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Abstract To investigate the effects of PD123319, an antagonist
of angiotensin II subtype-2 receptor (AT2R), on the electrophys-
iological characteristics of the left ventricular hypertrophic myo-
cardium in spontaneously hypertensive rats (SHR). A total of
twenty-four 10-week-old male SHR were divided into two
groups: PD123319 and non-PD123319 groups (n = 12 in each).
Twelve 10-week-old Wistar-Kyoto rats served as the control
group. Systolic blood pressure, left ventricular mass index
(LVMI), ventricular effective refractory period, and ventricular
fibrillation threshold were also measured after 8 weeks. INa, ICaL,
Ito, and membrane capacitance were measured in the left ventric-
ular myocytes after 8 weeks by whole-cell patch clamp.
PD123319 increased LVMI compared with the non-PD123319
group (PD123319 vs. non-PD123319, 3.83 ± 0.11 vs.
3.60 ± 0.19 mg/g; P < 0.01). PD123319 also decreased the
ventricular fibrillation threshold compared with the non-
PD123319 group (PD123319 vs. non-PD123319, 14.75 ± 0.65
vs. 16.0 ± 0.86 mA; P < 0.01). PD123319 enhanced membrane
capacitance compared with the non-PD123319 group
(PD123319 vs. non-PD123319, 283.63 ± 5.80 vs.
276.50 ± 4.28 pF; P < 0.05). PD123319 increased the density

of ICaL compared with the non-PD123319 group (PD123319 vs.
non-PD123319, −6.76 ± 0.48 vs. −6.13 ± 0.30 pA/pF;P < 0.05).
PD123319 decreased the density of Ito compared with the non-
PD123319 group (PD123319 vs. non-PD123319, 11.49 ± 0.50
vs. 12.23 ± 0.36 pA/pF; P < 0.05). Long-term treatment with
PD123319 worsened the development of myocyte hypertrophy
and associated electrophysiological alterations in spontaneously
hypertensive rat.
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Introduction

Sudden death due to ventricular arrhythmias was a major risk
factor in patients with myocardial hypertrophy (Levy et al.
1987; Messerli et al. 1984). Angiotensin II was a key signal
for myocyte hypertrophy (Patel and Mehta 2012).
Angiotensin II binded to angiotensin II subtype-1 receptor
(AT1R) and angiotensin II subtype-2 receptor (AT2R). Most
of the known pathophysiological effects of Ang II were me-
diated by AT1R, including vasoconstriction and increased
blood pressure, promotion of tissue inflammation and fibrosis,
increased oxidative stress, and aldosterone production (Yang
et al. 1997). It had beenwell documented that AT2R activation
counteracted most effects of AT1R by inhibiting cell prolifer-
ation and differentiation, promoting vasodilation, and reduc-
ing inflammation and oxidative stress (Matavelli and Siragy
2015; Steckelings et al. 2012; Sumners et al. 2015). In studies,
AT1R blockade prevented the development of myocyte hy-
pertrophy and improved the electrophysiological remodeling
of hypertrophic myocardium (Cerbai et al. 2000a; Rials et al.
2001; Zhi-Bin et al. 2014). However, the effect of AT2R
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blockade on electrophysiological remodeling of hypertrophic
myocardium was not fully elucidated.

For all these reasons, we thought it would be interesting to
assess the effect of long-term treatment with PD123319, a
non-peptidic antagonist of AT2R, on the electrophysiological
alterations occurring in SHR during the development of car-
diac hypertrophy. To this aim, we studied cell capacitance,
membrane currents (INa, ICaL, and Ito) and ventricular fibrilla-
tion threshold of hypertrophic myocardium from the heart of a
10-week-old SHR after 8 weeks of treatment with saline or
PD123319.

Materials and methods

Experimental animals

All animal experiments were performed in accordance with
the ethical principles of the Declaration of Helsinki.
Spontaneously hypertensive rats (SHR) and Wistar-Kyoto
(WKY) male rats aged 10 weeks (weight, ~200 g) were pur-
chased from Vital River Experimental Animal Technology
(Beijing, China). A total of twenty-four 10-week-old male
SHR were randomly divided into the non-PD123319 group
and PD123319 group (n = 12). A total of twelve 10-week-old
male Wistar-Kyoto rats served as the control group. The
PD123319 group received PD123319, which was purchased
from Selleck Chemicals (Houston, TX, USA) at
30 mg kg−1 day−1 orally for 8 weeks. The control and non-
PD123319 groups received saline (0.9 %) orally for 8 weeks.
Rats were fed at the Sun Yat-sen University of Medical
Sciences Animal Center.

