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Molecules of the coagulation pathway predispose patients to cancer-associated thrombosis and also trigger intracellular
signaling pathways that promote cancer progression. The primary transcript of tissue factor, the main physiologic trigger
of blood clotting, can undergo alternative splicing yielding a secreted variant, termed asTF (alternatively spliced tissue
factor). asTF is not required for normal hemostasis, but its expression levels positively correlate with advanced tumor
stages in several cancers, including pancreatic adenocarcinoma. The asTF-overexpressing pancreatic ductal
adenocarcinoma cell line Pt45.P1/asTF+ and its parent cell line Pt45.P1 were tested for growth and mobility under
normoxic conditions that model early-stage tumors, and in the hypoxic environment of late-stage cancers. asTF
overexpression in Pt45.P1 cells conveys increased proliferative ability. According to cell cycle analysis, the major fraction of
Pt45.P1/asTF+ cells reside in the dividing G2/M phase of the cell cycle, whereas the parental Pt45.P1 cells are mostly
confined to the quiescent G0/G1 phase. asTF overexpression is also associated with significantly higher mobility in cells
plated under either normoxia or hypoxia. A hypoxic environment leads to upregulation of carbonic anhydrase IX (CAIX),
which is more pronounced in Pt45.P1/asTF+ cells. Inhibition of CAIX by the compound U-104 significantly decreases cell
growth and mobility of Pt45.P1/asTF+ cells in hypoxia, but not in normoxia. U-104 also reduces the growth of Pt45.P1/asTF
+ orthotopic tumors in nude mice. CAIX is a novel downstream mediator of asTF in pancreatic cancer, particularly under
hypoxic conditions that model late-stage tumor microenvironment.
Laboratory Investigation advance online publication, 10 October 2016; doi:10.1038/labinvest.2016.103

The genetic programs of tumor progression are activated
downstream of deregulated growth and survival signals in
cancers, but not in benign tumors.1 They direct tissue
destruction and dissemination. There is a functional link
between the programs of tumor progression and the hemo-
static system,2 as both coagulopathy and neoangiogenesis are
important features of the vasculature associated with
malignancy.3–5 Blood clotting disorders ranging from throm-
bosis to hemorrhage lead to poor prognosis in cancer patients,
and hemostatic system inhibitors have long been proposed as a
means to control tumor progression.6 Beyond coagulopathies,
the components of the hemostatic system also directly affect
the course of the disease via tumor cell proliferation, survival
and dissemination. For instance, in the absence of fibrinogen,
lung metastases in mice with melanoma are significantly
reduced.7 Thrombin and its receptor (PAR-1) increase the
invasive phenotype in breast cancer.8 Tissue factor (TF) and
the complex TF/FVIIa/FXa contribute to tumor progression in
breast cancer, colorectal cancer and other malignancies.8,9

TF is known to promote the expression of metastasis genes,
which directly mediate tumor progression.10,11 The primary
transcript of TF, the main physiological trigger of blood
coagulation, undergoes alternative splicing to yield a variant
form, termed asTF (alternatively spliced tissue factor). asTF is
devoid of the transmembrane domain and hence can be
secreted.10 Whereas TF expression positively correlates with
advanced tumor stages and thrombosis, asTF is not required
for normal hemostasis,11 but its expression levels are higher in
patients with more aggressive pancreatic ductal adenocarci-
noma. asTF acts as a cell inducer by binding β-1 integrins,
which are selectively activated by hypoxia-inducible factor
(HIF).12,13 Although asTF expression is associated with
increased tumor cell proliferation, metastases and angiogen-
esis in pancreatic cancer,11,14,15 the underlying mechanisms of
tumor progression at late stages, where it is highly expressed,
are yet to be fully delineated.

