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Abstract

In this work, the influence of the different S═O, S−O, N⋯H, O⋯H, Na⋯O bonds

present in the structures of the powerful laxative drug, sodium picosulphate in gas and

aqueous solution phases were studied combining the density functional theory (DFT)

calculations with the experimental available infrared, 1H NMR and UV-visible

spectra. The structural, topological, electronic and vibrational properties were

investigated in both media by using the hybrid B3LYP/6-31G* method and the

integral equation formalism variant polarised continuummodel (IEFPCM). Here, the

characteristics of the S═O, S−O, N⋯H, O⋯H, Na⋯O bonds were completely

revealed by using atomic charges, natural bond orbital (NBO) and atoms inmolecules

(AIM) studies. The infrared, 1H NMR, 13C NMR and UV-visible spectra are in

reasonable concordance with those experimental available in the literature. The

vibrational analysis of sodium picosulphate was performed considering C3V

symmetries for both SO4
2− groups and the complete assignments of the 126

vibration modes were reported in gas phase and aqueous solution together with their

corresponding force fields. In addition, the reactivities of sodium picosulfate increase

in solution due to their ionic characteristic which probably justifies their behaviour as

a stimulant cathartic and their easy metabolic conversion, as reported in the literature.
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1. Introduction

The sodium salts containing SO4
2− or SO3

2− groups in their structures are

employed as reactive in numerous and important industries, as was reported by

Periasamy et al. [1]. Structurally, two modes of coordination in particular,

monodentate or bidentate, are expected for these groups in different compounds [2,

3, 4]. Normally, those sodium salts when are linked to different organic rings

present interesting biological activities which due to their ionic characteristic are

highly used in the pharmaceutical industry to facilitate the incorporation of drugs

to the human organism or as an intermediate in the preparation of other drugs [4].

For these reasons, the structures and properties of pharmaceutical drugs containing

those salts are of great interest to their identifications by using different

spectroscopic techniques, such as the vibrational spectroscopy and also, to know

and predict their reactivities and behaviours in the different media in which they

are present. The aim of this work is to study the structural and vibrational

properties of anhydrous sodium picosulphate or picosulfate, a stimulant laxative

drug orally administered to patients in preparations for colonoscopy [5, 6, 7, 8],

taking into account that, so far, these properties were not reported. Actually, the

control and the quantitative analysis of this drug are performed by using the high

performance liquid chromatographic (HPLC) because this technique is one of the

most studied [9, 10]. The chemical name of this compound is the 4,4′-(2-
pyridinylmethylene) bisphenol bis (hydrogen sulfate) (ester) disodium salt. This

salt itself is pharmacologically inactive but it is converted by bacterial hydrolase in

the human organism to the pharmacologically active metabolite, bis(p-hydro-

xyphenyl)-2-pyridylmethane [6]. Here, we have reported a detailed study on the

structural and vibrational properties of sodium picosulfate combining the DFT

calculations with the experimental available FTIR, NMR and UV-visible spectra in

gas phase and in aqueous solution taking into account that this salt is soluble in

water. The initial structures of this salt in these two media were optimized by using

the hybrid B3LYP/6-31G* level of theory [11, 12]. After that, NBO [13, 14] and

AIM [15, 16] calculations were performed in order to investigate the

characteristics of the different pyridinyl and phenyl rings and of the Na−O,
S═O and S−O bonds together with their topological properties. The force fields for

the compound in the two media were computed by using a generalized valence

force field (GVFF) [17, 18] and the normal modes calculations with the Molvib

program [19]. Then, the complete assignments of the 126 vibration normal modes

predictable for sodium picosulfate were reported in both media using the potential

energy distribution (PED). In this paper, the structural, topological and vibrational

properties for sodium picosulfate together with their vibrational assignment are

reported for the first time. This way, the sodium picosulfate salt could be easily

identified in different media by means of the vibrational spectroscopy.
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2. Methodology

The initial anhydrous sodium picosulfate (APS) structure was modelled by using

the GaussView program [20] taking into account a C3v symmetry for the two

sulfate groups, in accordance with the experimental structure observed for the

potassium borosulfate [2]. After that, the Cartesian coordinates were optimized in

gas and aqueous solution phases using the hybrid B3LYP/6-31G* method [11, 12]

with the Gaussian 09 program [21]. The influence of the solvent on their properties

were studied by using the self-consistent reaction field (SCRF) method together

with the IEFPCM model at the same level of theory [22, 23]. The volume variation

that experiment the salt in water was also computed using the Moldraw program

[24] whiles the solvation energy involved in this process was calculated using the

solvation model [25]. Both stable structures represent minima in the potential

energy surface because all the frequencies are positive. Fig. 1 show the optimized

structure of sodium picosulfate together with the numbering of the atoms while the

detailed identification of the pyridinyl and phenyl rings is presented in Fig. 2. The

characteristics of the three rings and of the Na−O, S═O and S−O bonds were

investigated by using the atomic charges, bond orders, molecular electrostatic

potentials (MEP) surface, stabilization energies, topological properties which were

computed in both media with the NBO 3.1 and AIM2000 programs [14, 16]. Here,

the MEP surface of the salt in the gas phase was built with the aid of the

GaussView program [20] while the corresponding values were obtained using the

[(Fig._1)TD$FIG]

Fig. 1. Theoretical molecular structure of anhydrous sodium picosulfate and the atoms labelling.

Article No~e00190

3 http://dx.doi.org/10.1016/j.heliyon.2016.e00190

2405-8440/© 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00190


Merz-Kollman (MK) charges [26]. Additionally, the frontier molecular orbitals

and some descriptors were calculated in order to predict the reactivity and

behaviours in the two media studied [27, 28, 29, 30, 31, 32, 33]. On the other hand,

the Molvib program [19] was used to transform the force fields initially expressed

in Cartesian coordinates to natural internal coordinates. After that, the Potential

Energy Distribution (PED) were computed from the scaled quantum mechanics

(SQM) force fields in both media using the same level of theory in order to perform

the complete assignments considering the PED contributions ≥ 10%. The 1H-NMR

and 13C-NMR spectra in aqueous solution were predicted by using the GIAO

method [34] while the time dependent density functional theory (TD-DFT)

calculations were employed to predict the electronic spectra in solution at the same

level of theory.

3. Results and discussion

3.1. Geometrical parameters in both media

The calculated total energies, dipole moments, volume variation and solvation

energy for APS in gas and aqueous solution phases can be seen in Table 1. The

results show a notable increase in the dipole moment value from 11.06 D in gas

phase to 15.14 D in solution while the volume in solution increase from 471.2 Å3

in gas phase to 484.5 Å3 in solution showing a volume variation of 13.3 Å3. Fig. 3

shows that in solution an additional change in the direction of the dipole moment is

observed due to the separation between the pairs of SO4
2− and Na+ ions. As was

above mentioned the volumes in both media were calculated with the Moldraw

program [24] using the B3LYP/6-31G* method. Thus, the expansion of the volume

observed in solution is attributed to the calculated high corrected solvation energy

value (-254.38 kJ/mol) as a consequence of the hydration of this salt with the water

[(Fig._2)TD$FIG]

Fig. 2. Detailed structure of anhydrous sodium picosulfate showing the pyridinyl and phenyl rings.
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molecules. Note that the corrected solvation energy has higher value than the

corresponding uncorrected because the total non electrostatic terms due to the

cavitation, dispersion and repulsion energies, computed with the IEFPCM [22, 23]

and SM [25] models were added.

