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ABSTRACT
In this article, we have developed novel data visualization tools

and a Theta comparative cell scoring (TCCS) method, which

supports high-throughput in vitro pharmacogenomic studies

across diverse cellular phenotypes measured by multiparametric

high-content analysis. The TCCS method provides a univariate

descriptor of divergent compound-induced phenotypic responses

between distinct cell types, which can be used for correlation

with genetic, epigenetic, and proteomic datasets to support

the identification of biomarkers and further elucidate drug

mechanism-of-action. Application of these methods to com-

pound profiling across high-content assays incorporating well-

characterized cells representing known molecular subtypes of

disease supports the development of personalized healthcare

strategies without prior knowledge of a drug target. We present

proof-of-principle data quantifying distinct phenotypic response

between eight breast cancer cells representing four disease

subclasses. Application of the TCCS method together with new

advances in next-generation sequencing, induced pluripotent

stem cell technology, gene editing, and high-content phenotypic

screening are well placed to advance the identification of pre-

dictive biomarkers and personalized medicine approaches across

a broader range of disease types and therapeutic classes.

INTRODUCTION

T
he treatment of complex disease in human popula-

tions is often confounded by the broad heterogeneity

in the mechanisms responsible for the generation and

evolution of disease-affected cells. Within an indi-

vidual patient and between genetically distinct patients, such

heterogeneity in disease mechanisms contributes to poor drug

responses and relapses observed in the clinic.1,2 Sequencing of

the human genome and advances in characterizing patient

disease at genetic and proteomic levels support the personal-

ized medicine concept of treating each individual patient with

the most appropriate therapy for their disease.3,4

Key to the personalized medicine approach is the identifi-

cation of biomarkers, which can be readily measured in patient

samples to predict drug response. Many such biomarkers, for

example, BRAF V600E (Melanoma/Colorectal Cancer); EGFR

(Nonsmall cell lung carcinoma); and HER-2 (Breast Cancer), are

associated with monitoring activation state and mutation status

of known drug targets to predict response to therapy.5–7 Thus,

the personalized medicine approach is well suited to target-

directed drug discovery strategies where target pathways are

clearly defined. However, such target-directed personalized

medicine strategies are unsuitable for many complex diseases

and drugs discovered by phenotypic drug discovery, where they

are not defined by a single target or the mechanism-of-action

and therapeutic targets remain to be fully elucidated.8,9 Thus,

more unbiased approaches to the identification of biomarkers,

including genetic or pathway signatures, which predict drug

response are required to expand the personalized medicine

concept across complex disease types and therapeutic classes.

Comparative analysis of well-characterized panels of human

cell lines derived from distinct individuals has many applica-

tions in basic research, drug discovery, and personalized med-

icine. Genomic and transcriptional profiling of cancer cell line

panels, such as the National Cancer Institute 60 human tumor

cell line drug screen collection, provide a genetic context to

comparison of cell function and drug sensitivity, supporting

biomarker discovery and drug mechanism-of-action analysis.10

High-throughput in vitro pharmacogenomic studies

across larger cancer cell line panels have been established

and provide valuable resources, such as the Cancer Cell

Line Encyclopedia (CCLE) from the Broad Institute www

.broadinstitute.org/ccle/home and the Catalogue of Somatic

Mutation in Cancer Cell Lines project from the Sanger In-

stitute http://cancer.sanger.ac.uk/cell_lines, which facilitate

pharmacogenomic analysis. Such drug sensitivity profiling

across genetically defined cell panels is now routinely im-

plemented in academia and industry to identify biomarkers
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of response to support disease positioning and patient stratifi-

cation strategies, or to further understand drug mechanism-of-

action at genetic and proteomic levels.11,12

To our knowledge, all examples of in vitro high-throughput

pharmacogenomic studies carried out to date utilize either a

concentration of a drug that gives half-maximal response (EC50)

or concentration of a drug that gives half-maximal inhibition of

cell proliferation (GI50) value obtained by standard cell viability

assays as the primary phenotypic endpoint for correlating drug

sensitivity with genomic or transcriptomic datasets. While the

GI50 and EC50 measurements of cell viability provide the nec-

essary univariate value for quantifying drug sensitivity across a

panel of cell lines, this method has several limitations.

Accurate measurement of EC50 or GI50 values is dependent

upon obtaining full sigmoidal dose–response curves for each

drug or compound tested in the assay. Dose–response curves

and thus the EC50/GI50 calculations are prone to fluctuation

dependent upon assay conditions, including cell culture me-

dia, atmospheric conditions, cell line health and cell line batch

variation, and the type of viability assay reagents used. In-

deed, comparative analysis of large pharmacogenomic studies

published by the Broad and Sanger institutes have resulted in

reports of inconsistency between the genetic signatures of

drug sensitivity assigned to drugs shared between both stud-

ies.13,14 Cell viability assays and EC50/GI50 values are also not

suitable for the majority of disease models, which are not

defined by a single viability endpoint, or for quantifying drug

response in more complex and physiologically relevant cell

assays such as three-dimensional (3D) coculture models.

High-content imaging enables the quantification of multiple

phenotypic cellular endpoints with high spatial and temporal

resolution supporting drug sensitivity testing across more

complex in vitro assays including 3D and coculture models.15

Image-based phenotypic profiling combined with multi-

parametric analysis methods allows detailed characterization of

drug mechanism-of-action and classification of phenotypic

response, including identification of novel compound target

associations based upon similarity of multiparametric pheno-

typic fingerprintswith annotated reference compound sets.16–22

The application of multiparametric biological profiling

of compound libraries, by image-informatics and biospectra

analysis methods, supports unbiased approaches to mechanism-

of-action classification and identification of structure–activity

relationships independent of target hypothesis.23–25 While

multiparametric methods incorporating machine learning and

artificial neural networks have steadily evolved to support phe-

notypic profiling across several cell types,18,20,26 there are few

studies that perform comparative multiparametric phenotypic

analysis between distinct cell types in drug discovery. Thus,

despite over 15 years of continued development in the high-

content screening field, there are few reports of pharmaco-

genomic studies performed across the diversity of complex

phenotypes that can be measured by multiparametric high-

content analysis approaches. A number of challenges that

must be overcome to apply high-content phenotypic profil-

ing to pharmacogenomic or pharmacoproteomic strategies

include the following: defining relevant phenotypic end-

points, which appropriately quantify drug sensitivity;

quantifying diverse phenotypic response across a dose re-

sponse; visualizing multiple diverse phenotypes elicited

across dose response and distinct cell panels; and reducing

multiparametric high-content analysis of cell phenotype to a

robust univariate metric for correlating drug sensitivity with

genomic or proteomic datasets.