Once pancreatic cancer has progressed, asTF acts in an
environment of low glucose, high lactate and low pH. In this
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setting, the cancer cells maintain their homeostasis in part
through the actions of carbonic anhydrases (CAs). These
enzymes catalyze the reversible hydration of carbon dioxide,
and thus contribute to pH maintenance. Carbonic anhydrase
IX (CAIX) is a transmembrane protein that may be
overexpressed in hypoxic cancer cells as a result of increased
glycolysis and acidic pH, and was recently proposed to have a
major role in the pathobiology of pancreatic cancer.16

Although increasing survival by preventing an intracellular
drop in pH, CAIX in turn makes the extracellular space more
acidic and through this process could also affect cancer cell
motility. At late cancer stages, tumor-promoting proteins
such as asTF may in part act through CAIX. Indeed, we
showed that asTF overexpression in pancreatic cancer cells
upregulates the expression of VEGF,15 a gene that, like CAIX,
is regulated by HIF-1.17

To better understand the mechanisms by which asTF
promotes tumor progression in late-stage pancreatic cancer,
we tested the asTF-overexpressing pancreatic ductal adeno-
carcinoma cell line Pt45.P1/asTF+ and the parent cell Pt45.P1
for proliferative potential and mobility under a normoxic,
high glucose environment that models early-stage tumors,
and a hypoxic, energy-deprived, low pH environment that
recapitulates the milieu of late-stage tumors.

MATERIALS AND METHODS
Cell Culture
The human pancreatic ductal adenocarcinoma cell line Pt45.
P1 and the Pt45.P1 derived, asTF-overexpressing cell line
Pt45.P1/asTF+ were cultured in high glucose (1000 mg/l)
DMEM supplemented with 10% FBS (Fisher Scientific),
HEPES (Gibco), sodium pyruvate (Sigma) and the selecting
antibiotic (Zeocin) as appropriate. Early-stage cell culture
conditions (normoxic, physiologic pH, high glucose) were
characterized by 5% CO2, ambient O2, 1000 mg/l glucose and
0 mM lactate, whereas late-stage conditions (hypoxic, low
glucose/high lactate) comprised 20% CO2, 1% O2, 0 mg/l
glucose and 5 mM lactate in BME medium (Gibco). We note
that Pt45.P1 cells were previously described to carry KRAS
mutation, a genetic hallmark of PDAC.18

Protein Expression
Cell lysates were collected 48 h after seeding the cells at
0.5 × 105/well in 24-well plates under early-stage conditions
(5% CO2, ambient O2, 1000 mg/ml glucose) or advanced-
stage conditions (20% CO2, 1% O2, no glucose, 5 mM
lactate). For generating chemical hypoxia as a positive control,
HeLa cells were treated with 100 μM CoCl2 for 48 h before
lysing. The protein concentrations were determined using the
Pierce BCA assay, and 15 μg of protein was loaded per lane on
8% SDS PAGE. The separated proteins were then transferred
to a PVDF membrane, blocked with 5% nonfat milk, probed
with antibodies to asTF (rabbit monoclonal RabMab1),19

vimentin (rabbit mAb, Cell Signaling), β-actin (rabbit, Cell
Signaling), HIF-1α (rabbit pAb, Bethyl Laboratories), HIF-2α

(rabbit pAb, GeneTex) CAIX (mouse mAb, GeneTex) or
CAXII (goat pAb, Acris), followed by probing with the
corresponding HRP-conjugated secondary antibodies (Bio-
Rad) and developed using ECL and H2O2.

Cell Proliferation Assay
Pt45.P1 and Pt45.P1/asTF+ cells were seeded in triplicates
under early-stage or late-stage conditions in 96-well plates at a
density of 2000 cells/well. The cell abundance was measured
on days 0, 1, 2, 3 and 4 using Cell Proliferation Reagent
WST-1 (Roche), according to the manufacturer’s protocol.
WST-1 (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetra-
zolio]-1,3-benzene disulfonate) is taken up by live cells and
cleaved by enzymes of the intermediary metabolism to
formazan, which is retained intracellularly. This generates
absorbance at 420–480 nm that can be directly correlated to
the levels of viable cells in the system.