So far, the crystalline and molecular structure of APS were not experimentally

determined and, for this reason, the calculated geometrical parameters for the three

rings of APS in both media were compared with those experimental values

observed by Sun et al. [35] for Bis[μ−1,2-diphenyl-N,N'-bis-(di-2-pyridyl-methyl-

eneamino)ethane-1,2-diimine]disilver(I) bis-(hexa-fluorido-phosphate) acetonitrile

disolvate because it compound have similar pyridyl and phenyl rings in their

structure. On the other hand, the calculated parameters for the SO4
2− groups were

compared with those experimental recently reported for a new sulfate salt, sodium

magnesium sulfate deca-hydrate, Na2Mg(SO4)2.10 H2O by Leduc et al. [36]

because it compound present two sulfate groups linked to sodium atoms, such as

APS. These comparisons were performed by means of the root-mean-square

deviation (RMSD) values which are summarized in Table 2 together with the

geometrical parameters for APS in both media. Regarding the results we clearly

observed that in general the calculations in gas phase predicted higher values for

the bond lengths and angles related to the pyridyl and phenyl rings than for the

SO4
2− groups while in solution are most notable the increase in the bond lengths

Table 1. Calculated total (E) and relative energies (ΔE), dipole moments, volume

variation and solvation energy for anhydrous sodium picosulphate in gas and

aqueous solution phases.

B3LYP/6-31G*

GAS

E (hartree) μ (D) V (Å3)

−2471.27 11,06 471,2

PCM

E (hartree) μ (D) V (Å3)

−2471.36 15,14 484,5

Solvation energy

ΔGu
# ΔGne ΔGc

−236.07 18,31 −254,38

ΔV (Å3)=13.3
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corresponding to the SO4
2− groups, as expected due to the affinity of these groups

with the water. The exhaustive analysis show that from the four S−O bonds in the

sulphate groups three S═O bonds present lower and similar values, showing

clearly their double bond character, while the remain S1−O3 and S2−O4 distances

have higher values, confirming this way, the C3v symmetry considered for these

groups. In solution, important changes in the S═O and S−O distances are

observed, thus, whereas two S−O bonds are enlarged the other two are shortened,

as shown Table 2. Other very important observation is the remarkable increase in

solution of both O-Na distances evidencing the ionic characteristics of these bonds,

as expected due to the presence of two SO4
2− groups and two Na+ cations in the

structure of APS.

[(Fig._3)TD$FIG]

Fig. 3. Dipole moment directions for the anhydrous sodium picosulfate salt in gas phase (top) and in

aqueous solution (bottom) showing the corresponding magnitudes and orientations of their vectors.
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Table 2. Comparison of calculated geometrical parameters for the anhydrous with

the corresponding experimental ones.

B3LYP/6-31G*,a Experimental

Parameter Gas PCM Expb Expc

Bond lengths (Å)

C25-O3 1.388 1.401

C26-O4 1.387 1.402

C12-C13 1.534 1.530

C12-C14 1.532 1.531

C12-C15 1.528 1.530

C13-C16 1.402 1.402 1.372

C16-C21 1.392 1.394 1.361

C21-C25 1.396 1.393 1.369

C25-C23 1.394 1.392 1.361

C23-C18 1.395 1.395 1.371

C18-C13 1.401 1.402 1.375

C14-C17 1.400 1.403 1.372

C17-C22 1.394 1.394 1.361

C22-C26 1.394 1.393 1.369

C26-C24 1.396 1.392 1.361

C24-C19 1.392 1.395 1.371

C19-C14 1.401 1.400 1.375

C15-N11 1.342 1.344 1.347

N11-C28 1.337 1.343 1.324

C28-C29 1.394 1.392 1.381

C29-C27 1.393 1.394 1.369

C27-C20 1.393 1.392 1.365

C20-C15 1.401 1.401 1.361

O5-Na43 2.151 2.263 2.518

O6-Na44 2.156 2.263 2.518

S1-O3 1.810 1.720 1.488

S1-O5 1.500 1.493 1.481

S1-O7 1.461 1.472 1.463

S1-O8 1.460 1.472 1.477

S2-O4 1.807 1.719 1.488

S2-O6 1.500 1.493 1.481

S2-O9 1.461 1.472 1.463

S2-O10 1.459 1.472 1.477

(Continued)
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Table 2. (Continued)

B3LYP/6-31G*,a Experimental

Parameter Gas PCM Expb Expc

RMSD 0.132 0.095

Dihedral angles (°)

C12-C13-C16 118.4 118.9 120.9

C12-C13-C18 123.3 122.5 121.3

C12-C14-C17 119.5 118.3 120.9

C12-C14-C19 122.0 123.1 121.3

C12-C15-N11 118.1 118.4

C12-C15-C20 120.1 119.3

O7=S1=O8 118.7 115.6 109.6

O7=S1=O5 114.9 114.7 109.6

O8=S1=O5 115.3 115.0 109.3

O3-S1=O8 94.9 105.7 108.9

O9=S2=O10 118.6 115.6 109.6

O9=S2=O6 114.8 114.8 109.6

O6=S2=O10 115.3 114.9 109.3

O4-S2=O6 94.7 96.9 108.9

S1-O5-Na43 103.8 104.4 87.4

S2-O6-Na44 103.9 104.3 87.4

RMSD 9.4 8.2

Dihedral angles (°)

C15-C12-C13-C18 −39.3 −41.3

C15-C12-C14-C19 72.2 96.0

C14-C12-C15-C20 119.8 139.4

C14-C12-C15-N11 −59.2 −41.2

C25-O3-S1=O5 177.2 172.6

O3-S1=O5-Na43 0.0 −2.6 −20.0

C26-O4-S2=O6 176.7 178.4

O4-S2=O6-Na44 −0.4 −0.7 −20.0

RMSD 19.8 18.4

a This work.
b [35].
c [36].
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3.2. NPA charges, bond orders and MEP surface studies

The ionic nature of APS is clearly evidenced by the geometrical parameters

principally due to the two SO4
2− groups and the two Na+ cations which suggest the

importance to study the charge distributions on their structures in both media and,

besides the nature of the different bonds. For these reasons, we have studied two

charge’s types which are the natural population atomic (NPA) and the MK charges

[26], the bond orders expressed by the Wiberg indexes and the molecular

electrostatic potentials (MEPs). With the MK charges it is possible to calculate the

MEP surface values in the two media while their surfaces mapped have permitted

to observe the electrophilic and nucleophilic regions by their different colorations.

All these properties are presented in Table 3. First, analyzing the charges we

observed that both charges predicted higher positive values on the two S atoms

than the two Na atoms but, in general, the values observed in the NPA charges are

very different from those MK charges. For instance, the NPA charges on all the S,

O and H atoms in both media are higher than the other ones while on the N atoms

are observed lower NPA values. In relation to the charges on the C atoms with

hybridizing sp2, we observed negative signs on five C atoms belonging to the

phenyl R1 and R2 rings, these are those rings linked to the SO4
2− groups while in

the pyridyl rings R3 only three C atoms have negative signs because the N atoms of

these rings are also predicted by the calculations with negative signs. On the other

hand, both charges predicted negative signs on the C12 atoms with hybridizing sp3

in both media. Both charges reveal clearly the characteristics ionic of the two

sulphate groups and the two Na atoms.

When the MEP surface values in both media are analyzed we observed a

decreasing in the negative values according to the following order: S > Na > O >

C > H where the MEP values on the O atoms linked to the rings, these are the C25-

O3 and C26-O4 bonds, decreasing their values in solution while the remain O

atoms belonging to the SO4
2− groups exhibit increase in their corresponding MEP

surface values. Obviously, the decrease and increase in the MEP surface values are

strongly related to the MK charges, as observed in Table 3.