The goals of this study were to develop a robust and scalable

method for quantifying diverse multiparametric high-content

phenotypes and distinct compound-induced phenotypic re-

sponse across a panel of cell lines. We describe the optimization

of a high-content cell-painting assay to enable analysis of a

broad range of cell phenotypes across a panel of clinically

relevant breast cancer subtypes. We present new methods for

normalizing and displaying distinct and dose-dependent mul-

tiparametric high-content phenotypic response across multiple

cell types. We introduce the development and application of the

‘‘Theta Comparative Cell Scoring’’ (TCCS) method for calculat-

ing distinct phenotypic response between cell types. We de-

scribe the broad utility of the TCCS method in providing a

univariate metric for quantifying distinct phenotypic response

between compounds tested in the same cell and for compounds

tested across multiple cell types. We make available the source

code to enable application of TCCS across large high-content

datasets. We present proof-of-principle data from a small

compound screen performed on a panel of eight breast cancer

cells representing four well-characterized and clinically rele-

vant subtypes. We demonstrate the ability of our TCCS method

to cluster cell types, which have similar or distinct phenotypic

response to individual compounds, to guide patient stratifica-

tion hypothesis and facilitate pharmacogenomic or proteomic

studies. We discuss the potential impact of this approach upon

extending the application of in vitro pharmacogenomic and

personalized medicine strategies across a wider range of disease

areas and therapeutic classes.

MATERIALS AND METHODS
Cell Culture

Eight breast cancer cell lines were selected for their strati-

fication of four well-characterized breast cancer clinical
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subtypes (Table 1). Authenticated cell lines were acquired

from the American Type Culture Collection and carefully

monitored for morphological changes to ensure authenticity.

Cell lines were cultured in either Dulbecco’s Modified Eagle’s

Medium (HCC1954, MCF7, KPL4, MDA-MB-231, MDA-MB-

157, and SKBR3) or Roswell Park Memorial Institute-1640

(HCC1569 and T47D) supplemented with 10% fetal bovine

serum and 2 mM L-glutamine and incubated at 37�C, 5% CO2.

Two thousand five hundred cells were seeded into each of the

inner 60 wells of 96-well plates (#165305; Thermo) in 100 mL

media and incubated for 24 h before compound treatment.

Outer wells of plates were filled with 100 mL phosphate-

buffered saline (PBS).

Compound Treatment
A panel of well-annotated compounds purchased from

commercial suppliers (Table 2) were prepared as 10 mM stock

solutions in dimethyl sulfoxide (DMSO). 1,000· compound

plates were then created with semi-log dilutions in DMSO.

Each plate contained six wells of 0.1% DMSO as a negative

control and six wells of 200 nM staurosporine as a positive

control. Following compound addition, cell assay plates were

incubated at 37�C, in 5% CO2 incubator for an additional 48 h

before fixation, staining, and high-content imaging.

Imaging
We adapted the cell painting protocol from Gustafsdottir

et al.27 to optimize the cell staining across the eight selected

breast cancer cell lines. Specific modifications to the original

protocol by Gustafsdottir et al.27 were implemented to cir-

cumvent morphological changes induced upon the MDA-MB-

231 cell line, which was particularly sensitive to live cell

staining. The modifications included using all stains on

postfixed samples and adjusting concentrations of reagents to

optimize staining across the cell lines. The following adapted

cell painting protocol was therefore applied to our breast

cancer cell panel.

After a 48-h incubation in the presence of compounds, an

equal volume of 8% paraformaldehyde (PFA) was added to the

culture media of each well resulting in a final concentration of

4% PFA fixation buffer; the plates were then incubated at

room temperature for 20 min, followed by three washes in

100 mL PBS. Permeabilization was performed with the addi-

tion of 50 mL 0.1% Triton-X100 to each well and incubation at

room temperature for 20 min followed by three washes in

100 mL PBS.

The staining solution was prepared in a blocking buffer

consisting of 1% bovine serum albumin in PBS (Table 3).

Thirty microliters of staining solution was added to each well

and incubated in darkness at room temperature for 30 min

followed by three washes in 100 mL PBS, with no final aspi-

ration. Plates were then sealed (#PCR-SQ plate max) and im-

aged immediately.

Plates were imaged on a Molecular Devices ImageXpress�

Micro XLS, six fields of view were captured per well using

a 20· objective and five filters, DAPI (387/447 nm), FITC

(482/536 nm), Cy3 (531/593 nm), TxRed (562/642 nm), and

Cy5 (628/692 nm). Exposure, binning, and other image

settings were not altered between cell lines.