Measurement of blood pressure

The tail artery systolic pressure was measured using a RBP-1
rat tail blood pressure meter (obtained from the China-Japan
Friendship Hospital) during awake and quiet conditions.
Measurements were repeated three times, and the mean of
three measurements was recorded.

Measurement of ventricular effective refractory period
and ventricular fibrillation threshold

Rats were anesthetized with urethane (120 mg/100 g body
weight) via intraperitoneal injection. A tracheostomywas then
performed, and the rat was placed on a servo-controlled
heating table to maintain body temperature at 37 °C. The rat
was connected to and ventilated by a small animal ventilator at
a tidal volume of 1.7–2.5 ml, depending on body weight, and
at a frequency of 60 breaths/min. Electrocardiogram signals
were amplified and recorded on a multiple-channel physiolog-
ical recorder. After thoracotomy, two fishhook-like electrodes

were placed in the apex of the left ventricle and connected to a
program stimulator (type 5352, Medtronic Company,
Colorado, USA), isolation stimulator (type DSJ731-G-A),
and a physiological stimulator (type DSJ731-2C-A).

The ventricular effective refractory period (VERP) was
measured using extra-stimuli delivered in 10 ms decrements
(S1S2) by a program stimulator (type 5352, Medtronic
Company, Colorado, USA). The VERP was the longest S1S2
interval that failed to cause ventricular depolarization.

The heart was paced by a physiological stimulator (type
DSJ731-2C-A) at 500 bpm. Ventricular fibrillation was in-
voked by ultra-rapid strand stimulation (10 stimuli, pulse
width, 4 ms, 100 Hz; delay, 60 ms) released from isolation
stimulator (type DSJ731-G-A). The initial current intensity
was 5 mA. The current was increased in 0.5 mA increments.
The ventricular fibrillation threshold (VFT) was recorded as
the lowest current intensity invoking ventricular fibrillation.

Measurement of left ventricular mass index

After VFT testing, the rats were killed and their hearts removed.
Total heart mass and left ventricular mass were recorded. The
ratio of left ventricular mass to body mass was used to calculate
the left ventricular mass index (LVMI; mg g−1).

Isolation of ventricular myocytes

Each heart was quickly excised and mounted on a
Langendorff apparatus. Left ventricular myocytes were isolat-
ed according to the method described by Isenberg and
Klöckner (1982). The aorta was retrogradely cannulated and
perfused with nominally Ca2+-free-modified Tyrode’s solu-
tion at 37 °C for 5 min. Perfusion pressure was 75 mmHg,
and all solutions were equilibrated with 100 % oxygen.
Perfusion was continued for another 15 min with 20 ml of
the same solution plus collagenase (type CLS II, 200 U/ml;
Biochrom KG, Berlin, Germany) and protease (type XIV,
0.7 U/ml; Sigma, USA), and the solution was recirculated.
Finally, the heart was perfused with modified Tyrode’s solu-
tion containing 100 μM Ca2+ for another 5 min.

After perfusion, the left ventricular free wall was separated
from the rest of the heart. As there are known differences in Ito
magnitude between basal and apical regions of the left ventricle
(Gómez et al. 1997), care was taken to isolate epicardial
myocytes from the central portion of the left ventricular free
wall. Epicardial tissue pieces were carefully dissected from the
left ventricular free wall with fine forceps, and the pieces were
placed in cups. To further disaggregate the tissue pieces, they
were gently shaken at 37 °C, filtered through cotton mesh, and
allowed to settle for 30 min. Cells were stored at room temper-
ature in modified Tyrode’s solution containing 100 μM Ca2+.
Only single rod-shaped cells with clear cross-striations and no
spontaneous contraction were used for experiments.
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Electrophysiological recordings

Whole-cell currents were recorded using an Axopatch 200A
amplifier (Axon Instruments, Foster City, CA,USA). Cell capac-
itance (Сm; pF) was calculated by integrating the area under an
uncompensated capacity transient elicited by a 10-mV
depolarizing pulse from a holding potential of −80 mV. Whole-
cell currents were low-pass filtered at 1 kHz and digitized at
5 kHz via a Digidata 1200A/D converter (Axon Instruments)
interface for off-line analysis. Data were analyzed using
custom-written software.