In relation to the bond orders, clearly Table 3 evidence the low bond order values

observed in the two Na atoms being lower in solution, this way, the ionic behaviour

of these atoms in both media is confirmed. In relation to the O atoms of both SO4
2−

groups we observed that the O5 and O6 atoms present the lower values because

they are linked to the S and Na atoms and their values slightly decrease in solution

by the same reason before explained. Regarding the values for the C atoms, we

observed that those with hybridizing sp2, the C13, C14 and C15 atoms, have the

higher values while the C25 and C26 atoms which are linked to O atoms present

the lower values, as expected due to the ionic characteristics of both SO4
2− groups.

The Wiberg bond index matrix in the NAO basis in gas phase shows bond order
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Table 3. Atomic MK and NPA charges, Molecular electrostatic potentials (MEP)

and bond orders (Wiberg indexes) for anhydrous sodium picosulfate in both media

at B3LYP/6-31G* level of theory.

Atoms MK NPA MEP Wiberg index

Gas PCM Gas PCM Gas PCM Gas PCM

1S 1.137 1.141 2.537 2.564 −58.941 −58.949 4.210 4,217

2S 1.137 1.140 2.539 2.564 −58.948 −58.958 4.210 4,217

3 O −0.759 −0.703 −0.847 −0.841 −22.284 −22.274 1.759 1,770

4 O −0.752 −0.713 −0.846 −0.842 −22.291 −22.283 1.763 1,769

5 O −0.661 −0.669 −1.055 −1.065 −22.332 −22.341 1.489 1,478

6 O −0.662 −0.673 −1.055 −1.066 −22.339 −22.350 1.488 1,476

7 O −0.484 −0.502 −0.925 −0.944 −22.345 −22.363 1.670 1,638

8 O −0.479 −0.508 −0.918 −0.942 −22.345 −22.364 1.679 1,641

9 O −0.489 −0.504 −0.926 −0.945 −22.352 −22.373 1.667 1,637

10 O −0.476 −0.500 −0.917 −0.941 −22.353 −22.373 1.681 1,641

11N −0.559 −0.579 −0.478 −0.459 −18.363 −18.367 3.074 3,073

12C −0.215 −0.521 −0.291 −0.294 −14.721 −14.720 3.958 3,958

13C −0.052 0.124 −0.026 −0.028 −14.733 −14.728 4.003 4,003

14C 0.179 0.296 −0.029 −0.024 −14.739 −14.737 4.004 4,005

15C 0.575 0.757 0.242 0.233 −14.696 −14.698 3.988 3,992

16C −0.043 −0.122 −0.217 −0.215 −14.742 −14.736 3.947 3,947

17C −0.233 −0.231 −0.220 −0.218 −14.746 −14.745 3.949 3,948

18C −0.071 −0.202 −0.226 −0.227 −14.746 −14.739 3.934 3,936

19C −0.105 −0.272 −0.205 −0.204 −14.751 −14.749 3.938 3,940

20C −0.418 −0.520 −0.262 −0.265 −14.730 −14.731 3.944 3,944

21C −0.380 −0.286 −0.255 −0.249 −14.744 −14.737 3.940 3,940

22C −0.288 −0.209 −0.257 −0.250 −14.752 −14.747 3.939 3,943

23C −0.336 −0.243 −0.253 −0.248 −14.742 −14.736 3.949 3,946

24C −0.290 −0.210 −0.255 −0.245 −14.749 −14.748 3.949 3,944

25C 0.575 0.478 0.284 0.280 −14.686 −14.678 3.905 3,900

26C 0.505 0.430 0.290 0.279 −14.691 −14.689 3.905 3,900

27C 0.105 0.136 −0.193 −0.195 −14.719 −14.720 3.943 3,944

28C 0.297 0.288 0.034 0.032 −14.703 −14.706 3.927 3,927

29C −0.367 −0.377 −0.279 −0.280 −14.729 −14.731 3.943 3,943

30H 0.064 0.127 0.252 0.256 −1.118 −1.114 0.939 0,937

31H 0.120 0.133 0.234 0.236 −1.111 −1.105 0.947 0,946

32H 0.146 0.136 0.231 0.232 −1.115 −1.113 0.948 0,948

33H 0.132 0.161 0.256 0.255 −1.118 −1.111 0.937 0,938

34H 0.126 0.201 0.252 0.249 −1.124 −1.123 0.938 0,940

(Continued)
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values of 0.460 for the S1−O3 and S2−O4 bonds indicating higher polarizations of
these two bonds in relation to the other ones. This way, these bonds show different

characteristics than the other ones, as will see later.

The study of the MEP surface mapped surfaces of APS in both media at the

B3LYP/6-31G* level of theory show strong blue colorations on the two Na atoms

Table 3. (Continued)

Atoms MK NPA MEP Wiberg index

Gas PCM Gas PCM Gas PCM Gas PCM

35H 0.163 0.184 0.240 0.238 −1.096 −1.096 0.944 0,945

36H 0.201 0.184 0.257 0.258 −1.110 −1.103 0.936 0,936

37H 0.199 0.164 0.260 0.253 −1.118 −1.112 0.935 0,938

38H 0.166 0.156 0.241 0.246 −1.106 −1.100 0.944 0,941

39H 0.159 0.165 0.240 0.252 −1.113 −1.114 0.945 0,939

40H 0.100 0.094 0.242 0.241 −1.092 −1.092 0.943 0,943

41H 0.053 0.065 0.224 0.228 −1.107 −1.111 0.951 0,950

42H 0.161 0.159 0.243 0.242 −1.095 −1.096 0.943 0,943

43 Na 0.908 0.910 0.919 0.925 −35.350 −35.329 0.165 0,151

44 Na 0.912 0.915 0.920 0.925 −35.358 −35.338 0.164 0,151

[(Fig._4)TD$FIG]

Fig. 4. Calculated electrostatic potential surfaces on the molecular surface of anhydrous sodium

picosulfate in gas phase. Color ranges, in au: from red −1.186 to blue ++1.186. B3LYP functional and

6-31G* basis set. Isodensity value of 0.005.
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and green on remain atoms, this way, Fig. 4 support the nature electrophilic of this

salt in both media. Note that the green colour indicated inert sites, as expected

because they correspond to the three rings. Obviously, the blue colour on both Na

atoms indicate probable sites reacting with potential biological nucleophiles.

Evidently, the mapped surfaces could in part explain the laxative property observed

for APS in solution.

3.3. NBO and AIM analysis

The above studies have showed the ionic characteristics of APS in both media but

the study of the interactions between the involved SO4
2− and Na+ ions is also

important in relation to their stabilities in both media. Hence, the stabilization

energies and the topological parameters were calculated by using the NBO [14]

and AIM [16] programs. Table 4 shows the main delocalization energy for APS in

gas and in aqueous solution phases at B3LYP/6-31G* level of theory. Three

important ΔE�®�*, ΔEn→σ* and ΔE�*→�* charge transfers are observed in both

media and other two ΔEσ→�* and ΔEσ→σ* charge transfers with lower values are

also observed. The most important delocalization energy values are transitions

from bonding orbitals C═C or C═N bonds to antibonding orbitals C═C, C═N or

S═O bonds observed on the three rings and from the lone pairs of the O atoms of

both SO4
2− groups to antibonding orbitals S═O bonds. Notice that the two ΔEσ→�*

charge transfers are only observed in gas phase. Obviously, the total ΔETotal

contribution reveals the high stability of APS in both media, but specifically in

solution, as expected due to their ionic characteristics.