Cell Culture Medium
BME (Basal Medium Eagle) 450 ml

50 ml + FBS

+ non-essential amino acids 5 ml

1 mg/l+ vitamin B12

+ penicillin/streptomycin (standard)

late stageearly stage

+ lactate 5-10 mM
-

---

---+ glucose 1000 mg/l

20%CO2 CO25%

1%O2 O2ambient

N2 balance---

Figure 1 Upregulation of CAIX by asTF overexpression. (a) Cell culture
conditions for modeling early-stage or late-stage pancreatic cancer
progression. (b) Expression of the hypoxia-associated proteins HIF-1α
(117 kD), HIF-2α (118 kD) and CAIX (55 kD) in early (norm) or late-stage
(hyp) environments. β-Actin served as a loading control. HeLa cells
treated with 100 μM CoCl2 were used as a positive control for hypoxia-
induced gene expression. ‘env,’ the environment under which the cells
were kept for 48 h before lysing, with ‘hyp’ indicating hypoxic/low
glucose and ‘norm’ indicating normoxic/high glucose. The bottom panel
shows the overexpression of asTF in Pt45.P1 cells, vimentin,18 and the
loading control β-actin.
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Cell Cycle Analysis
Pt45.P1 and Pt45.P1/asTF+ cells were seeded in 24-well plates
either for adhesion (directly on the plastic surface of the plate)
or under non-adherent conditions (on a layer of 0.015 μg/
mm2 poly-HEMA),20,21 at a minimum density of 100 000
cells/well. Seventy-two hours after plating, the cells were
harvested and stained with propidium iodide (Sigma),22 and
were analyzed for cell cycle stage using FACS Calibur flow
cytometer (BD Biosciences).

Gap Closure (Wound Healing) Assay
Pt45.P1 and Pt45.P1/asTF+ cells were seeded in 12-well plates
at a density of 0.1 × 106 cells/well. After 1–1.5 days, the cells
had adhered and reached confluence, and the plates were
scratched at the center of each well using a P200 pipet tip. To
control for possible confounding effects by cell division, the

assay was performed in the presence or absence of 2 μM
thymidine (a G1/S blocker of cell cycle progression).
Photographs were taken at 0, 18, 24, 48, 72 and 96 h. The
wells were quantitatively analyzed for gap closure activity by
determining the area (in pixels) left unoccupied using the
software ImageJ. The area at 0 h was set to 100%.

Pharmacologic Inhibition of CAIX
To evaluate the contributions by CAIX to asTF-mediated
tumor progression, functional assays were performed in the
presence or absence of the CAIX and CAXII inhibitor U-104
(EMD Millipore) or vehicle control (0.15% DMSO). The
drug concentration was 75 μM, applied to Pt45.P1 and Pt45.
P1/asTF+ cells.

Figure 2 Cell proliferation in normoxia and hypoxia. Pt45.P1 and Pt45.P1/asTF+ cells were plated in triplicates in 96-well plates in (a) the early-stage
environment (5% CO2, ambient O2, 1000 mg/l glucose, 0 mM lactate) or (b) the advanced-stage environment (20% CO2, 1% O2, 0 mg/l glucose, 5 mM
lactate). (c–f) Effects of the CAIX inhibitor U-104 (75 μM) on cell proliferation by Pt45.P1/asTF+ cells (c, e) or Pt45.P1 cells (d, f) under advanced-stage
(c, d) or early-stage conditions (e, f). At the indicated times, WST-1 uptake was measured by colorimetry. The error bars are s.e.m. * Indicates
significance at Po0.05.
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Mouse Tumor Model
All animal procedures and studies were carried out in
accordance with protocols approved by the Institutional
Animal Care and Utilization Committee, University of
Cincinnati. Pt45.P1/asTF+ cells (1 × 106 in 20 μl PBS) were
orthotopically implanted into the pancreata of nude mice
(age: 12–14 weeks; source: Harlan Laboratories, Indianapolis,
IN, USA; n= 8 per group, one mouse was lost in the
treatment group because of severe complications). Eight
weeks after implantation, the mice were injected with U-104
(Selleck Chemicals) or vehicle control. U-104 was solubilized
in 55.6% PEG 400, 11.1% ethanol and 33.3% water at 5 mg/
ml, and then administered at 100 μl/dose intraperitoneally,
daily over a period of 4 weeks as described.19,20