Image Analysis
Images were analyzed using CellProfiler v2.1.119 to extract

309 features (Supplementary Table S1; Supplementary Data are

available online at www.liebertpub.com/adt). Briefly, cell nu-

clei were segmented from the nuclei image based on intensity

and shape, and used as seeds to segment cell areas in the other

channels. Subcellular structures such as nucleoli and endo-

plasmic reticulum speckles were segmented and assigned to

parent objects. From these objects, measurements such as size,

shape, and spatial distribution were measured. The final Cell-

Profiler settings applied in this study were created by iteratively

adjusting the parameters and assessing the performance of cell

segmentation by eye across multiple drug treatments for all cell

types under evaluation, to ensure the most robust segmentation

Table 1. Panel of Breast Cancer Cell Lines

Mutation Status

Cell Line Subclass PTENa PI3Kb

MCF7 ERc WTd E545K

T47D ER WT H1047R

MDA-MB-231 TNe WT WT

MDA-MB-157 TN WT WT

HCC1569 HER2f WT WT

SKBR3 HER2 WT WT

HCC1954 HER2 ?g H1047R

KPL4 HER2 ? H1047R

aPhosphatase and tensin homolog.
bPhosphoinsitide-3-kinase.
cEstrogen receptor.
dWild type.
eTriple negative.
fHuman epidermal growth factor receptor 2.
gLack of consensus regarding the mutational status of those cell lines.

ER, estrogen receptor; HER2, human epidermal growth factor; PI3K,

phosphoinositide 3-kinase; PTEN, phosphatase and tensin homolog; TN, triple

negative; WT, wild type.
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for each distinct cell type, and drug-induced phenotype is

achieved.

Data Preprocessing
Out of focus and low-quality images were detected and

removed by filtering on saturation and focus measurements

provided in the CellProfiler output. Image averages of single

object measurements from CellProfiler were aggregated

by taking the median of each measured feature per image.

Features were normalized and

standardized on a plate-by-plate

basis by dividing each feature by

the median DMSO response for

that feature and then scaled by a

z-score to have a mean of 0 and a

standard deviation of 1. Feature

selection was performed by cal-

culating pair-wise correlations of

features and removing one of a

pair of features that have corre-

lation greater than 0.9 and re-

moving features with very low or

zero variance, using the findCor-

relation and nearZeroVar func-

tions in the caret R package.28

Quantifying Differential
Morphological Responses
by TCCS

Principal component analysis

(PCA) was performed and the data

were then centralized to the DMSO

centroid. This was carried out by

calculating the mean of principal

component (PC) 1 and 2 for the

DMSO subset of the data, and then

subtracting this from the PC values.

With each data point as a vector

in two-dimensional (2D) space

formed by the first two PCs, the

normof eachvector was calculated,

returning a Euclidean distance of

each data point from the DMSO

centroid. Then, the angles between

each vector and a reference vector

(0, 1) were calculated and denoted

as theta (y). The reference vector is

arbitrarily set as a vector along the

x-axis and enables easy compari-

son between the polar coordinate histograms of the PCA biplot in

Cartesian coordinates. For replicates, median values of PCs were

calculated before calculating vectors; this simple approach

avoids the pitfalls in calculating the mean of circular quantities—

for example the arithmetic mean of 1� and 359� is 180�, despite

the close proximity of the values in polar coordinates.

As any perturbations that do not produce morphologi-

cal changes will be indistinguishable from negative control

values, these points were found clustered within the negative

Table 2. Compounds

Compound Class Sub-Class Supplier Cat. No.

Paclitaxel Microtubule disrupting Microtubule stabilizer Sigma T7402

Epothilone B Microtubule disrupting Microtubule stabilizer Selleckchem S1364

Colchicine Microtubule disrupting Microtubule destabilizer Sigma C9754

Nocodazole Microtubule disrupting Microtubule destabilizer Sigma M1404

Monastrol Microtubule disrupting Eg5 kinesin inhibitor Sigma M8515

ARQ621 Microtubule disrupting Eg5 kinesin inhibitor Selleckchem S7355

Barasertib Microtubule disrupting Aurora B inhibitor Selleckchem S1147

ZM447439 Microtubule disrupting Aurora B inhibitor Selleckchem S1103

Cytochalasin D Actin disrupting Actin disrupter Sigma C8273

Cytochalasin B Actin disrupting Actin disrupter Sigma C6762

Jasplakinolide Actin disrupting Actin stabilizer Tocris 2792

Latrunculin B Actin disrupting Actin stabilizer Sigma L5288

MG132 Protein degradation Proteosome Selleckchem S2619

Lactacystin Protein degradation Proteosome Tocris 2267

ALLN Protein degradation Cysteine/calpain Sigma A6165

ALLM Protein degradation Cysteine/calpain Sigma A6060

Emetine Protein synthesis Protein synthesis Sigma E2375

Cycloheximide Protein synthesis Protein synthesis Sigma 1810

Dasatinib Kinase inhibitor Src-EMT Selleckchem S1021

Saracatinib Kinase inhibitor Src-EMT Selleckchem S1006

Lovastatin Statin Statin Sigma PHR1285

Simvastatin Statin Statin Sigma PHR1438

Camptothecin DNA damaging agent Topoisomerase 1 inhibitor Selleckchem S1288

SN38 DNA damaging agent Topoisomerase 1 inhibitor Selleckchem S4908

Src-EMT, Src kinase and Epithelial-Mesenchymal Transition inhibitor.
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control cloud in a scatter-plot of the first two PCs. As these

compounds are centered on the origin (0, 0), the angles cal-

culated from their vectors are uniformly distributed in all

directions and meaningless as a phenotypic direction. There-

fore, a minimum distance from the DMSO centroid was de-

termined as 1 standard deviation of the vector distances from

the origin, and compounds within this distance were defined

as inactive in our assay and not used in further calculations.

Active compounds were only included if they fell beyond this

minimum limit for all the eight cell lines.

To calculate the phenotypic difference between compounds

tested within the same cell line or a compound tested across

different cell lines using the vector analysis described above,

the absolute difference between the two theta values can be

used. However, as any difference greater than 180� and ap-

proaching 360� starts to reflect morphologies becoming more

similar, the absolute difference values have to be constrained

between 0� and 180�; this is carried out for values greater

than 180 by subtracting the value from 360, for example, 190�
will become 170�. We named the method ‘‘Theta-Comparative–

Cell-Scoring’’ to reflect the use of vectors applied to multi-

parametric high-content data to quantify distinct phenotypic

response between cell types.