The Bader’s theory [15] is very interesting to explain the characteristics of inter

and intra-molecular interactions in different compounds by using their topological

properties which can be calculated with the AIM2000 program [16]. Thus, the

electron density distribution, �(r), the Laplacian values, ▿2�(r), the eigenvalues

(λ1, λ2, λ3) of the Hessian matrix and, the |λ1|/λ3 ratio calculated in the bond

critical points (BCPs) reveal the interaction’s types. Hence, the interaction is of

hydrogen bonds or ionic interaction when |λ1|/λ3 < 1 and ▿2�(r) > 0 [37]. Here,

these parameters for APS in both media at B3LYP/6-31G* level of theory are

presented in Table 5. The values of those parameters in the BCPs show clear

differences among the S−O bonds of both SO4
2− groups in both media, as

observed in Table 5. For instance, three S−O bonds of each SO4
2− group show �(r)

values between 0.29 and 0.26 a.u. with ▿2�(r) > 0 and high values indicating that

these interactions are highly polar covalent and are called closed-shell interactions

while the S1−O3 and S2−O4 bonds present �(r) values relatively high (0.3 and 0.1

a.u.) and negative of ▿2�(r) values (-0.2 and -0.1 a.u.) demonstrating that these

interactions are called shared interaction which are typical of covalent bonds. On

the other hand, in gas phase are observed other eight closed-shell interactions (▿2ρ
(r) > 0) of which four are ionic with low �(r) and high ▿2�(r) (Na43⋯O3,
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Table 4. Main delocalization energy (in kJ/mol) for anhydrous picosulfate in gas

and in aqueous solution phases at B3LYP/6-31G* level of theory.

Delocalization Gas PCM

�N11-C15 →�*C20-C27 53.80 55.26

�N11-C15 →�*C28-C29 115.16 112.15

�C13-C18→�*C16-C21 85.10 84.52

�C13-C18→�*C23-C25 88.91 90.04

�C14-C17→�*C19-C24 83.77

�C14-C17→�*C22-C26 85.48

�C14-C19→�*C17-C22 86.65

�C14-C19→�*C24-C26 89.83

�C16-C21→�*C13-C18 82.01 84.14

�C16-C21→�*C23-C25 87.65 88.74

�C17-C22→�*C14-C19 81.93

�C17-C22→�*C24-C26 86.86

�C19-C24→�*C14-C17 81.38

�C19-C24→�*C22-C26 89.62

�C20-C27→�*N11-C15 119.34 117.54

�C20-C27→�*C28-C29 71.94 70.85

�C22-C26→�*C14-C17 82.93

�C22-C26→�*C19-C24 79.42

�C23-C25→�*C13-C18 81.30 80.13

�C23-C25→�*C13-C18 81.55 83.26

�C24-C26→�*C14-C19 80.05

�C24-C26→�*C17-C22 84.43

�C28-C29→�*N11-C15 68.55 67.46

�C28-C29→�*C20-C27 95.01 95.09

ΔETπ→π* 1532.92 1538.93

LP(2)O5 → σ*S1-O7 59.52 62.28

LP(2)O5 → σ*S1-O8 57.93 57.43

LP(3)O5 → σ*S1-O3 116.16 102.66

LP(2)O6 → σ*S2-O9 59.60 60.53

LP(2)O6 → σ*S2-O10 57.85 59.23

LP(3)O6 → σ*S2-O4 115.70 102.24

LP(2)O7 → σ*S1-O5 70.81 64.58

LP(2)O7 → σ*S1-O8 76.16 75.20

LP(3)O7 → σ*S1-O3 185.13 153.40

LP(2)O8 → σ*S1-O5 71.94 64.62

LP(2)O8 → σ*S1-O7 76.66 75.78

(Continued)
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Na43⋯O5, Na44⋯O4, Na44⋯O6) and the other ones are H bond interactions

(O7⋯H36, N11⋯H33, N11⋯H34 and O9⋯H37) with very low �(r) and ▿2�(r)

values. In solution, the number of H bond interactions is notably reduced from 4 to

1 and, where in some cases, the �(r) and ▿2�(r) values increase (S⋯O) while in

other ones decrease (Na⋯O, N−H), as observed in Table 5. These analyses clearly

support: (i) the high stabilities of APS in both media, (ii) the ionic nature of APS

and, (iii) the different characteristics of the S−O bonds belonging to the SO4
2−

groups and of Na−O bonds present in sodium picosulfate.

Table 4. (Continued)

Delocalization Gas PCM

LP(3)O8 → σ*S1-O3 188.60 155.83

LP(2)O9 → σ*S2-O6 70.51 64.41

LP(2)O9 → σ*S2-O10 76.03 75.32

LP(3)O9 → σ*S2-O4 183.96 153.65

LP(2)O10 → σ*S2-O6 72.06 64.66

LP(2)O10 → σ*S2-O9 76.87 75.57

LP(3)O10 → σ*S2-O4 188.64 154.87

LP(1)N11 → σ*C15-C20 42.26

ΔETLP→σ* 1804.13 1664.52

σS1-O3→ �*C23-C25 61.15

σS2-O4→ �*C22-C26 69.97

ΔETσ→π* 131.12

σS1-O5→ σ*S1-O7 71.23 92.25

σS1-O5→ σ*S1-O8 70.85 93.04

σS2-O6→ σ*S2-O9 71.60 92.59

σS2-O6→ σ*S2-O10 70.39 92.33

ΔETσ→σ* 284.07 370.21

�*N11-C15→�*C20-C27 1075.84 1116.56

�*N11-C15→�*C28-C29 884.44 748.55

�*C23-C25→�*S1-O3 158.13

�*C23-C25→�*C13-C18 1107.11

�*C24-C26→�*S2-O4 184.21

�*C24-C26→�*C14-C19 1078.31

ΔETπ*→π* 3067.39 3285.76

ΔETotal 6819.63 6859.42
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Table 5. Analysis of the topological properties for sodium picosulfate in both media by using the B3LYP/6-31G* method.

Parameter
(a.u.)

S1⋯O3 S1⋯O5 S1⋯O7 S1⋯O8 Na43⋯O3 Na43⋯O5 O7⋯H36 N11⋯H33 N11⋯H34 S2⋯O4 S2⋯O6 S2⋯O9 S2⋯O10 Na44⋯O4 Na44⋯O6 O9⋯H37

ρ(rc) 0.1544 0.2682 0.2865 0.2872 0.0267 0.0317 0.0069 0.0140 0.0084 0.1549 0.2683 0.2863 0.2874 0.0268 0.0314 0.0076

▿2ρ(rc) −0.0910 0.6997 1.0500 1.0644 0.1920 0.2235 0.0273 0.0462 0.0304 −0.0940 0.6999 1.0466 1.0669 0.1882 0.2204 0.0292

λ1 −0.2328 −0.4491 −0.4872 −0.4884 −0.0348 −0.0438 −0.0047 −0.0137 −0.0062 −0.2330 −0.4493 −0.4869 −0.4887 −0.0351 −0.0432 −0.0063

λ2 −0.2211 −0.4199 −0.4395 −0.4398 −0.0325 −0.0406 −0.0012 −0.0122 −0.0016 −0.2215 −0.4206 −0.4399 −0.4403 −0.0328 −0.0400 −0.0036

λ3 0.3629 1.5688 1.9768 1.9927 0.2544 0.3079 0.0333 0.0721 0.0382 0.3605 1.5698 1.9734 1.9960 0.2561 0.3037 0.0391

jλ1j/λ3 0.6415 0.2863 0.2465 0.2451 0.1368 0.1423 0.1411 0.1900 0.1623 0.6463 0.2862 0.2467 0.2448 0.1371 0.1422 0.1611

Distance
(Å)

1.810 1.500 1.461 1.460 2.191 2.151 2.743 2.376 2.742 1.807 1.500 1.461 1.459 2.190 2.156 2.665

Parameter
(a.u.)

