AAC Accepted Manuscript Posted Online 13 February 2017 Antimicrob. Agents Chemother. doi:10.1128/AAC.01776-16 Copyright © 2017 American Society for Microbiology. All Rights Reserved.

1	Interaction of Rifampicin and Darunavir/Ritonavir or Darunavir/Cobicistat In Vitro
2	
3	Owain Roberts, Saye Khoo, Andrew Owen, Marco Siccardi [‡]
4	
5	Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, 70
6	Pembroke Place, University of Liverpool, Liverpool, L69 3GF, UK
7	
8	Running Title: Interaction of Rifampicin with Boosted Darunavir
9	
10	[‡] Author for correspondence and reprints:
11	Dr Marco Siccardi, Department of Molecular and Clinical Pharmacology, Institute of
12	Translational Medicine, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
13	Tel: +44 (0) 151 794 8211
14	Fax: + 44 (0) 151 794 5656
15	E-mail: siccardi@liverpool.ac.uk

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGO

18	Treatment of HIV patients co-infected with tuberculosis (TB) is challenging due to drug-drug
19	interactions (DDIs) between antiretrovirals (ARVs) and anti-TB drugs. The aim of this study
20	was to quantify the effects of cobicistat (COBI), or ritonavir (RTV), in modulating DDIs
21	between darunavir (DRV) and rifampicin (RIF) in a human hepatocyte-based in vitro model.
22	Human primary hepatocyte cultures were incubated with RIF alone, or in combination with
23	either COBI or RTV for three days, followed by co-incubation with DRV for one hour.
24	Resultant DRV concentrations were quantified by HPLC-UV, and the apparent intrinsic
25	clearance ($CL_{int.app.}$) of DRV was calculated. Both RTV and COBI lowered RIF-induced
26	increases in $CL_{int.app.}$ in a concentration-dependent manner. Linear regression analysis showed
27	that log_{10} RTV and log_{10} COBI concentrations were associated with percentage inhibition of RIF-
28	induced elevations in DRV CL _{int.app.} β = -234 (95% CI = -275 to -193; <i>P</i> < 0.0001), and β = -73
29	(95% CI = -89 to -57; $P < 0.0001$), respectively. RTV was more effective in lowering 10 μ M
30	RIF-induced elevations in DRV CL _{int.app.} (IC ₅₀ = 0.025 μ M) than COBI (IC ₅₀ = 0.223 μ M).
31	Incubation of either RTV or COBI in combination with RIF was sufficient to overcome RIF-
32	induced elevations in DRV $CL_{int.app.}$, with RTV more potent than COBI. These data provide the
33	first in vitro experimental insight into DDIs between RIF and COBI-boosted or RTV-boosted
34	DRV, and will be useful to inform physiologically-based pharmacokinetic (PBPK) models to aid
35	in optimising dosing regimens for the treatment of HIV-TB co-infected patients.

AAC

Approximately 25% of human immunodeficiency virus-1 (HIV)-infected patients worldwide are 37 co-infected with Mycobacterium tuberculosis (1, 2), accounting for 390,000 deaths in 2014 (3). 38 39 Clinical management of HIV-tuberculosis (HIV-TB) patients presents significant challenges, especially in resource-limited settings (2, 4), where virological failure or intolerance to first-line 40 antiretroviral therapy requires the use of HIV protease inhibitors (PIs) (5). PIs largely undergo 41 phase I metabolism by cytochrome p450 3A4 (CYP3A4), and are also substrates of P-42 glycoprotein (P-gp; ABCB1) (6). Consequently, PIs are commonly administered in combination 43 with pharmacokinetic (PK) "boosters" such as ritonavir (RTV) or cobicistat (COBI), which act 44 by inhibiting CYP3A4-mediated PI metabolism and P-gp-mediated PI efflux, thereby improving 45 the PK profile of PIs by prolonging PI half-life, and increasing PI bioavailability (7-9). 46

47

Rifampicin (RIF) is an essential component of short-course anti-TB treatment regimens 48 (2, 10); however, RIF is also a potent inducer of the expression and activity of several metabolic 49 enzymes - including CYP3A4 (11). Co-administering RIF with PIs can result in clinically-50 significant drug-drug interactions (DDIs), whereby PI bioavailability may be significantly 51 reduced (>75%) (10, 12-14). Consequently, administering standard-doses of RTV-boosted PIs 52 53 to HIV-TB patients receiving RIF is contraindicated under the current World Health 54 Organisation (WHO) guidelines (15). The search for effective second-line therapeutic options for the treatment of HIV-TB co-infected patients is therefore a research priority (16). 55

56

57 Darunavir (DRV) is chiefly metabolised by CYP3A4 (17), and co-administration of a 58 low-dose of either RTV or COBI together with DRV increases DRV systemic bioavailability (18, 19). In addition, the high barrier to genetic resistance, as well as the tolerability, safety
profile, and potency of DRV - when administered in combination with a low-dose of either RTV
(DRV/r), or COBI (DRV/c) - have made these fixed-dose combinations important options for the
treatment of HIV-patients (20-22).

63

Previous studies have demonstrated markedly reduced exposure of RTV-boosted PIs, 64 65 including atazanavir (ATV) (12), indinavir (IDV) (13), and lopinavir (LPV) (14), as well as an increased risk of hepatotoxicity when RIF is co-administered with these drugs in healthy 66 67 volunteers. For this reason, studies aimed at investigating DDIs between DRV/r and RIF in HIV-negative subjects have not been undertaken. Similarly, the extent of the DDI between 68 DRV/c and RIF remains unknown. A recent population PK (pop-PK) analysis showed that it 69 was possible to offset the effects of RIF on DRV Ctrough by increasing the dose of DRV/r 70 71 administered (23), which raises the possibility that RTV may overcome potential DDIs between 72 DRV and RIF in vitro and in vivo. The aim of the present study was to quantify - using an in 73 vitro model - the extent of DDIs arising from co-incubation of RIF with either RTV or COBI, by specifically measuring the apparent intrinsic clearance (CLint.app.) of DRV by primary human 74 75 hepatocytes.