Data and Code Availability
The CellProfiler pipelines, numeric data, and R code to

run the analyses and generate the figures are available at

github.com/swarchal/TCCS_paper

RESULTS
High-Content Phenotypic Comparisons Between
Morphologically Distinct Breast Cancer Cell Subtypes

We have modified the cell painting assay previously applied

to the osteosarcoma cell line U2OS cells27 to a panel of breast

cancer cell lines representing clini-

cally relevant subtypes. Eight breast

cancer cell lines representing four

pairs for each of the following

clinical subtypes: estrogen receptor

(ER)-positive, triple negative, human

epidermal growth factor receptor 2

(Her2)-postive/Phosphatase and

tensin homolog (PTEN) and phos-

phoinositide 3-kinase (PI3K) wild

type, and Her2-positive/PTEN and

PI3Kmut were selected for this

study (Table 1).

The modified cell painting as-

say was optimized to enable the CellProfiler image analysis

software to segment individual cells for each well and extract

features, which provide detailed morphological analysis of

individual breast cancer cell phenotypes. Representative im-

ages of the eight breast cancer cells stained with the modified

cell-painting protocol are displayed in three channels in

Figure 1A and respective cell segmentation masks generated

by CellProfiler analysis are shown in Figure 1B. As the breast

cancer cell lines look inherently different from one another

(Fig. 1), detecting differential phenotypic changes between

them requires normalization against the negative control

phenotype for each cell line. This was performed by dividing

each feature by the median DMSO value for that feature on a

plate-by-plate basis followed by z-scoring each feature indi-

vidually for all cell lines. Normalization in this manner

achieved two objectives: (1) removing any batch effects that

may be present across plates and (2) normalizing all pheno-

typic measurements as standardized fold changes from the

negative control values per cell line. PCA was then performed

on the normalized dataset of all cell lines using the prcomp

function in R.

Quantifying Differential Morphological Response
Between Cell Lines to the Same Compound

When the first two PCs are visualized as a 2D scatter plot,

low concentrations of compounds are typically found near or

within the DMSO cluster. However, with increasing concen-

trations, the points are often seen to proceed toward a given

trajectory, describing decreasing phenotypic similarity to the

negative control cells with increasing compound concentra-

tion. In the case of MDA-MB-231 cells treated with Cyclo-

heximide and Barasertib, the compounds result in trajectories

with opposing directions, describing opposite morphological

changes (Fig. 2). The case of Barasertib and Cycloheximide

provide a proof-of-principal example in the ability of the

Table 3. Stains and Concentrations Used in the Modified Cell-Painting Protocol

Stain Structure Labeled

Wavelength

(ex/em [nm]) Concentration Cat. No.; Supplier

Hoechst 33342 Nuclei 387/447 2mg/mL #H1399; Mol. Probes

SYTO14 Nucleoli 531/593 3 mM #S7576; Invitrogen

Phalloidin 594 F-actin 562/624 0.85 U/mL #A12381; Invitrogen

Wheat germ

agglutinin 594

Golgi and plasma

membrane

562/624 8 mg/mL #W11262; Invitrogen

Concanavalin A 488 Endoplasmic reticulum 462/520 11mg/mL #C11252; Invitrogen

MitoTracker DeepRed Mitochondria 628/692 600 nM #M22426; Invitrogen
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method described to distinguish opposing phenotypes re-

presented by enlarged and aneuploidy nuclei characteristic of

cytokinesis defects elicited by inhibitors of Aurora kinase B

(Barasertib) in contrast to the condensed nuclei characteristic

of the protein synthesis inhibitor (Cycloheximide).

These distinct phenotypic trajectories have been quantified

as theta values against a reference vector using Equation (1),

where u is the PC1, PC2 vector, and v is the reference vector of

(0, 1) (Fig. 2). A circular histogram of the theta values can then

be plotted to visualize the distribution of compound induced

phenotypes. The circular histogram theta plots provide an in-

tuitive indication of a phenotypic direction produced by a

specific pharmacological perturbation, as well as any change in

phenotypic direction across increasing concentrations that may

indicate off-target effects. Figure 3A shows a circular histogram

of the data pooled from all eight cell lines treated with an eight-

point half-log dose response of the Aurora B kinase inhibitor

Barasertib. Using the same directional histograms, data can also

be split by cell lines to directly visualize differential phenotypic

response across a panel of distinct cell lines (Fig. 3B).

The difference in theta values between cell lines can then be

calculated for a given compound to provide a univariate theta

metric of phenotypic dissimilarity between cell types (Fig. 3C).

It is possible to rank similarity and dissimilarity of each

compound-induced phenotype between cells or between other

compounds on a scale of 0–180� where 0 describes the most

similar phenotypes and 180 the most dissimilar phenotypes.

We name this method ‘‘Theta Comparative Cell Scoring’’ and

provide the formula below:

h = cos
u � v
jjujjvjj

� �
·

180

p
ð1Þ

Screening for Differential Phenotypic Response
Across the Panel of Breast Cancer Subtypes

To evaluate the TCCS method for the ability to identify

compounds that induce differential phenotypic responses

between the breast cancer cell lines, we calculated the differ-

ence between theta values for all eight breast cancer cell lines

treated with 1 mM of 24 different compounds. Compounds

Fig. 1. Cell painting assay applied to eight distinct breast cancer cell lines. (A) Composite image of cell lines treated with 0.1% DMSO.
Channels used: Red—MitoTracker DeepRed (mitochondria); Green—Concanavalin A (endoplasmic reticulum); Blue—Hoechst33342 (nu-
clei). Scale bars: 100 mm. (B) Image masks from CellProfiler showing nuclei and cell body segmentation. DMSO, dimethyl sulfoxide.