S1⋯O3 S1−O5 S1−O7 S1−O8 Na43⋯O3 Na43⋯O5 N11⋯H33 S2⋯O4 S2−O6 S2−O9 S2−O10 Na44⋯O4 Na44⋯O6

ρ(rc) 0.1800 0.2716 0.2833 0.2835 0.0201 0.0247 0.0088 0.1804 0.2715 0.2833 0.2835 0.0202 0.0247

▿2ρ(rc) −0.2020 0.7773 0.9332 0.9353 0.1252 0.1551 0.0302 −0.2033 0.7852 0.9340 −0.9330 0.1262 0.1554

λ1 −0.2623 −0.4560 −0.4741 −0.4744 −0.0236 −0.0312 −0.0073 −0.2630 −0.4560 −0.4743 −0.4741 −0.0237 −0.0312

λ2 −0.2476 −0.4409 −0.4367 −0.4353 −0.0227 −0.0290 −0.0031 −0.2481 −0.4412 −0.4363 −0.4355 −0.0228 −0.0290

λ3 0.3081 1.6743 1.8440 1.8451 0.1715 0.2154 0.0410 0.3079 1.6757 1.8446 1.8427 0.1728 0.2157

jλ1j/λ3 0.8513 0.2724 0.2571 0.2571 0.1376 0.1448 0.1780 0.8542 0.2721 0.2571 0.2573 0.1372 0.1446

Distance
(Å)

1.720 1.493 1.472 1.472 2.316 2.263 2.617 1.719 1.493 1.472 1.472 2.313 2.263
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3.4. Frontier orbital and quantum molecular descriptors studies

Since long time it is highly known that the gap values can predict the reactivity of a

drug in different media by using the frontier orbitals [27, 28]. On the other hand,

their behaviours in different media can also be predicted by using diverse

descriptors such as, the chemical potential (μ), electronegativity (χ), global

hardness (η), global softness (S), global electrophilicity index (ω) and global

nucleophilicity index (E) descriptors [29, 30, 31, 32, 33]. In this work, we have

calculated for APS in both media the gap values and those descriptors at B3LYP/6-

31G* level of theory. These parameters in both media can be seen in Table 6

together with the corresponding equations and compared with those observed for

drugs with potential antimicrobial activity, as the 1,3-benzothiazole tautomers [33]

and with antiviral properties as cidofovir and brincidofovir [38]. These compounds

have different rings and groups, as can be observed in Fig. 5. Analyzing the gap

values, we observed that the thione form of 1,3-benzothiazole is the most reactive

than the other ones while the reactivity decrease according to the following order:

thione > brincidofovir > sodium picosulfate > thiol > cidofovir. When the

descriptors are deeply analyzed, we observed that the most reactive thione present

Table 6. Calculated HOMO and LUMO orbitals, energy band gap, chemical potential (μ), electronegativity

(χ), global hardness (η), global softness (S) and global electrophilicity index (ω) for sodium picosulfate in

gas phase and in aqueous solution.

B3LYP/6-31G* methoda

Frontier orbitals (eV) Sodium picosulfate thioneb thiolb Cidofovirc brincidofovirc

Gas PCM Gas PCM Gas PCM Gas Gas

HOMO −5.912 −6.100 −6.4443 −6.4066 −6.8847 −6.9012 −5.9366 −5.5435

LUMO −1.949 −2.173 −2.7918 −2.8545 −2.6194 −2.6679 −0.6401 −1.772

GAP −3.963 −3.927 −3.6525 −3.5521 −4.2653 −4.2333 −5.2965 −3.7715

Descriptors (eV)

χ −1.9815 −1.9635 −1.8263 −1.7761 −2.1327 −2.1167 −2.6483 −1.8858

μ −3.9305 −4.1365 −4.61805 −4.63055 −4.7521 −4.7846 −3.2884 −3.6578

η 1.9815 1.9635 1.8263 1.7761 2.1327 2.1167 2.6483 1.8858

S 0.2523 0.2546 0.2738 0.2815 0.2345 0.2362 0.1888 0.2651

ω 3.8983 4.3572 5.8388 6.0364 5.2943 5.4076 2.0416 3.5474

E; −7.7883 −8.1220 −8.4337 −8.2241 −10.1345 −10.1272 −8.7087 −6.8979

S = ½η;ω = μ2/2η; E = μ∗η.
χ = - [E(LUMO) − E(HOMO)]/2; μ = [E(LUMO) + E(HOMO)]/2; η = [E(LUMO) − E(HOMO)]/2;.
a This work.
b From [33],cFrom [38].
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the higher electrophilicity index while cidofovir has the most low index.

Apparently both parameters are related to the presence of strong charged groups,

as the NO2
− and S−H groups that in the thiol form due to the presence of an H

bond decreases their reactivity, as compared with the thione form. Brincidofovir

has slightly higher reactivity than picosulfate and much higher than cidofovir due

to the presence of a PO4
3− group and of a Na atom, here, evidently the presence of

a group with higher charge increase the reactividad in brincidofovir. Probably, a

high nucleophilicity index together with a high electrophilicity index reduce the

reactivity of a drug, as observed for cidofovir because the separation between both

indexes is of approximately 4–3 eV while in the most reactive thione that

separation is about 3–2 eV. Sodium picosulfate presents reactivity similar to

brincidofovir probably due to the presence of two SO4
2− groups and of the two Na

atoms in their structure. The other parameters such as, global hardness (η) and

softness (S) are in very good concordance with the order of reactivity, as expected

because both descriptors are calculated directly from the gap values.

3.5. NMR study

The 1H- and 13C-NMR chemical shifts for APS in gas phase and in aqueous

solution phases were calculated by using the GIAO method [34] at the B3LYP/6-

31G* level of theory and the results are presented in Table 7 and Table 8,

respectively. Here, the 1H- NMR chemical shifts were compared with the

[(Fig._5)TD$FIG]

Fig. 5. Structures of the different compounds compared with anhydrous sodium picosulfate in gas

phase.
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corresponding experimental available for APS in DMSO-d6 from [39] and with the

predicted by Spinus-Web [40] by means of the RMSD values. The comparison of

the calculated 13C-NMR chemical shifts was performed with those 13C-NMR

predicted by Banfi and Patiny [41] and Castillo et al. [42] by means of the RMSD

values, as observed in Table 7. Notice that a better correlation is observed for the H

nuclei (1.54–1.39 ppm) than the C nuclei (9.14–8.73 ppm), as expected because the

calculations were performed using the B3LYP/6-31G* calculations in gas phase

and in aqueous solution while the experimental 1H-NMR spectrum was registered

in DMSO-d6 solution. In aqueous solution, the presences of the SO4
2− groups and

of Na atoms evidently have certain influence on the chemical shifts of both nuclei

because APS has a higher affinity in water than DMSO.

3.6. Vibrational study

The structures of APS in the two media using the B3LYP/6-31G* level of theory

were optimized with C1 symmetries and both structures have 126 normal vibration

modes which present activity in both IR and Raman spectra. The available

experimental IR spectrum for the monohydrated sodium picosulphate in the solid

phase was taken from [43] and can be seen in Fig. 6 compared with the predicted

Table 7. Observed in DMSO-d6 and calculated 1H chemical shifts (δ in ppm) for

sodium picosulfate in gas phase and aqueous solution.