RESULTS
CAIX is a Downstream Target of asTF
As asTF expression is significantly upregulated in patients
with late-stage pancreatic cancer,11 it is important to better
delineate the downstream mechanisms through which it may
promote tumor progression. Whereas conventional cell
culture conditions aim to impart high growth capacity to
cancer cells that may inform on early transformation, they do
not suitably reflect the microenvironment of late-stage cancer
lesions. We therefore analyzed Pt45.P1/asTF+ and Pt45.P1
lysates for the expression of specific proteins under normoxic,
high glucose conditions that model early-stage tumors and in
the hypoxic, high-lactate environment of late-stage cancers
(Figure 1a). HIF-2α was selectively expressed by Pt45.P1 cells
that have a low basal level of asTF expression, whereas
overexpression of asTF was accompanied by negligible
HIF-2α expression. Although Pt45.P1 cells and Pt45.P1/
asTF+ cells had comparable expression levels of HIF-1α,
hypoxia-induced expression of CAIX (a known downstream
target of HIF-1α) was significantly more pronounced in Pt45.
P1/asTF+ cells compared with Pt45.P1 cells (Figure 1b). As
we previously described, levels of full-length TF do not
increase in response to asTF overexpression in Pt45.P1 cells
under normoxic conditions;11,23 the same was observed under
hypoxic conditions (data not shown). CAIX is an enzyme
inducible by the lack of oxygen that has important roles in
maintaining intracellular pH and increasing cancer cell
invasiveness. asTF favors a signaling pathway associated with
HIF-1α over HIF-2α, and this may induce CAIX in a late-
stage tumor environment. No appreciable levels of CAXII
were detected in either Pt45.P1/asTF+ cells or Pt45.P1 cells
under normoxic or hypoxic conditions (data not shown).

Under Late-Stage Tumor Conditions, CAIX Contributes to
asTF-Induced Cell Cycle Progression
To test the effect of asTF overexpression on cell division,
Pt45.P1 and Pt45.P1/asTF+ cells were assessed for cell
proliferation using a colorimetric assay. Over a period of
4 days, under both early- and late-stage conditions, the Pt45.
P1/asTF+ cells showed a significantly higher rate of
proliferation compared with Pt45.P1 cells (Figures 2a and
b). U-104, a benzene-sulfonamide, is a pharmacologic
inhibitor of CAIX and CAXII.24,25 The proliferation rate of
Pt45.P1/asTF+ cells under late-stage conditions was decreased
in the presence of U-104. The drug did not affect the
distribution of the cell cycle phases in Pt45.P1/asTF+ cells in
early stage, or of Pt45.P1 cells in early- or late-stage
environments (Figures 2c–f).

To further corroborate the proliferation results, we
analyzed Pt45.P1 and Pt45.P1/asTF+ cells, plated under early-
and late-stage conditions, for their distribution over cell cycle
stages via propidium iodide staining and flow cytometry.
Although Pt45.P1 cells had a significantly higher percentage
of cells in the non-dividing G0/G1 phase, asTF-overexpressing
cells were more prominently found in the G2/M phase of the
cell cycle in both early-stage (Figure 3a) and late-stage
(Figure 3b) environments. Non-adherent survival and pro-
liferation is an integral element of tumor progression, as it
allows for the spread of the transformed cells. We therefore
asked whether asTF overexpression contributes to cell cycle
progression under non-adherent conditions. Pt45.P1 and
Pt45.P1/asTF+ cells were plated either on conventional cell
culture dishes, or on a layer of poly(2-hydroxyethyl
methacrylate) (poly-HEMA) to prevent the cells from
attaching to the plastic surface. A significantly higher
percentage of cells overexpressing asTF resided in the dividing
G2/M phase of the cell cycle under adherent and non-
adherent conditions, in both conventional cell culture that is
reflective of early-stage tumors (Figure 3c) and in a late-stage-
like environment (Figure 3d). Thus, asTF expression
promotes cell growth under adhesive conditions that model
cell attachment to the basement membrane, as well as in non-
adhesive states that represent cancer cells in circulation.