Fig. 2. Phenotypic directions in the first two PCs. Scatter plot of
the first two PCs of MDA-MB-231 cells treated with a small com-
pound library. Principal component analysis was carried out on 309
median normalized features extracted from cellular images. Bar-
asertib and Cycloheximide compounds are colored by concentra-
tion demonstrating opposite phenotypic directions in PC space
producing opposite nuclear phenotypes. Images show nuclei im-
aged with Hoechst, scale bars: 20 mm. PC, principal component.
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were selected to represent 12 pairs of well-characterized

mechanistic subclasses, 21 of these compounds elicited robust

morphological changes in all eight cell lines.

To identify and quantify differential phenotypic responses,

the difference between theta values was calculated for all pairs

of cell lines, constrained to the maximum dissimilarity value of

180� and plotted as a heat map for each of the 21 compounds

(Fig. 4). Compounds with high theta values indicate a differ-

ential response between pairs of cell lines for that particular

compound. A representative image between KPL4 and MCF7

cells treated with 1mM of the topoisomerase I inhibitor SN38 is

an example of a compound that

induces a distinct phenotypic re-

sponse between these cell types

(TCCS = 179�), relative to the neg-

ative control for each cell line

(Fig. 4). The majority of cell line

comparisons returned low TCCS

values, indicating that most of the

breast cancer cell lines selected

respond similarly to the com-

pounds in our panel (Supplemen-

tary Fig. S1).

Differential Response of Breast
Cancer Cell Lines Are Stratified
by Molecular Subclass

To demonstrate the ability of the

TCCS method to cluster high-

content phenotypic response across

breast cancer subtypes with a

view to informing disease posi-

tioning and personalized medi-

cine strategies, we used data from

an exemplar molecular targeted

therapy, the dual Src/Abl inhibi-

tor Saracatinib (AZD0530).

To utilize the data present across

multiple titrations, the mean PCs

were taken across eight concen-

trations to create the 2D vector

with which the difference between

TCCS values across all pairs of cell

lines is calculated. TCCS values are

plotted as a heat map clustered by

hierarchical clustering using Eu-

clidean distance (Fig. 5A). This

revealed that the divergent high-

content phenotypic response in-

duced by Saracatinib across the breast cancer cell panel

clustered together based on their molecular subclass. Figure 5B

shows images of three cell lines treated with either DMSO

negative control or 1mM Saracatinib. FromFigure 5A the MDA-

MB-231 cell lines are found to have responded differently to

KPL4 and SKBR3 cell lines, which in turn elicited a similar

response to one another. This can be seen predominantly

through increased cell–cell contact in the Saracatinib-treated

MDA-MB-231 cells compared to the other two cell lines, ob-

served as an increase in normalized number of adjacent cells in

MDA-MB-231 cells (Supplementary Fig. S2). Although far from

Fig. 3. Circular histograms of theta values. (A) Circular histogram of theta values of Barasertib
calculated for all eight cell lines. (B) Phenotypic direction of cell lines treated with Barasertib
stratified by cell line. (C) A diagrammatic explanation of the theta value showing the difference in
theta values between HCC1569 and MDA-MB-231 cell lines treated with Barasertib.
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representative of all compound responses and disease subtypes,

this example does indicate the potential of high-content cell-

based phenotypic screening combined with application of the

TCCS method across genetically defined cell panels to provide

patient stratification hypothesis for both well-characterized

candidate drugs or poorly characterized active compounds

identified from phenotypic screens.

DISCUSSION
The rapid evolution and convergence of new technologies,

including advances in image-based high-content phenotypic

screening, induced pluripotent

stem cell (iPSC) technologies,

and gene editing, are well placed

to advance a new era of modern

phenotypic screening in more

informative and disease rele-

vant cell-based models of dis-

ease.15,29,30 However, a limitation

of phenotypic screening is the

identification of hit molecules or

candidate drugs without knowl-

edge of the target mechanism.

The lack of information on tar-

getmechanism,while not required

for drug approval, impedes the

design of personalized healthcare

strategies to combat disease het-

erogeneity. Several target decon-

volution strategies have been

applied to compounds discovered

by phenotypic screening to elu-

cidate target mechanisms.31–33

However, no target deconvolution

method is conclusive, and such

strategies are often based upon the

assumptions that a compound will

only inhibit a single target and

monitoring the activity and inhi-

bition of the elucidated target will

guide personalized therapy.

For the majority of compounds

discovered by phenotypic screens,

and for many complex human

diseases where the one-drug-one-

target hypothesis is unrealistic,

new nontarget-centric approaches

are required to understand drug

mechanism-of-action and guide

personalized healthcare strategies. In vitro pharmacogenomic or

pharmacoproteomic profiling across well-characterized cell

panels, representing specific disease subtypes, exemplifies one

approach for informing drug mechanism-of-action and guiding

personalized healthcare strategies in the absence of target

knowledge. Breast cancer is separated into fourmajor molecular

subtypes; Luminal A (ER-positive and/or progesterone receptor

(PR)-positive and HER2-negative and Low Ki67); Luminal B

(ER-positive and/or PR-positive and HER2-positive or HER2-

negative with high Ki67); Triple negative/basal like (ER- PR-

and Her2-negative); and HER2 type (ER- PR- negative and

Fig. 4. Heat map of theta values between pairs of cell lines for separate compounds. (A) Differ-
ence in theta values calculated between pairs of cell lines treated with 21 compounds at 1mM
concentration. Images show differential response between KPL4 and MCF7 cell lines treated with
1mM SN38. MCF7 cells are observed to decrease in cell area, with bright staining for the endo-
plasmic reticulum, whereas the KPL4 cells produce a ‘‘fried egg’’ morphology with large spread
cells and weak endoplasmic reticulum staining. Channels used are as follows: Red—MitoTracker
DeepRed (mitochondria); Green—Concanavalin A (endoplasmic reticulum); Blue—Hoechst33342
(nuclei). Scale bar: 100mm. (B) Circular histogram of theta values calculated for MCF7 and KPL4
cells treated with 1 mM SN38.
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Her2-positive). Each major molecular subtype of breast cancer

can be further divided into subclasses based upon genetic mu-

tation status and protein profiles, and the diagnosis of breast

cancer subtype dictates the most appropriate personalized

treatment for patients.34–36

In this article, we have developed a multiparametric high-

content assay, data visualization tools, and a TCCS method,

which support phenotypic screening of compound libraries

across genetically distinct cells representing known molecular

subtypes of disease. We provide proof-of-principle data applied

to eight breast cancer cells representing four disease subclasses

(Table 1), demonstrating the application of the method for

quantifying distinct phenotypic response between cell types and

clustering of cell-associated clinical subtypes based on similar

or dissimilar phenotypic response to compound treatment.