H atom Sodium picosulfatea Pred.c Expb

Gas PCM

30-H 5.15 5.55 5.51 2.50

31-H 7.38 7.43 7.51 7.08

32-H 7.40 7.27 7.51 7.20

33-H 8.63 7.68 7.51 8.52

34-H 8.32 7.56 7.51 7.74

35-H 7.43 7.34 7.27 7.22

36-H 7.58 7.63 7.08 7.24

37-H 7.69 7.46 7.08 7.70

38-H 7.19 7.31 7.08 5.57

39-H 7.14 7.49 7.08 3.34

40-H 7.74 7.68 7.69 7.72

41-H 9.11 9.02 8.53 8.53

42-H 7.28 7.22 7.21 7.05

RMSD 1.39 1.54 1.44

a This work GIAO/B3LYP/6-31G* Ref. to TMS.
b From [39].
c From [40].
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by the calculations in gas phase and in aqueous solution at the same level of theory.

The vibrational assignments for APS in both media were performed with the

SQMFF procedure [17, 18] by using the Molvib program [19] and taking into

account the PED contributions ≥ 10%. The symmetry coordinates used in the

determination of the force fields were similar to those reported for compounds

containing analogous rings and groups [2, 3, 4, 30, 31] for this reason, they were

not presented here. On the other hand, the scale factors used are those reported by

Rauhut and Pulay and defined for the 6-31G* basis set [17, 18]. Table 9 shows the

observed and calculated wavenumbers and assignments for anhydrous sodium

picosulfate in both media. Obviously, we observed higher quantity of bands in the

experimental spectrum due to the vibration modes of the water molecule, hence,

the broad IR bands at 3639 and 3458 cm−1 are clearly attributed to the OH

stretching modes. Note that the very intense band predicted by the calculations in

gas phase at 606 cm−1 and assigned easily to the symmetric δsSO3 deformation

Table 8. Calculated 13C chemical shifts (δ in ppm) for sodium picosulfate in gas

phase and in aqueous solution.

C atoms Sodium picosulfatea Pred.b

Gas PCM

12-C 71.06 71.33 40.95

13-C 144.70 144.35 141.23

14-C 143.99 144.06 141.23

15-C 167.12 168.38 162.39

16-C 134.27 134.69 126.66

17-C 133.04 133.64 126.66

18-C 131.64 134.19 126.66

19-C 134.88 135.96 126.66

20-C 127.53 127.24 118.43

21-C 127.54 128.19 121.75

22-C 126.30 127.48 121.75

23-C 127.23 127.93 121.75

24-C 127.05 128.47 121.75

25-C 154.03 153.24 151.67

26-C 154.77 153.15 151.67

27-C 138.95 138.53 136.80

28-C 153.28 154.58 149.33

29-C 124.73 124.23 123.37

RMSD 8.73 9.14

a This work GIAO/B3LYP/6-31G* Ref. to TMS.
b From [41, 42].
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mode in solution decrease significantly their intensity probably due to that the

ΔEn→σ* charges transfers related to the O atoms of these groups decrease from

1804,13 kJ/mol in gas phase to 1664,52 kJ/mol in solution, as observed in Table 4.

This variation can also be attributed to the topological properties of the S−O bonds

because in solution two of these bonds are enlarged while the other two shortened,

as observed by AIM calculations (Table 5). The predicted Raman spectra for APS

in both media by using the same method of calculation are compared in Fig. 7. We

present below a brief discussion of the assignments for some groups.

3.7. Band Assignments

3.7.1. SO4
2− groups

Normally, the asymmetric and symmetric stretching and bending modes of these

groups for a tetrahedral structure are expected between 1150 and 320 cm−1 [1, 44,

45, 46] while in potassium borosulfate, where three sulphate groups have C3v

symmetries, the antisymmetric and symmetric modes were assigned to the bands at

1375 and 884 cm−1. Here, the broad and intense band between 1342 and 1146

cm−1, centred at 1258 cm−1, obviously is assigned to the four antisymmetric

stretching modes expected for both SO4
2− groups while the corresponding

symmetric modes are assigned to the intense IR band at 892 cm−1, as indicated in

[(Fig._6)TD$FIG]

Fig. 6. Experimental available infrared spectra of sodium picosulfate hydrate (upper) taken from [43]

and the corresponding anhydrous predicted in gas phase (medium) and in aqueous solution (bottom) by

using B3LYP/6-31G* level of theory.
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Table 9. Observed and calculated wavenumbers (cm−1) and assignments for

anhydrous sodium picosulfate in both media.

Experimentalc B3LYP/6-31G* Methoda

IR Gas phase Aqueous solution

solid SQMb Assignments SQMb Assignments

3639w νOH H2O

3458m νOH H2O

3100 sh 3103 νC19-H34 3100 νC18-H33

3096 νC21-H36 3097 νC21-H36

3091 νC18-H33 3096 νC29-H42

3084 νC29-H42 3095 νC24-H39

3072 νC20-H35 3086 νC23-H38

3069 νC22-H37 3085 νC20-H35

3068w 3068 νC24-H39 3083 νC19-H34

3068 νC23-H38 3074 νC27-H40

3058 νC27-H40 3072 νC17-H32

3047w 3049 νC16-H31 3070 νC16-H31

3045 νC17-H32 3059 νC22-H37

2999w 3041 νC28-H41 3057 νC28-H41

2915w 2932 νC12-H30 2950 νC12-H30

1653m 1606 νC16-C21 1600 νC16-C21,νC23-C18

1616m 1593 νC27-C20 1592 νC28-C29,νC20-C15

1600 sh 1586 νC24-C19,νC14-C17 1583 νC18-C13,νC13-C16

1560 sh 1579 νC18-C13,νC13-C16 1580 νC14-C17,νC26-C24

1541 sh 1577 νC29-C27 1571 νC29-C27,νC15-N11

1529s 1560 νC19-C14,νC26-C24 1562 νC19-C14,νC22-C26

1495m 1502 βC16-H31 1498 βC16-H31,νC21-C25

1462m 1479 βC24-H39 1476 βC28-H41,βC20-H35

1454m 1476 βC28-H41,βC20-H35 1471 βC24-H39

1438w 1436 βC29-H42 1429 βC29-H42

1420 νC23-C18 1416 ρC12-H30

1405 ρ’C12-H30,βC17-H32,βC19-H34 1396 βC17-H32

1347 sh 1355 βC28-H41 1345 ρ’C12-H30

1324 ρC12-H30 1327 ρ’C12-H30,ρC12-H30

1301s 1306 βC22-H37 1302 βC19-H34

1271 sh 1295 νC25-C23,νC21-C25 1298 νC25-C23

1284 νC22-C26 1281 νN11-C28

1258 vs 1274 νaSO3(2) 1266 νN11-C28

1272 νaSO3(1) 1246 νC19-C14,ρC12-H30

(Continued)
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Table 9. (Continued)

Experimentalc B3LYP/6-31G* Methoda

IR Gas phase Aqueous solution

solid SQMb Assignments SQMb Assignments

1271 νN11-C28 1240 νC15-N11

1226s 1239 νC15-N11 1192 νC25-O3

1234 ρC12-H30,νC19-C14 1190 νaSO3(1)

1196sh 1211 νC25-O3 1190 νaSO3(2)

