to cLPS resulted in a significant elevation of NOD1 214 

protein (P < 0.05 vs. basal). ML130 showed no effect on NOD1 expression under basal conditions 215 

(P = 0.098; Fig. 2). 216 

 217 

cLPS stimulation resulted in an increase in mRNA levels of interleukin (IL)-1β, tumour 218 

necrosis factor (TNF)-α, IL-8, C-X-C motif ligand 2 (CXCL2), CD62L and CD11b relative to the 219 

untreated controls, although mRNA levels between individuals were highly variable. ML130 220 

treatment had no significant effect on these mRNA levels in cLPS-challenged cells (Fig. 3). 221 

 222 

We further investigated the role of the NOD1/pathway in the migration of cLPS-challenged 223 

neutrophils. As shown in Fig. 4, cLPS stimulation enhanced neutrophil migration relative to the 224 
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basal level. However, this migration-inducing effect of cLPS was significantly inhibited by ML130. 225 

 226 

Apoptosis of neutrophils treated with cLPS in the presence or absence of NOD1/NF-κB 227 

inhibitor is shown in Fig. 5. Exposure to cLPS caused a moderate decrease in neutrophil death (P 228 

=0.052). However, inhibition of NOD1 signalling significantly promoted neutrophil apoptosis upon 229 

cLPS stimulation. 230 

 231 

Bovine neutrophils displayed enhanced phagocytic capacity and phagocytosis-dependent 232 

ROS generation following cLPS stimulation (Fig. 6). cLPS-challenged cells exhibited attenuated 233 

phagocytosis as well as oxidative burst when NOD1/NF-κB pathway was inhibited. 234 

 235 

Discussion 236 

We previously demonstrated that dysfunctional neutrophils derived from periparturient dairy 237 

cows had reduced NOD1 expression (Tan et al., 2012). In the present study, we investigated 238 

whether impairment of NOD1/NF-κB is sufficient to influence the responses of bovine neutrophils 239 

to cLPS. Inhibition of the NOD1/NF-κB pathway attenuated cLPS-induced cell survival, migration, 240 

phagocytic bacterial killing and, to some extent, the gene transcription of pro-inflammatory 241 

mediators. 242 

 243 

ML130 is a potent and selective inhibitor of NOD1-dependent NF-κB activation (Khan et al., 244 

2011). In the present study, we first verified the inhibitory effect of ML130 on the NOD1/NF-κB 245 

pathway by using cells exposed to the NOD1 agonist iE-DAP. The presence of NOD1 agonists in 246 

cLPS were then confirmed in that cLPS-induced NF-κB activation, as reflected by increased IκBα 247 
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phosphorylation, was significantly inhibited by ML130. We have tested the effects of several doses 248 

of iE-DAP on neutrophil activation in terms of IκBα phosphorylation and phagocytic function and it 249 

appears that high doses of this molecule are required to activate neutrophils (data not shown). The 250 

mechanisms by which neutrophils become sensitive to low amounts of NOD1 agonists in cLPS 251 

need to be further investigated. However, a synergistic interplay between TLR4 and NOD1 might 252 

contribute to this process. Synergistic interactions between TLRs and NODs in the induction of 253 

innate immune responses have been reported (Fritz et al., 2005; van Heel et al., 2005). 254 

 255 

cLPS-challenged neutrophils also had increased NOD1 expression, suggesting that 256 

up-regulation of NOD1 may be part of an effective innate response of neutrophils against bacterial 257 

infections. Previous studies have demonstrated a key role of NF-κB in controlling NOD gene 258 

expression in other cells (Takahashi et al., 2006; Muhlbauer et al., 2008). Consistent with these 259 

findings, we found that inhibition of NOD1-dependent NF-κB activation led to a modest decrease in 260 

NOD1 expression in cLPS-challenged neutrophils, indicating that impairment of the NOD1/NF-κB 261 

pathway might limit the expression of neutrophil NOD1 during infection. 262 

 263 

Activated neutrophils are able to synthesise a broad range of pro-inflammatory mediators 264 

through the NF-κB pathway, thereby regulating both innate and acquired immunity (Cloutier et al., 265 

2007). In agreement with some previous studies (Xing and Remick, 2003; Sohn et al., 2007b), 266 

bovine neutrophils stimulated by cLPS showed enhanced NF-κB activation, concomitant with 267 

up-regulated IL-1β, TNF-α, IL-8 and CXCL2 mRNA expression. In addition, the expression of 268 

CD62L and CD11b, which are involved in neutrophil diapedesis by mediating the adherence of 269 

circulating neutrophils to microvascular endothelium (Diez-Fraile et al, 2003b; 2004), was 270 
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up-regulated by cLPS as well. 271 