As previously discussed, several multiparametric pathway

and phenotypic profiling methods have been developed to

classify drug mechanism-of-action and uncover new drug–

target associations, and structure activity relationships in a

more holistic and unbiased manner.18,20–25,27 However, the

majority of these methods have been applied to single cell types

amenable to high-content imaging or large-scale biochemical

and proteomic analysis.18,21–25,27 The TCCSmethoddescribed in

this article was developed to provide a practical method to

enable comparativemultiparametric phenotypic analysis across

a panel of genetically distinct cell types, which provides rapid

quantification and visualization of divergent compound-

induced phenotypic response between cell types. An intuitive

explanation of the TCCS method would be the cosine distance in

degrees of vectors in the first two

PCs; this is a variation on existing

methods that largely rely on corre-

lation or Euclidean distance be-

tween compound vectors.18

The benefits of the TCCS over

previous methods are as follows: (1)

use of distance from the negative

control to remove poorly active or

inactive compounds that might

produce spurious differences in cor-

relation of cosine similarity mea-

sures; (2) The comparison of each

data point to a common reference

vector enables visualizations of a

single metric, which depicts the rel-

ative change in phenotypic response

induced by a compound (Fig. 3A).

The most critical aspect of com-

paring results between panels of

distinct cell lines regardless of downstream methods is during

the data preprocessing stage, which requires careful normal-

ization against the negative control values for each cell line to

remove inherent differences in cell line morphology. Thus, the

TCCS method represents a flexible approach with broad ap-

plicability to quantifying and visualizing distinct phenotypes

induced by a panel of compounds within a single cell type and/

or the response of a single compound across multiple cell types.

The TCCS method removes compounds from the algorithm that

are not sufficiently different from the negative control. While

this increases the robustness of the calculation, it also creates

the opportunity to miss compounds that possess differential

sensitivity between cell lines. This limitation of the method

arises where certain compounds that do not induce any mor-

phological change in one cell line may still perturb cellular

morphology in another cell line, thus any such compound

would subsequently be removed from the calculation due to

insufficient distance from the negative control centroid, despite

eliciting a genuine differential response between cell lines.

However, this limitation can be simply rectified by im-

plementing an initial preanalytical stage of the algorithm by

calculating the distance from DMSO for all compounds across

all cell lines to assign either as ‘‘active’’ or ‘‘inactive’’ phenotypic

responders. Differences in the activation state of all compounds

across all cell lines are recorded and the active compounds then

progress to TCCS analysis to quantify and visualize a distinct

phenotype response across cell lines.

The TCCS method as outlined in this article utilized only the

first two PCs produced from the PCA. These two variables

Fig. 5. Heat map and hierarchical clustering of cell lines treated with Saracatinib. (A) Heatmap
of TCCS values calculated between all pairs of cell lines treated with Saracatinib with hierarchical
clustering by complete linkage of the Euclidean distance. (B) Images demonstrating two similar
phenotypic responses—KPL4 and SKBR3—and the dissimilar phenotypic response of MDA-MB-
231 cell lines to 1 mM Saracatinib treatment. Channels used: Red—MitoTracker DeepRed (mito-
chondria); Green—Concanavalin A (endoplasmic reticulum); Blue—Hoechst33342 (nuclei). Scale
bar: 100 mm. TCCS, Theta Comparative Cell Scoring.
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explain most of the variance of data in low dimensional data

represented by majority of high-throughput high-content

screens, which typically measure only small numbers of fea-

tures.37 In such high-throughput compound screens, TCCS

applied to the first two PCs would be expected to provide a

single value describing the difference in response across dif-

ferent cell lines for active compounds. The method as applied

to the first two PCs in this article becomes less informative in

higher dimensional data sets as more PCs are required to de-

scribe the data. As the calculation to define the angle between

two vectors [Eq. (1)] uses the dot product of the two vectors, the

vectors are not limited to the first two PCs, and it is entirely

reasonable that they could contain any number of PCs.

Therefore, an alternative option would be to implement the

TCCS method on a number of PCs that satisfy a user-defined

proportion of variance within the data.

Comparison of high dimensional vectors against one an-

other rather than against a reference vector allows for direct

calculation of a theta value in high dimensional space, an

example workflow using the TCCS method applied to more

than two PCs is provided in the online R scripts (github.com/

swarchal/TCCS_paper) and is represented in the description of

the TCCS workflow (Fig. 6). The TCCS method may also be

applied to the normalized assay parameters rather than PCs as

also demonstrated in the supplementary R workflow (gi-

thub.com/swarchal/TCCS_paper). However, care should be

taken to ensure that potentially uninformative parameters are

not included in such analysis to avoid introduction of un-

necessary assay noise. Thus, the most optimal application of

the TCCS method can be appropriately tailored to each study

and nature of the underlying high-content data set.

Multiple concentrations are not often used in high-

throughput cell-based screening assays, despite providing useful

information to detect off-target effects and can be thought of as

inherent replicates of individual compound data. A further ap-

proach to incorporate titration data into defining direction in PC

space would be to fit a linear model to each compound using

simple linear regression, forcing the y-intersect through 0. While

this would lose information pertaining to the distance from the

DMSO centroid at each concentration, it would provide infor-

mation regarding goodness of fit, and data may be excluded

from the TCCS analysis if they do not fit the linear model well or

used to indicate compounds with off-target effects at higher

concentrations. As the theta value is essentially a direction

in PC space, another useful addition would be to relate theta

back to the feature loadings that describe how the PCs were

constructed. This would return the phenotypic features that

best describe a certain direction in phenotypic space. However,

PCA contains negatively weighted features and so methods such

as nonnegative matrix factorization in which the feature load-

ings are all positive values, may be a potential avenue for this

improvement.