INa was measured at 21 °C in an extracellular solution con-
taining (mmol/l) 5.0 NaCl, 130.0 choline-Cl, l5.4 CsC, 10.0
HEPES, 1.0 MgCl2·6H2O, 5.0 NaH2PO4, 1.0 CaCl2, 10 glu-
cose H2O, and 0.001 nicardipine, at pH 7.4. The intracellular
solution contained (mmol/l) 120.0 CsC, 110.0 CsF, 5.0 NaCl,
5.0 HEPES, 5.0 EGTA, 1.0MgCl2·6H2O, and 5.0 Na2-ATP, at
pH 7.2. INa was elicited from a holding potential of −100 mV
by voltage steps of 100 ms from −80 to 50 mV in 10-mV
increments at 0.5 Hz.

ICaL was measured at 21 °C in an extracellular solution
containing (mmol/l) 50.0 TEA-Cl, 0.5 MgCl2·6H2O, 1.8
CaCl2, 3.0 4AP, and 5.0 HEPES, pH 7.4. The intracellular
solution contained (mmol/l) l00.0 CsCl, 20.0 TEA-Cl, 5.0
Na2-ATP, 10.0 HEPES, and 10.0 EGTA, pH 7.2. ICaL was
elicited from a holding potential of −80 mV by voltage steps
of 300 ms from −80 to 50 mV in 10-mV increments at 0.2 Hz.

Ito was measured at 21 °C in an extracellular solution con-
taining (mmol/l) 136 NaCl, 5.4 KCl, 0.33 NaH2PO4, 1.0
MgCl2·6H2O, 2 CaCl2, 0.5 BaCl2, 0.3 CdCl2, 10 HEPES,
and 10 glucose, at pH 7.4. The intracellular solution contained
(mmol/) 140 KCl, 1 MgCl2, 5 EGTA, 10 HEPES, and 5
Na2ATP, at pH 7.2. Ito was elicited from a holding potential
of −80 mV by voltage steps of 150 ms from −50 to 60 mV in
10-mV increments every 6 s. Standard pulse protocols were
used to assay the biophysical properties of Ito.

Statistics

Results were expressed as mean ± SD. Statistical analyses
were performed using SPSS 10.0 (SPSS, Chicago, IL,
USA). Differences between the mean values of multiple

subgroups were evaluated by ANOVA, and intergroup com-
parisons were performed using t tests with ANOVA
(Bonferroni method). Statistical significance was accepted at
P < 0.05.

Results

Comparison of systolic blood pressure and left ventricular
mass index

The systolic blood pressure was significantly higher in the
non-PD123319 and PD123319 groups compared with the
control group (165.33 ± 2.99 and 167.17 ± 3.21 vs.
93.17 ± 3.69 mmHg; P < 0.01). The LVMI was significantly
higher in the non-PD123319 and PD123319 groups compared
with the control group (3.60 ± 0.19 and 3.83 ± 0.11 vs.
2.46 ± 0.11 mg/g; P < 0.01). In addition, the LVMI was sig-
nificantly higher in the PD123319 group compared with the
non-PD123319 group (3.83 ± 0.11 vs. 3.60 ± 0.19 mg/g;
P < 0.01) (Table 1).

Comparison of VERP and VFT in rats

The VFT was significantly lower in the non-PD123319 and
PD123319 groups compared with the control group
(16.06 ± 0.86 and 14.75 ± 0.65 vs. 25.50 ± 1.31 mA;
P < 0.01). The VFT was lower in the PD123319 group com-
pared with the non-PD123319 group (14.75 ± 0.65 vs.
16.06 ± 0.86 mA; P < 0.01) (Table 2).

Table 1 Comparison of SBP and
LVMI between three group rats Group Number of rats SBP (mmHg) Number of hearts LVMI (mg/g)

Control 12 93.17 ± 3.69 8 2.46 ± 0.11

Non-PD123319 12 165.33 ± 2.99* 8 3.60 ± 0.19*

PD123319 12 167.17 ± 3.21* 8 3.83 ± 0.11*, #

SBP systolic blood pressure, LVMI left ventricular mass index

*P < 0.01—compared with the control group; #P < 0.01—compared with the non-PD123319 group

Table 2 Comparison of VERP and VFT between three group rats

Group Number of rats VERP (ms) VFT (mA)

Control 8 62.25 ± 1.04 25.50 ± 1.31

Non-PD123319 8 63.75 ± 2.38 16.06 ± 0.86*

PD123319 8 64.38 ± 1.85 14.75 ± 0.65*, #

VERP ventricular effective refractory period, VFT ventricular fibrillation
threshold

*P < 0.01—compared with the control group; #P < 0.05—compared with
the non-PD123319 group
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Ionic channels in the left ventricular myocardium

The membrane capacitance of the non-PD123319 and
PD123319 groups was significantly larger compared with

the control group (276.50 ± 4.28 and 283.63 ± 5.80 vs.
127.13 ± 2.23 pF; P < 0.01). In addition, the membrane ca-
pacitance of the PD123319 group was significantly higher
compared with the non-PD123319 group (283.63 ± 5.80 vs.