When CAIX was inhibited by U-104 in adherent cells
under late-stage conditions, the percentage of Pt45.P1/asTF+
cells in the G0/G1 phase significantly increased by 44% as
compared with Pt45.P1/asTF+ cells without drug treatment
(Figure 4). This inhibition via U-104 also reduced the
percentage of cells in the G2/M phase of the cells cycle in

Figure 3 Effect of asTF on cell cycle phases. (a) Flow cytometry profiles of PT45.P1 cells transfected with asTF or vector after staining with propidium
iodide to analyze the phases of the cell cycle. The plating conditions are indicated above each graph. (b, c) Pt45.P1 and Pt45.P1/asTF+ cells were plated
in triplicates in early-stage (b) or advanced-stage (c) environments and were analyzed for cell cycle stage via flow cytometry after propidium iodide
staining. The percentage of cells in G2/M was assessed after plating in conventional cell culture dishes (plastic) or on poly(2-hydroxyethyl methacrylate)
(poly-HEMA) to prevent cell adhesion. The comparison was done under early-stage (d) or advanced-stage (e) conditions. The error bars are s.e.m. *
Indicates significance at Po0.05.
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the late-stage-like environment, although the P-value only
reached 0.07.

In a Late-Stage Environment, CAIX Acts as a Mediator of
asTF-Imparted Increase in Cell Motility
To measure the capacity for directed migration, a gap closure
(‘wound healing’) assay was performed, whereby we assessed
the ability of asTF-overexpressing versus control Pt45.P1 cells
to close a gap created by disrupting a monolayer through
scratching the center of a well. asTF overexpression facilitated
cell motility as evidenced by a complete restoration of the
Pt45.P1/asTF+ monolayer within 24 h, whereas Pt45.P1 cells
still showed a visible gap after 48 h (Figures 5a–c). To ensure
that the migration result was not compromised by the
different growth rates between Pt45.P1/asTF+ cells and the
parental cell line Pt45.P1, we also performed the experiment
in the presence of 2 μM thymidine, which blocks cell cycle
progression at G1/S phase.26 The results were comparable,
corroborating the enhancing effect of asTF on cell motility
(Figures 5d–e).

To evaluate the functional significance of CAIX, which acts
downstream of asTF in pancreatic cancer, the cell migration
assays were performed in the absence or presence of 75 μM
U-104. Under late-stage conditions and in the presence of
U-104, the ability of Pt45.P1/asTF+ cells to close the gap was
significantly reduced as compared with untreated and/or
DMSO treated cells (Figure 6). Of note, U-104 neither
affected the motility of Pt45.P1 cells (in early- or late-stage
environments), nor of Pt45.P1/asTF+ cells under early-stage
conditions (Figure 6g). Thus, the hypoxia-specific upregula-
tion of CAIX by asTF-overexpressing cells imparts them with
a more aggressive phenotype under conditions that represent
late-stage tumors.

asTF Engages CAIX In Vivo
To test the involvement of CAIX in asTF-fueled tumorigen-
esis in vivo, we implanted Pt45.P1/asTF+ cells orthotopically
into the pancreata of nude mice. Eight weeks post-implanta-
tion, one group was treated with daily injections of U-104 for
4 weeks, whereas the control group received vehicle
injections. The weights of the pancreata (surrogate readouts
for tumor growth) in the treated group were lower than in the
untreated group; however, the P-value did not reach
significance, possibly due to limited in vivo efficacy of
U-104. (Figures 7a and b). When stained for Ki-67, a
proliferation marker, the U-104-treated group did display
significantly smaller levels of proliferating tumor cells as

compared with the vehicle-treated group (Figures 7c and d).
These results suggest that in vivo, asTF engages CAIX to
promote tumor progression.