Another potential use of TCCS method is in assay quality

control (QC). For example, TCCS could be applied to the

Fig. 6. TCCS workflow. (A) Normalized numerical data. (B) PC analysis, negative control values colored in blue. (C) Centering of PC values
to the negative control centroid. (D) Calculation of distance from the origin to each data point, an activity cutoff is derived from the
standard deviation of the distance to the negative control values. (D.2) In two-dimensional space, a directional histogram can be created by
the angle of each vector against a reference vector. (E) Inactive compounds excluded based on distance from the origin. (F) Determining the
angle between compounds. (F.2) Visualization or clustering of compounds based on theta values.
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simultaneous evaluation of two positive controls known to

elicit robustly different morphologies (e.g., paclitaxel and

staurosporine) along with a negative control such as DMSO to

determine a theta value between the two positive controls. It

would be expected that the two positive controls would have

a theta value greater than a specified minimum. The variance

of theta values between two positive controls per plate could

therefore be used as a measure of biological assay variability

during assay development and screening campaigns.

Incorporating a multiparametric QC metric that utilizes high-

content analysis across two positive controls provides increased

robustness and more unbiased assessment of monitoring

variation in cell behavior and assay variability over current

methods that use a single positive control analysis of a pre-

selected parameter. Other multivariate assay QC metrics typi-

cally build on the Z0-factor using supervised machine learning

techniques such as Fisher’s linear discriminant analysis (LDA)

to best separate the positive and negative controls.38 Although

more robust than single parametric analysis, a drawback of this

method is that LDA is often prone to overfitting in high di-

mensions, which may produce overoptimistic QC values when

processed to the Z0-factor calculation.

The convergence of new technologies, including next-

generation sequencing, high-throughput proteomics, iPSC

technology, and high-content phenotypic screening, is well

placed to advance the identification of predictive biomarkers

and personalized medicine approaches across a broader range

of disease types and therapeutic classes.15,29,30,39,40

Our study provides a broadly applicable approach for

quantifying distinct phenotypic response between genetically

distinct cells using high-content analysis coupled to a TCCS

scoring method. The TCCS method that we describe provides a

univariate metric that can be applied to any high-content

assay for quantifying and visualizing a diverse phenotypic

response between cell types. The TCCS metric provides a

univariate score of distinct phenotypic response on a scale of

0–180� (where 0� = similar and where 180� = most dissimilar),

which can be used for correlation with orthogonal genetic,

epigenetic, and proteomic datasets to support the identifica-

tion of biomarkers of drug phenotype and further elucidate

drug mechanism-of-action at genetic and pathway levels.

ACKNOWLEDGMENTS
Cancer Research UK Edinburgh Centre studentship award

to S.J.W. and Research Councils UK (RCUK) fellowship award

to N.O.C.

DISCLOSURE STATEMENT
No competing financial interests exist.

REFERENCES

1. Fisher R, Pusztai L, Swanton C: Cancer heterogeneity: implications for targeted

therapeutics. Br J Cancer 2013;108:479–485.

2. McClellan J, King MC: Genetic heterogeneity in human disease. Cell
2010;141:210–217.

3. Aronson SJ, Rehm HL: Building the foundation for genomics in precision

medicine. Nature 2015;526:336–342.

4. Biankin AV, Piantadosi S, Hollingsworth SJ: Patient-centric trials for therapeutic

development in precision oncology. Nature 2015;526:361–370.

5. Day F, Muranyi A, Singh S, et al.: A mutant BRAF V600E-specific

immunohistochemical assay: correlation with molecular mutation status and

clinical outcome in colorectal cancer. Target Oncol 2015;10:99–109.

6. Maemondo M, Inoue A, Kobayashi K, et al.: Gefitinib or chemotherapy for

non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362:2380–

2388.

7. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN:

The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2

therapy and personalized medicine. Oncologist 2009;14:320–368.

8. Lee JA, Berg EL: Neoclassic drug discovery: the case for lead generation using

phenotypic and functional approaches. J Biomol Screen 2013;18:1143–1155.

9. Swinney DC: The contribution of mechanistic understanding to phenotypic

screening for first-in-class medicines. J Biomol Screen 2013;18:1186–1192.

10. Staunton JE, Slonim DK, Coller HA, et al.: Chemosensitivity prediction by

transcriptional profiling. Proc Natl Acad Sci U S A 2001;98:10787–10792.

11. Rees MG, Seashore-Ludlow B, Cheah JH, et al.: Correlating chemical sensitivity

and basal gene expression reveals mechanism of action. Nat Chem Biol
2016;12:109–116.

12. Cardnell RJ, Feng Y, Diao L, et al.: Proteomic markers of DNA repair and PI3K

pathway activation predict response to the PARP inhibitor BMN 673 in small

cell lung cancer. Clin Cancer Res 2013;19:6322–6328.

13. Haibe-Kains B, El-Hachem N, Birkbak NJ, et al.: Inconsistency in large

pharmacogenomic studies. Nature 2013;504:389–393.

14. Cancer Cell Line Encyclopedia Consortium; Genomics of Drug Sensitivity in

Cancer Consortium: Pharmacogenomic agreement between two cancer cell line

data sets. Nature 2015;528:84–87.

15. Bickle M: The beautiful cell: high-content screening in drug discovery. Anal
Bioanal Chem 2010;398:219–226.

16. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ:

Multidimensional drug profiling by automated microscopy. Science
2004;306:1194–1198.