 272 

Recent literature suggests that NOD1-dependent activation of NF-κB contributes 273 

significantly to cLPS-induced production of pro-inflammatory cytokines in cells possessing TLR4 274 

(Zheng et al., 2012). There is also evidence that NOD1 signalling regulates CD11b expression on 275 

mouse neutrophils (Dharancy et al., 2010). Induction of certain proteins in neutrophils is often 276 

preceded by an increased accumulation of the related mRNA transcripts (Tecchio et al., 2014). 277 

Further studies are needed to determine whether impairment of the NOD1/NF-κB pathway is 278 

sufficient to diminish the cLPS-induced protein production of these pro-inflammatory molecules. 279 

 280 

Once neutrophils have left the circulation, they migrate towards infected tissue through 281 

chemotaxis. Neutrophils from NOD1-defective mice have reduced chemotactic migration capacity 282 

(Clarke et al., 2010; Dharancy et al., 2010). In the present study, we found that inhibition of the 283 

NOD1-dependent NF-κB pathway was sufficient to inhibit cLPS-stimulated neutrophil chemotactic 284 

migration (we used serum as chemoattractant), even though TLR4 ligands constitute a major 285 

component of unpurified LPS. Activation of TLRs, including TLR2 and TLR4, leads to reduced 286 

chemotaxis by human neutrophils (Hayashi et al., 2003). Aomatsu et al. (2008) provided further 287 

evidence that a TLR4 agonist induces a random rather than chemotactic migration of human 288 

neutrophils. Tourneur et al. (2013) demonstrated that NOD1 plays a critical role for neutrophils to 289 

migrate into tissues infected with E. coli. Given that impaired neutrophil chemotaxis is involved in 290 

the pathogenesis of periparturient mastitis (Cai et al., 1994), our results allow us to argue that 291 

reduced neutrophil NOD1 expression during the periparturient period might predispose cows to 292 

coliform mastitis. 293 
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 294 

LPS delays neutrophil apoptosis by activation of various pathways, including NF-κB 295 

(Francois et al., 2005; Dick et al., 2009). In contrast, NOD1 activation either induces or inhibits 296 

apoptosis, depending on cell types (Chen et al., 2008; Shigeoka et al., 2010; Fernandez-Velasco et 297 

al., 2012). Accelerated apoptosis of neutrophils has been reported in postpartum cows with naturally 298 

occurring acute coliform mastitis (Tharwat, 2011). Supporting a previous study with human 299 

neutrophils (Sabroe et al., 2003), we found that cLPS induced a modest decrease of apoptosis in 300 

bovine neutrophils. Conversely, inhibition of NOD1-mediated NF-κB activation caused a 301 

significant increase in cell death in cLPS-challenged cells. Extending the lifespan of neutrophils at 302 

the site of infection is critical for efficient elimination of invading pathogens (Nathan, 2006; Savill 303 

et al., 2002). Therefore, impairment of the NOD1/NF-κB pathway might partly account for the 304 

increased susceptibility of periparturient cows to coliform mastitis by reducing neutrophil survival 305 

in the early stages of infection. 306 

 307 

Reduced neutrophil phagocytosis and impaired oxidative burst have been implicated in the 308 

pathogenesis of periparturient mastitis (Vangroenweghe et al., 2005). We have previously reported 309 

that NOD1 activation induces phagocytosis and enhanced oxidative burst in bovine neutrophils 310 

(Tan et al., 2012). It has also been documented that stimulation of individual TLRs on human 311 

neutrophils results in an increased phagocytic response (Hayashi et al., 2003). In the present study, 312 

impairment of the NOD1/NF-κB pathway led to a significant reduction in the phagocytic activity of 313 

cLPS-challenged neutrophils, accompanied by reduced phagocytosis-associated ROS generation. 314 

These results indicate that NOD1-dependent NF-κB activation may be required for bovine 315 

neutrophils to engulf and kill E. coli. Mouse neutrophils with depressed NOD1 expression had 316 
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significantly lower ex vivo capacity to phagocytise and kill E. coli (Tourneur et al., 2013). NOD1
−/−

 317 

neutrophils form mice had a lower capacity for bacterial phagocytic killing than wild-type 318 

neutrophils (Clark et al., 2010; Dharancy et al., 2010). 319 

 320 

Primary neutrophils are terminally differentiated and short lived cells and thus are not 321 

amenable to genetic manipulation. We therefore used an inhibitor ML130 rather than gene silencing 322 

to study the function of NOD1. Under this circumstance, undesirable off-target effects produced by 323 

the inhibitor used might not be excluded. Moreover, activation of other inflammatory pathways 324 

downstream of NOD1, for example, the mitogen-activated protein kinase (MAPK) pathway 325 