DISCUSSION
In the hypoxic tumor environment of late-stage pancreatic
ductal adenocarcinoma, asTF expression is prominent in
tumor lesions, surrounding tumor tissues and lymph nodes. It
may correlate positively with tumor grade.11 Here we confirm
that asTF supports proliferation and migration, thus enhan-
cing aggressive tumor cell behavior. Although the in vitro
phenotype of tumor growth and motility, induced by asTF
overexpression, is comparable between the early-stage condi-
tions and the late-stage conditions modeled here, the asTF-
mediated functions in these different environments are
associated with distinct downstream signaling pathways that
do (hypoxia) or do not (normoxia) involve CAIX. asTF
promotes the progression of pancreatic cancer in early- and
late-stage environments alike. Physical interaction with β1
intergins is critical to asTF’s functions in a pancreatic cancer
setting: to this effect, we recently published that asTF
extensively colocalizes with β1-integrins in vivo in an
orthotopic PDAC model using Pt45.P1 cells.23 As its initial
discovery in the early 2000s, asTF’s expression has been
detected at significant levels in multiple PDAC cell lines and
tumor growth-promoting effects of free/secreted asTF have
been described for several PDAC cell lines, that is, MiaPaCa-
2, Capan-1 and Pt45.P1;11,14,15,27,28 however, our article is the
first to assess the intracellular mechanisms underlying asTF’s
effects on PDAC cells under patently hypoxic conditions.
Whereas many cell functions decline in hypoxia/high lactate,
asTF maintains its activity by engaging a CAIX-associated
pathway that physiologically is an element of the cellular
hypoxia response.

As glycolysis constitutes a common metabolic pathway in
cancer cells that leads to the generation and accumulation of
high levels of lactic acid, the intracellular pH of these cells
drops substantially. CAIX is a membrane-bound enzyme
that catalyzes the conversion of water and carbon dioxide,
extracellularly, to bicarbonate ions and protons. These
bicarbonate ions are then transported inside the cells,
elevating the intracellular pH toward physiologic levels, so
that cell survival is assured. Through the same process, CAIX
leads to an accumulation of protons extracellularly, which
makes the extra-cellular environment more acidic. In various
types of cancers, patients having tumors with high CAIX
expression have a higher risk of locoregional failure, disease

Figure 4 Decreased cell cycle progression under CAIX inhibition. The effect of 75 μM U-104 on cell cycle progression was assessed by flow cytometry
after propidium iodide staining. (a) Flow cytometry profiles of PT45.P1 cells transfected with asTF or vector after staining with propidium iodide to
analyze the phases of the cell cycle. The plating conditions are indicated above each graph. (b, d) Percentage of cells in the G0/G1 phase of the cell
cycle for Pt45.P1/asTF+ cells (b) and Pt45.P1 cells (d). (c, e) Percentage of cells in the G2/M phase of the cell cycle for Pt45.P1/asTF+ cells (c) and Pt45.
P1 cells (e). The error bars are s.e.m. *Indicates significance at Po0.05.
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progression and higher risk to develop metastases.29 CAIX
is a downstream mediator of HIF-1α, which is activated by
hypoxia. By contrast, HIF-2α expression is seen in Pt45.