1183 sh 1204 νC26-O4 1185 νC26-O4

1186 νC20-C15
νC12-C15

1184 νC12-C15

1177 νaSO3(1) 1176 νC12-C13

1175 νaSO3(2) 1159 βC21-H36

1166 sh 1166 νC12-C13 1158 βC22-H37

1163 βC23-H38 1152 νC12-C14,νC24-C19

1130 sh 1161 νaSO3(2),νC26-O4 1143 νaSO3(2)

1121w 1157 νC12-C14 1143 βC27-H40

1151 βC27-H40 1142 νaSO3(1)

1105 βC21-H36,βC18-H33 1101 βC23-H38

1086s 1092 βC29-H42,νC17-C22 1089 νC17-C22

1073 sh 1090 νC17-C22 1088 νC27-C20

1033m 1044 νC28-C29 1043 νC29-C27

1009w 1020 βR1(1) 1016 βR1(1)

996 βR1(3) 1012 γC27-H40

995 γC27-H40 994 βR1(3)

993 βR1(2) 992 βR1(2)

979w 975 γC18-H33 980 γC28-H41

965w 966 γC28-H41 972 γC18-H33

952w 949 γC16-H31 963 γC19-H34

892s 948 νsSO3(2) 959 γC16-H31

892s 947 νsSO3(1) 951 νsSO3(1)

942 γC24-H39 950 νsSO3(2)

933 γC17-H32 947 γC17-H32

900 γC20-H35 911 γC20-H35

871m 889 γC22-H37 888 γC24-H39

868 γC23-H38 875 γC23-H38

842m 854 δC13C12C15 856 δC13C12C15

826 sh 837 γC19-H34 836 γC23-H38,γC24-H39

830 νC26-O4 831 γC23-H38

(Continued)
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Table 9. (Continued)

Experimentalc B3LYP/6-31G* Methoda

IR Gas phase Aqueous solution

solid SQMb Assignments SQMb Assignments

828 γC21-H36 829 γC21-H36

824 γC19-H34 822 γC24-H39

811 γC22-H37 816 γC22-H37

783m 809 δC13C12C14 806 δC13C12C14

762m 763 γC29-H42 769 γC29-H42

747w 747 tR1(3) 752 tR1(3)

731w 730 tR1(2) 729 tR1(2)

718w 710 tR1(1) 711 tR1(1)

676 sh 686 βR2(3),βR3(3) 681 βR2(3)

660m 646 βR2(1),βR3(1) 644 βR3(1)

650w 640 βR2(3) 642 βR2(1)

630 sh 629 βR2(2) 631 βR2(2)

625w 620 βR3(3) 626 νS1-O3

610w 610 βR3(2) 621 βR3(2)

598m 600 δsSO3(2) 615 νS2-O4

581w 596 δsSO3(1) 608 βR3(3)

575 sh 565 tR1(1) 565 δsSO3(1)

560 sh 564 tR1(2) 563 δsSO3(2)

528 sh 525 δaSO3(1) 523 δaSO3(1)

524 δaSO3(2) 522 δaSO3(2)

521w 519 δaSO3(1) 518 δaSO3(2),γC26-O4

514 sh 514 δaSO3(2),γC26-O4 514 δaSO3(1),γC25-O3,γC13-C12

500 sh 490 tR2(3),γC15-C12 498 tR2(3)

477 tR2(2) 473 tR2(2)

458 sh 468 tR2(1) 468 tR2(1)

429 sh 437 βC25-O3 441 βC25-O3

421w 422 βC26-O4 435 βC26-O4

412 tR3(1) 415 tR3(1)

405w 405 tR3(3) 408 tR3(2)

398w 399 tR3(2) 407 tR3(3)

380 νO6-Na44 373 νS1-O3

366 ρSO3(1) 355 νS2-O4,tR1(2)

333 νS2-O4 342 ρSO3(1)

313 νS1-O3 322 ρSO3(2)

303 ρ’sO3(1) 310 ρ’sO3(1)

(Continued)
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Table 9. Notice that in solution these stretching modes are shifted toward lower

wavenumbers, as expected because these modes are strongly affected by the

hydration, as was previously analyzed. Here, the symmetric bending modes are

predicted by calculations at higher wavenumbers (600–596 cm−1) than the

corresponding antisymmetric modes (525–514 cm−1) and; for this reason, they

Table 9. (Continued)

Experimentalc B3LYP/6-31G* Methoda

IR Gas phase Aqueous solution

solid SQMb Assignments SQMb Assignments

294 ρ’sO3(2) 298 ρ’sO3(2)

280 νO5-Na43 257 βC15-C12

268 ρSO3(2) 248 νO5-Na43,δS1O5Na43

264 δS1O5Na43 230 νO5-Na43

244 βC15-C12 226 νO6-Na44

234 ρ’sO3(2),βC15-C12 215 βC14-C12

206 βC13-C12,βC14-C12 206 βC13-C12

179 tR2(1),tR2(2) 181 tR2(2),tR2(1)

169 tR2(2),νO5-Na43 155 δC25O3S1

145 tR2(2),ρSO3(2) 131 δS1O5Na43

134 δC25O3S1 120 δS2O6Na44

92 δC13C12C15 86 δC26O4S2

72 γC25-O3 71 δC26O4S2

67 δC26O4S2,δC14C12C15 67 τwC25-O3

50 τNa44-O6 60 τNa43-O5

49 τNa43-O5 59 τNa44-O6

47 τNa43-O5,τwC15-C12 57 τwC14-C12

39 twSO3(2) 51 τwC15-C12

37 twSO3(1) 47 τwC25-O3,τwC13-C12

32 τwC13-C12 35 twSO3(2)

26 τwC15-C12 29 γC14-C12

21 τwC14-C12 27 τwC13-C12

13 τwC26-O4 19 twSO3(1)

11 γC14-C12 18 τwC13-C12,τwC14-C12

4 τwC25-O3 15 τwC26-O4

Abbreviations: ν, stretching; β, deformation in the plane; γ, deformation out of plane; wag, wagging; τ,
torsion; βR, deformation ring τR, torsion ring; ρ, rocking; τw, twisting; δ, deformation; a, antisymmetric;

s, symmetric; (1), glucopyranose Ring1; (2), glucopyranose Ring2.
a This work.
b From scaled quantum mechanics force field.
c From [43].
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were assigned to the band and shoulder at 598 and 591 cm−1, respectively. In

solution, all these modes are predicted between 565 and 514 cm−1 because are

influenced by the hydration. The four rocking and the two twisting modes expected

for both sulphate groups are clearly predicted in gas phase in the 303–268 and

39–37 cm−1 regions, respectively and, both modes were not assigned because in

the IR spectrum were recorded bands only up to 398 cm−1. This vibrational

analysis shows clearly the influence of the different S−O bonds of the sulphate

groups on the positions of the IR bands and, in particular, in aqueous solution

support the shifting of the bands related to these groups as a consequence of the

hydration.