Table 3 Comparison of the ionic
channels in the left ventricular
myocytes between three group
rats (n = 4, N = 6)

Group Cm (pF) INa (pA/pF) Ito (pA/pF) ICaL (pA/pF)

Control 127.13 ± 2.23 −17.57 ± 1.31 15.71 ± 1.05 −5.68 ± 0.28

Non-PD123319 276.50 ± 4.28* −17.49 ± 1.43 12.23 ± 0.36* −6.13 ± 0.30*

PD123319 283.63 ± 5.80*, # −17.59 ± 1.29 11.49 ± 0.50*, # −6.76 ± 0.48*, #

Cm membrane capacitance, n number of rats, N number of myocytes

*P < 0.05—compared with the control group; #P < 0.05—compared with the non-PD123319 group
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Fig. 1 Effect of PD123319
treatment on sodium current (INa).
Typical recordings of INa in cells
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time (ms mini-second); y-axis:
current volume (pA). The voltage
clamp protocol is shown in (d). e
Average I-V relationships of INa
density (pA/pF) as a function of
step potential (mV), obtained in
control (filled squares), non-
PD123319 (empty squares), and
PD123319 (empty circles)
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276.50 ± 4.28 pF, P < 0.01). The density of ICaL in the non-
PD123319 and PD123319 groups was higher compared with
the control group (−6.13 ± 0.30 and −6.76 ± 0.48 vs.
−5.68 ± 0.28 pA/pF; P < 0.05). The density of ICaL in the
PD123319 group was higher compared with the non-
PD123319 group (−6.76 ± 0.48 vs. −6.13 ± 0.30 pA/pF;
P < 0.05). The density of INa was not significantly different
among the three groups. Finally, the density of Ito in the non-
PD123319 and PD123319 groups was significantly lower
compared with the control group (12.23 ± 0.36 and
11.49 ± 0.50 vs. 15.71 ± 1.05 pA/pF; P < 0.05). However,
the density of Ito in the PD123319 group was lower compared
with the non-PD123319 group (11.49 ± 0.50 vs.
12.23 ± 0.36 pA/pF; P < 0.05) (Table 3; Figs. 1, 2, and 3).

Discussion

In this study, we evaluated the effect of long-term treatment
with PD123319 on the electrophysiological remodeling oc-
curring in SHR. The main and novel finding of this study
was that long-term treatment with PD123319 not only affect-
ed development of cardiac and cellular hypertrophy but also
affected the electrophysiological alterations, which character-
istically occurred in the hypertrophic myocardium.

Previous studies (Buisson et al. 1992; Martens et al. 1996;
Chorvatova et al. 1996; Dimitropoulou et al. 2001; Zhu et al.
1998) had demonstrated that AT2 receptors modulate T-type
calcium current and K+ currents in neurons, coronary artery-
smooth muscle cells, and other cells. To our knowledge, this
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was the first demonstration that chronic blockade of AT2 re-
ceptors affected cardiac ionic currents and ventricular fibrilla-
tion threshold in hypertrophic myocardium. Our results in-
deed clearly demonstrated that Ito was lower, ICaL was higher,
and the ventricular fibrillation threshold was lower in
PD123319-treated SHR. Previous studies (Cerbai et al.
1994; Cutler et al. 2011; Huang et al. 2014a) had demonstrat-
ed that the main ionic alteration of hypertrophic myocardium
caused by chronic hypertension was a specific decrease in Ito.
The decrease in Ito in ventricular myocytes in hypertrophic
myocardium associated with an increased propensity for ven-
tricular arrhythmias strongly suggested their role in
arrhythmogenesis (Cerbai et al. 2000b). A decrease in Ito
may cause a dispersion of repolarization, which was per se
an arrhythmogenic mechanism (Huang et al. 2014b). Ito has an
important influence on the electrical driving force for systolic
Ca2+ entry into the cardiac myocyte. Decrease of Ito density
may therefore significantly contribute to the pathogenesis of

excitation contraction abnormalities and cardiac arrhythmias
(Zhi-Bin et al. 2014). Previous study had demonstrated that
angiotensin II induced increase in frequency of cytosolic and
nuclear calcium waves of heart cells via activation of AT1 and
AT2 receptors (Bkaily et al. 2005). The density of ICaL was
increased in hypertrophied myocytes, which resulted in in-
creases in [Ca2+]i (Zhi-Bin et al. 2014). Ca