P1 cells, and is not associated with asTF levels. This diff-
erence in the expression levels of HIFs is important for cell
fate because HIF-1α and HIF-2α regulate distinct hypoxia-
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associated pathways.30 asTF may engage various sign-
aling pathways in transformed cells. One or more of
these mechanisms may be associated with the envir-
onment-dependent, alternative pathways described here

(Figure 8).
U-104 has been used in the pharmacological inhibition of

CAIX, both in vitro and in vivo. A benzene-sulfonamide,
U-104, specifically inhibits CAIX and CAXII, whereas it has

Figure 5 Acceleration of gap closure by asTF overexpressors. (a) Comparison of gap closure ability of Pt45.P1/asTF+ cells versus Pt45P1 cells under
early- and advanced-stage conditions. (b, c) Quantification of cell motility. The graph shows the area unoccupied by Pt45.P1/asTF+ or Pt45.P1 cells
under both early and advanced stages at various time intervals (0 h, 18 h, 24 h, 48 h). (d, e) Effect of thymidine on cell motility. This assay was
performed to compare the gap closure ability of asTF overexpressors and Pt45.P1 cells in the presence of thymidine (2 μM), a G1/S blocker. The graph
represents the area unoccupied by Pt45.P1/asTF+ and Pt45.P1 cells under both normoxia and hypoxia at the designated time intervals. The error bars
are s.e.m. *Indicates significance at Po0.05; **indicates significance at Po0.01; ***indicates significance at Po0.001.
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Figure 6 Effect of CAIX inhibition on gap closure. (a) Structure of the CAIX inhibitor U-104, 1-(4-fluorophenyl)-3-(4-sulfamoylphenyl)urea. (b) Gap closure
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only a weak inhibitory effect on other CAs. CAIX inhibition
via U-104 may significantly decrease tumor growth in breast
cancer.24,25 In our in vitro model of late-stage tumors, we did
see a significant reduction in pancreatic cancer cell growth
and migration in the presence of U-104, which was limited to
Pt45.P1/asTF+ cells expressing high levels of CAIX, whereas
Pt45.P1 cells in the same environment express low levels of
CAIX and were not affected by U-104.

For over six decades, cancer cells have been grown in
culture31 and the conditions have conventionally been devised
to maximize cell growth. However, such systems disregard

one of the important pathophysiological properties of late-
stage tumors: the prevalence of hypoxia.32 During early stages
of transformation, tumor cells acquire gain-of-function
mutations in oncogenes or loss-of-function mutations in
tumor-suppressor genes that cause excessive proliferation
and anti-apoptosis. As the transformed cells multiply, they
outgrow the diffusion limits of oxygen, thus, becoming
hypoxic. As a result of increased glycolysis, more lactic acid is
generated, which makes the lesions acidic.33,34 Although new
blood vessels are formed in cancer angiogenesis, they are
disorganized and cannot effectively alleviate this state.34–36
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Such conditions need to be studied in model systems that
account for the microenvironment that is prevalent during
tumor progression.

Although cell culture is indispensable for cancer research, it
has important limitations for modeling in situ environments.
The technique has been developed in a direction that allows
high signal-to-noise ratios, which often egregiously exceed
bona fide physiologic changes. Plastic dishes render cells
hypo-active, so that their transcriptional baseline activity is
reduced compared with cell growth on extracellular matrix
molecules, and ensuing responses to external stimuli may be
exaggerated.37 Likely in part because of the culture conditions,
gene expression changes by cell lines in response to
environmental stimuli have disproportionately higher magni-
tude than similar changes occurring in vivo.38 We therefore
sought to study asTF pathobiology under conditions reaching
beyond the canonical normoxic, high glucose cell culture
conditions that maximize cell division and produce supra-
physiologic responses. An aggressive phenotype that may arise
in a late-stage tumor microenvironment prompted us to
study the mechanisms that promote aggressive behavior
under hypoxic, low-glucose, high-lactate tumor conditions,
revealing a heretofore unknown asTF-CAIX axis in pancreatic
cancer. We note the importance of adapting experimental
models as closely as possible to the disease states under study.
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