17. Tanaka M, Bateman R, Rauh D, et al.: An unbiased cell morphology-based

screen for new, biologically active small molecules. PLoS Biol 2005;3:e128.

18. Ljosa V, Caie PD, Ter Horst R, et al.: Comparison of methods for image-based

profiling of cellular morphological responses to small-molecule treatment.

J Biomol Screen 2013;18:1321–1329.

19. Carpenter AE, Jones TR, Lamprecht MR, et al.: CellProfiler: image analysis

software for identifying and quantifying cell phenotypes. Genome Biol
2006;7:R100.

20. Caie PD, Walls RE, Ingleston-Orme A, et al.: High-content phenotypic profiling

of drug response signatures across distinct cancer cells. Mol Cancer Ther
2010;9:1913–1926.

21. Reisen F, Sauty de Chalon A, Pfeifer M, Zhang X, Gabriel D, Selzer P: Linking

phenotypes and modes of action through high-content screen fingerprints.

Assay Drug Dev Technol 2015;13:415–427.

22. Reisen F, Zhang X, Gabriel D, Selzer P: Benchmarking of multivariate similarity

measures for high-content screening fingerprints in phenotypic drug discovery.

J Biomol Screen 2013;18:1284–1297.

23. Fliri AF, Loging WT, Thadeio PF, Volkmann RA: Biospectra analysis: model

proteome characterizations for linking molecular structure and biological

response. J Med Chem 2005;48:6918–6925.

24. Fliri AF, Loging WT, Thadeio PF, Volkmann RA: Biological spectra analysis:

linking biological activity profiles to molecular structure. Proc Natl Acad Sci
U S A 2005;102:261–266.

A METHOD TO QUANTIFY PHENOTYPIC RESPONSES BETWEEN CELL TYPES

ª MARY ANN LIEBERT, INC. � VOL. 14 NO. 7 � SEPTEMBER 2016 ASSAY and Drug Development Technologies 405



25. Kummel A, Selzer P, Siebert D, et al.: Differentiation and visualization of diverse

cellular phenotypic responses in primary high-content screening. J Biomol
Screen 2012;17:843–849.

26. Smith K, Horvath P: Active learning strategies for phenotypic profiling of high-

content screens. J Biomol Screen 2014;19:685–695.

27. Gustafsdottir SM, Ljosa V, Sokolnicki KL, et al.: Multiplex cytological profiling

assay to measure diverse cellular states. PLoS One 2013;8:e80999.

28. Kuhn M: Building predictive models in R using the caret package. J Stat
Software 2008;28:1–26.

29. Yu J, Vodyanik MA, Smuga-Otto K, et al.: Induced pluripotent stem cell lines

derived from human somatic cells. Science 2007;318:1917–1920.

30. Shalem O, Sanjana NE, Hartenian E, et al.: Genome-scale CRISPR-Cas9

knockout screening in human cells. Science 2014;343:84–87.

31. Lee J, Bogyo M: Target deconvolution techniques in modern phenotypic

profiling. Curr Opin Chem Biol 2013;17:118–126.

32. Rix U, Superti-Furga G: Target profiling of small molecules by chemical

proteomics. Nat Chem Biol 2009;5:616–624.

33. Jafari R, Almqvist H, Axelsson H, et al.: The cellular thermal shift assay

for evaluating drug target interactions in cells. Nat Protoc 2014;9:

2100–2122.

34. Cancer Genome Atlas Network: Comprehensive molecular portraits of human

breast tumours. Nature 2012;490:61–70.

35. Nik-Zainal S, Davies H, Staaf J, et al.: Landscape of somatic mutations in 560

breast cancer whole-genome sequences. Nature 2016;534:47–54.

36. Kao J, Salari K, Bocanegra M, et al.: Molecular profiling of breast cancer cell

lines defines relevant tumor models and provides a resource for cancer gene

discovery. PLoS One 2009;4:e6146.

37. Singh S, Carpenter AE, Genovesio A: Increasing the content of high-content

screening: an overview. J Biomol Screen 2014;19:640–650.

38. Kummel A, Gubler H, Gehin P, Beibel M, Gabriel D, Parker CN: Integration of

multiple readouts into the z0 factor for assay quality assessment. J Biomol
Screen 2010;15:95–101.

39. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER: The next-

generation sequencing revolution and its impact on genomics. Cell 2013;

155:27–38.

40. Akbani R, Becker KF, Carragher N, et al.: Realizing the promise of reverse phase

protein arrays for clinical, translational, and basic research: a workshop report:

the RPPA (Reverse Phase Protein Array) society. Mol Cell Proteomics 2014;13:

1625–1643.

Address correspondence to:

Neil O. Carragher, PhD

Institute of Genetics and Molecular Medicine

Cancer Research UK Edinburgh Centre

University of Edinburgh

Crewe Road South

Edinburgh, EH4 2XR

United Kingdom

E-mail: n.carragher@ed.ac.uk

Abbreviations Used

2D ¼ two dimensional

3D ¼ three dimensional

CCLE ¼ Cancer Cell Line Encyclopaedia

DAPI ¼ 4,6-diamidino-2-phenylindole

DMSO ¼ dimethyl sulfoxide

EC50 ¼ concentration of drug that produces a 50% maximal response

ER ¼ estrogen receptor

FITC ¼ fluorescein isothiocyanate

GI50 ¼ concentration of a drug that gives half-maximal inhibition

of cell proliferation

HER2 ¼ human epidermal growth factor receptor 2

iPSC ¼ induced pluripotent stem cell

LDA ¼ linear discriminant analysis

PBS ¼ phosphate-buffered saline

PC ¼ principal component

PCA ¼ principal component analysis

PFA ¼ paraformaldehyde

PI3K ¼ phosphoinositide 3-kinase

PR ¼ progesterone receptor

PTEN ¼ phosphatase and tensin homolog

QC ¼ quality control

TCCS ¼ Theta Comparative Cell Scoring

TN ¼ triple negative

WT ¼ wild type
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