(Strober et al., 2006), might counteract the effects generated by NOD1/NF-κB pathway impairment. 326 

For a better understanding of the role of NOD1 in cLPS-induced neutrophil responses, further 327 

studies should be carried out using in vitro-derived neutrophils that are capable of gene 328 

modification (McDonald et al., 2011). Since cLPS cannot fully represent the E. coli bacteria 329 

themselves in terms of the proportion of NOD1 to TLR4 agonists, further studies are warranted to 330 

determine whether NOD1 signalling impairment suppresses the immune responses of neutrophils to 331 

live E. coli. 332 

 333 

Conclusions 334 

This study demonstrates that inhibition of the NOD1/NF-κB pathway depresses the 335 

functional responses of neutrophils to cLPS. The results raise the possibility that reduced neutrophil 336 

NOD1 expression may be involved in the pathogenesis of coliform mastitis in periparturient dairy 337 

cows. 338 

 339 
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Figure legends 555 

 556 

Fig. 1. Phosphorylation of inhibitor of NF-κBα (IκBα). (A) Isolated neutrophils were incubated with 557 

or without ML130 (30 μmol/L) for 2 h, followed by exposure to crude lipopolysaccharide (cLPS) 558 

(100 ng/mL) or NOD1 agonist iE-DAP (10 μg/mL) for a further 4 h. Protein lysates were made 559 

from the cells and then probed by Western blot analysis using anti-phospho (p)-IκBα. (B) 560 

Densitometry was performed on pIκBα/β-actin Western blots from 3-4 replicates using Quantity 561 

One software. Data (mean ± standard deviation, SD) are presented as fold change relative to the 562 

basal level (control cells). Data are from individual heifers (n = 3). ***P <0.001 vs. basal ; 
### 

P 563 

<0.001 between groups. 564 

 565 

Fig. 2. Effect of ML130 on crude lipopolysaccharide (cLPS)-induced NOD1 expression. (A) 566 

Western blot analysis showing the protein levels of NOD1in different treatments. (B) Protein was 567 

quantified using the densitometry function of Quantity One software, normalised to β-actin within 568 

the same sample and expressed as fold change relative to the basal level (control cells). All Western 569 

blots were generated in three replicates. Data (mean ± standard deviation, SD) are from individual 570 

heifers (n = 3). *P <0.05 vs. basal; 
#
P <0.05 vs. ML130. 571 

 572 

Fig. 3. Effect of inhibition of NOD1-mediated NF-κB activation on the expression of (A) 573 

pro-inflammatory cytokines, (B) chemokines and (C) adhesion molecules in crude 574 

lipopolysaccharide (cLPS)-challenged neutrophils. RNA was quantified using SYBR Green-based 575 

quantitative PCR (qPCR) and data were analysed using the Pfaffl method. Results are expressed as 576 

fold change relative to the basal level (control cells). Data are mean ± standard deviation (SD, n = 6) 577 
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from one experiment representative of three. 578 

 579 

Fig. 4. Crude lipopolysaccharide (cLPS)-induced neutrophil migration involves NOD1-dependent 580 

NF-κB activation. Cell migration was measured using the Transwell system. The data presented are 581 

mean ± standard deviation (SD) of six heifers. * P <0.05 and ***P <0.001 vs. basal; 
# #

P <0.01 vs. 582 

cLPS. 583 

 584 

Fig. 5. Impairment of intracellular NOD1/NF-κB pathway promotes cell death in crude 585 

lipopolysaccharide (cLPS)-challenged neutrophils. Apoptosis was analysed using fluorescein 586 

isothiocyanate (FITC)-labelled annexin-V in combination with propidium iodide (PI) staining. (A) 587 

Representative fluorescein activated cell sorting (FACS) plot of apoptotic cells (lower right). (B) 588 

Bar chart corresponds to the percentage of FITC-annexin-V-labelled cells (mean ± standard 589 

deviation, SD, of six heifers). **P <0.01 vs. cLPS. 590 

 591 

Fig. 6. Phagocytosis and oxidative burst activity of neutrophils in whole blood. (A) Representative 592 

fluorescent activated cell sorting (FACS) plot showing flow cytometric detection of phagocytosis by 593 

neutrophils treated with cLPS (grey fill), ML130 + cLPS (black line) or left untreated (grey line). 594 

(B) Flow cytometry histogram showing rhodamine 123 fluorescence corresponding to oxidative 595 

burst activity. Neutrophil phagocytosis and oxidative burst are indicated by phagocytic index (C) 596 

and oxidative burst index (D). Data are given as mean ± standard deviation (SD) of five heifers. 597 

***P <0.001 vs. basal (control cells); 
# 

P <0.05 and 
##

P <0.01 vs. cLPS. 598 

  599 
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