2+-dependent signal
pathways were likely activated, which led to myocardial hy-
pertrophy and decrease of Ito. The myocardial hypertrophy,
increase of ICaL, and decrease of Ito were the underlyingmech-
anisms of decrease in VFT (Zhi-Bin et al. 2014). The present
results added novel information on the effect of pharmacolog-
ical treatment on electrophysiological remodeling, showing
for the first time that long-term treatment with PD123319
was able to worsen the electrophysiological alterations asso-
ciated with cardiac and cellular hypertrophy.

Interestingly, the effect of PD123319 was observed for a
daily dosage, which did not significantly affect systolic blood
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pressure. This was not surprising since deterioration of cardiac
hypertrophy in the absence of significant highing of blood
pressure. AT2R was involved in vasodilation via release of
bradykinin and nitric oxide, anti-inflammation, and healing
from injury. Interestingly, the in vivo vasodilation effect of
the AT2R activation did not lead to reduction in blood pres-
sure (Bosnyak et al. 2010). This finding could be explained by
the counter regulatory vaso-constrictive effects of the highly
expressed AT1R. The concomitant administration of a low-
dose AT1R antagonist with an AT2R agonist was shown to
cause further reduction in blood pressure in rats. Blockade of
AT1R unmasks the vasodilatory effects of the AT2R in acute
as well as chronic in vivo experiments (Foulquier et al. 2012;
Katada andMajima 2002; Cosentino et al. 2005;Widdop et al.
2002). These observations suggest that AT2R stimulation
might potentiate vasodilation during concomitant AT1R
blockade. In these studies, AT2R-mediated vasodilation was
inhibited by its antagonist PD123319. In the study, to investi-
gate the effects of chronic AT2R stimulation with compound
21 (C21) on the heart, 7-day treatment with C21 improved
post-myocardial infarction systolic and diastolic ventricular
function, accompanied by reduction in cardiac scar size, and
diminished levels of inflammatory and apoptotic markers in
the peri-infarct zone (Kaschina et al. 2008). C21 was also
reported to reduce deposition of interstitial collagen in myo-
cardial fibronectin content (Rehman et al. 2012), Interestingly,
preconditioning of the bone marrow mononuclear cells with
the AT2R agonist CGP42112A before transplanting into a
post-myocardium infarction zone, improved global cardiac
function by reducing infarct size, cardiomyocyte apoptosis,
and inflammation (Xu et al. 2013). Direct stimulation of the
AT2R may account for preserved heart function and attenua-
tion of disease-associated cardiopathophysiology by restoring
the balance of the RAS axes and anti-inflammatory and anti-
fibrotic effects (Namsolleck et al. 2014). In the study of hearts
from SHR treated with valsartan combined with the AT2 an-
tagonist PD123319 for 1 or 2 weeks, valsartan significantly
increased ventricular DNA fragmentation, increased apoptosis
in epicardial mesothelial cells, decreased DNA synthesis, and
significantly reduced cardiomyocyte cross-sectional area.
These valsartan-induced changes were attenuated by
PD123319 co-administration (Der Sarkissian et al. 2013).
AT2 receptor antagonist inhibited collagen degradation by in-
creasing the activity of matrix metalloproteinases 2 and 9 and
decreasing the level of tissue inhibitor of metalloproteinases
(Qi and Katovich 2014). AT2R blockade enhanced Ang II
levels, leading to AT1R stimulation, which promoted the car-
diac and cellular hypertrophy (Dolan and O’Brien 2016).
Previous study had demonstrated that stimulation of cardiac
AT2R exerts a novel anti-pressor action by inhibiting AT1R-
mediated chronotropic effects, and that application of AT1R
antagonists to patients with cardiovascular diseases has bene-
ficial pharmacotherapeutic effects of stimulating cardiac

AT2R (Masaki et al. 1998). Taken together, these may be the
underlying mechanism of long-term treatment with
PD123319 worsening the cardiac and cellular hypertrophy.

Long-term treatment with PD123319 not only affected de-
velopment of cardiac and cellular hypertrophy but also affect-
ed the electrophysiological alterations.

Limitations

One limitation of the study was that the use of urethane as
anesthetic was disputed. Furthermore, the way to induce fi-
brillation was controversial. Finally, the receptor-ion channel
signaling, gating kinetics of ion channel, and action potential
of myocytes were not checked.
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