3.7.2. Pyridinyl and phenyl rings modes.

The thirteen expected C−H stretching modes are predicted in gas phase between

3103 and 2932 cm−1 where the C12−H30 bond related to the C atom with

hybridization sp3, is predicted to lower wavenumbers than the other ones. Thus, the

bands observed between 3100 and 2915 cm−1 are clearly assigned to those

vibration modes. In solution, these modes are predicted slightly to higher

wavenumbers, as observed in Table 9 probably due to that these H atoms are

involved in gas phase to two N⋯H and two O⋯H bonds while in solution only the

N⋯H is observed. The in-plane C−H deformation modes are assigned to the bands

[(Fig._7)TD$FIG]

Fig. 7. Predicted Raman spectra of anhydrous sodium picosulfate in gas phase and in aqueous solution

at B3LYP/6-31G* level of theory.
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observed between 1495 and 1086 cm−1 because they are predicted by SQM

calculations in this region while the corresponding out-of-plane CH deformation

modes are assigned according to calculation between 1009 and 762 cm−1. These

modes are not affected by the hydration because they undergo few shifted in

solution. The C═C stretching modes of both phenyl rings are predicted by the

SQM/B3LYP/6-31G* calculations between 1606 and 1560 cm−1 while the C−C
stretching modes between 1420 and 1044 cm−1, hence these modes are assigned

according to calculations. On the other hand, the two expected C−N stretching

modes belonging to the pyridinyl ring are predicted at 1271 and 1239 cm−1 while

in solution are predicted to higher wavenumbers. This observation can be attributed

to the two N⋯H bonds observed only in gas phase while in solution only one of

them is observed. Moreover, two transitions observed by NBO calculation justify

the shifting observed in solution, they are the ΔET�→�* and ΔET�→�* charge

transfers (see Table 4). The deformation and torsion modes for both pyridinyl and

phenyl rings are predicted by SQM calculations in the expected regions [4, 28, 29,

30, 31, 32] and only some deformation modes were assigned because the torsion

modes are predicted in the lower wavenumbers region where there are not

observed bands. The assignments for the remaining skeletal modes can be seen in

Table 9.

3.8. Force fields

The force constants for APS in both media were first calculated in Cartesian

coordinates from their corresponding force fields by using the SQM procedure and

later they were transformed to internal coordinates with the Molvib program [17,

18, 19]. These constants are summarized in Table 10 compared with those reported

for CrO2(SO3F)2 [3] and benzisoxazole methane sulfonic acid sodium salt

(BOSNa) [4] and, with those calculated in this work for K5[B(SO4)4]. Analyzing

first the force constants values for APS in both media we observed that practically

the f(νC-C)A6, f(νC-C) and f(νC-H) constants change slightly in solution, especially

the latter increase because the H bonds decrease in this media, as suggested by the

above studies. The other constants change notably due to the structural changes

that experiment the both SO4
2− groups and the Na⋯O bonds in solution. When the

constants for APS are compared with those observed for CrO2(SO3F)2 [3] the

values are higher in this chromyl compound because their three S═O bonds have

double bound character while the high value observed in the f(νS-F) constant is due

to the presence of the F atom instead of other O atom. On the other hand, the f

(νS═O) constant is higher in APS than that calculated for BOSNa because only

three S═O bonds have this species while that a higher value is observed in their f

(νC−N) constant due to that the N atoms are linked to C and O atoms instead of

two C atoms, as in APS and, besides these bonds belong to a five member ring

instead of a six member ring, as in APS. However, the f(νNa−O) constant values
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are practically similar in these compounds while in K5[B(SO4)4] the presence of

the most electropositive K atom increase notably the constant value in this borate

compound. Moreover, the presence of five sulphate groups evidently increase the

values of the f(νS═O) f(νS−O) and f(δO═S═O) constants, as compared with that

observed in APS. Obviously, this study also support the differences in the S═O,
S−O and Na⋯O bonds and their modifications in solution.

3.9. Electronic spectrum

The electronic spectrum for APS in aqueous solution was predicted by B3LYP/6-

31G* calculations and their comparison with the experimental available UV-

visible spectrum reported for the sodium picosulphate hydrate [47] can be seen in

Fig. 8. A strong band at 262.54 nm is observed in the experimental spectrum while

in the predicted spectrum is calculated at 234.50 nm which can be easily assigned

to the �→�* and �*→�* interactions due to the C═C and C−N bonds because the

calculations predicted these interaction with higher energy values, as observed by

Table 10. Comparison of scaled internal force constants for sodium picosulfate in

both media with those calculated for compounds with similar groups.

Force constant B3LYP/6-31G*a B3P86/6-31G*a

Picosulfate CrO2(SO3F)2
b BOSNac K5[B(SO4)4]

Gas PCM Gas Gas Force constant Gas

f(νS═O) 8.25 7.79 10.6 7.27 f(νS═O) 8.7

f(νS-X) 1.65 2.37 4.7 f(νS-O) 4.3

f(νC-C)A6 6.50 6.51 6.48

f(νC-N) 7.03 6.87 8.17

f(νC-C) 3.97 4.00

(νC-O) 5.33 5.01 5.72

f(νNa-O) 0.88 0.52 0.82 f(νK-O) 1.42

f(νC-H) 5.18 5.21

f(δO═S═O) 1.72 1.59 1.6 1.91 f(δO═S═O) 2.0

f(δS-O-C) 0.87 0.95

f(δC-C-C) 1.83 1.93

f(δS-O-Na) 2.56 1.33 f(δS-O-B) 0.40

Units are mdyn Å−1 for stretching and mdyn Å rad−2 for angle deformations, A6, pyridinyl and phenyl

Rings.
a This work.
b From [3].
c From [4] for benzisoxazole methane sulfonic acid sodium salt (BOSNa); X = (O,F).
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NBO analysis (Table 4). Here, the presence of shoulders in the experimental

spectrum could be attributed to the quantity observed of these interactions as a

consequence of the three six member’s rings in the structure of APS. Table 11

shows the positions and intensities of the observed bands in the experimental

spectrum and in the predicted by the TD-DFT calculations.

[(Fig._8)TD$FIG]

Fig. 8. Comparisons between the experimental available UV-Vis spectrum of sodium picosulfate

hydrate (upper) taken from [47] and the theoretical spectrum of the anhydrous form (bottom) by using

B3LYP/6-31G* level of theory.

Table 11. TD-DFT calculated visible absorption wavelengths (nm) and oscillator

strengths (f) for sodium picosulfate in aqueous solution.

B3LYP6-31G*,a Experimentalb

Energy Transitiona

(eV)
λ(nm) f λ(nm) Assignmenta

5.9557 208.18 0.1042 157.00 sh π→π* (C=C)

5.2871 234.50 0.1413 262.54 s π→π* (C-N)

5.1603 240.26 0.1700 268.80 sh π*→π*(C=C)

a This work.
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4. Conclusions

In this work, the theoretical molecular structures of anhydrous sodium picosulfate

with chemical formula C18H13NNa2O8S2, was optimized in gas and aqueous

solution phases by using the B3LYP/6-31G* method. The influences of the solvent

on their properties were studied with the IFEPCM and SM models. The AIM

results show clearly the presence of the S═O, S−O, Na⋯O, N⋯H and O⋯H

bonds with different characteristics, thus, in each sulphate group is observed one

covalent S−O bond where the O atoms are linked to the C atoms, three highly polar

covalent S═O bonds and two ionic Na−O bonds. Besides, in gas phase are

predicted two N⋯H and O⋯H bonds while in solution disappear one N⋯H bond

and the two O⋯H bonds. The nature of those bonds belonging to the two C-O-

SO3-O-Na groups and, evidenced by AIM calculations, have notable influence on

the NPA and MK charges, MEP values, reactivities, descriptors, vibration normal

modes and force constants in both media. On the other hand, the high stabilities of

sodium picosulfate are supported by the NBO in both media and evidenced by the

strong band observed in the electronic spectrum in solution. Here, the force fields

using the B3LYP/6-31G* method and the complete assignments of the 126

vibration normal modes expected for sodium picosulfate in both media are

presented. The predicted infrared, 1H-NMR and UV-visible spectra are in

reasonable concordance with the corresponding available experimental spectra.

In addition, the frontier orbitals show the high reactivities of sodium picosulfate in

both media which is approximately comparable to brincidofovir, an antiviral drug

used against the Ebola disease.
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