Chemotherapy

77 MATERIALS AND METHODS

78 Chemicals. DRV (Cat. No.: S1620) and COBI (Cat. No.: S2900) were purchased from 79 Selleckchem (Munich, Germany). RIF (Cat. No.: R3501), RTV (Cat. No.: SML0491), 80 potassium phosphate monobasic (Cat. No.: P0662), methanol (Cat. No.: 34860), and acetonitrile 81 (Cat. No.: 34967) were purchased from Sigma-Aldrich (Poole, UK). Orthophosphoric acid (Cat. 82 No.: 153154D) was purchased from VWR (Lutterworth, UK). HPLC-grade water was produced 83 by an ELGA PureLab system (Veolia Water Technologies, High Wycombe, UK).

Primary Hepatocytes. Cryopreserved primary human hepatocytes were purchased from Life
Technologies (Cat. No.: HMCPIS; Inchinnan, Scotland). Hepatocytes from a total of four
donors were used (Table 1).

87 Stock Solutions. Stock solutions of COBI, DRV, RIF and RTV were freshly prepared in 100% 88 (v/v) methanol at concentrations 6443, 1684.3, 15000 and 6935.4 μ M respectively. Prior to use 89 in experiments, all stock solutions were sterile-filtered through a Millex 0.22 μ m 90 polyethersulfone membrane (Millipore, Cat. No.: SLGP033RS; Watford, UK), and were either 91 used immediately, or were stored at -20 °C for up to five days prior to use.

92 **Concentrations of drugs used in this study.** Primary cryopreserved human hepatocytes were 93 treated with a range of concentrations of test compounds - COBI (0.13—12.76 μ M), RIF (0.50— 94 20.00 μ M) and RTV (0.01—10.00 μ M) - spanning their respective therapeutic plasma 95 concentration ranges in humans, as determined from clinical PK data (24), (25). The 96 concentration of DRV used in experiments (5 μ M) was selected from a value within the 97 therapeutic range, and close to the C_{min} of DRV (DRV/r 600/100 $C_{min} = 3.58 \pm 1.15 \ \mu$ g/ml = 98 $6.03 \pm 1.94 \ \mu\text{M}$, (26); DRV/c 800/150 $C_{\text{min}} = 2.40 \pm 1.22 \ \mu\text{g/ml} = 4.04 \pm 2.05 \ \mu\text{M}$, (27)), as 99 obtained from PK data supplied on package inserts (26, 27). Unless otherwise stated, starting 100 drug concentrations quoted within this study refer to the starting total drug concentration present 101 in each case, without adjustment for protein binding. After adjustment for protein binding in 102 Williams' Medium E (WME) incubation medium, the starting unbound concentrations of test 103 compounds used was as follows: COBI (0.068—6.761 μ M), DRV (3.800 μ M), RIF (0.315— 12.600 μ M) and RTV (0.001—1.400 μ M).

Culture of Primary Human Hepatocytes. Primary cryopreserved human hepatocytes were 105 thawed in Cryopreserved Hepatocyte Recovery Medium (CHRM[®], Life Technologies, Cat. No.: 106 CM7000) and were re-suspended in WME plating medium (Life Technologies, Cat. No.: 107 108 A1217601 supplemented with Hepatocyte Plating Supplement Pack, Life Technologies, Cat. No.: CM3000). Cell viability was determined using a NucleoCounter[®] NC-100[™] (Sartorius 109 Ltd., Epsom, UK). Viable cells were plated on collagen-coated 96-well cell culture plates (Life 110 Technologies, Cat. No.: CM1096) at a density of 6.5 x 10⁴ cells per well in 110 µl of WME 111 plating medium. Hepatocytes were incubated in a humidified incubator at 37 °C containing 5% 112 (v/v) CO₂ for five hours prior to removal of the WME plating medium, and overlaying the 113 114 hepatocyte monolayer with 70 µl per well of GeltrexTM LDEV-Free Reduced Growth Factor Basement Membrane Matrix (Life Technologies, Cat. No.: A1413202) diluted in WME 115 116 incubation medium (Life Technologies, Cat. No.: A1217601, supplemented with Hepatocyte Maintenance Supplement Pack, Life Technologies, Cat. No.: CM4000) to a final concentration 117 of 0.35 mg/ml. Cells were then incubated in a humidified incubator at 37 °C containing 5% (v/v) 118 CO_2 for 24 hours, prior to removal of the WME incubation medium and replacement with 110 µl 119

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGC

Chemotherapy

120 of fresh WME incubation medium containing test compounds: COBI (0.128-12.76 µM) 121 together with RIF (0.5–20 μ M); or RTV (0.01–10 μ M) together with RIF (0.5–20 μ M). As a control, hepatocytes were incubated with methanol (0.3% v/v) in WME incubation medium. At 122 24 hours, and 48 hours post-initial treatment, WME incubation medium containing test 123 compounds was removed, and replaced with fresh WME incubation medium containing test 124 125 compounds. At 72 hours post-initial treatment all cells were incubated with test compounds together with DRV (5 µM) in WME incubation medium for 60 minutes. 126

Quantification of Darunavir by HPLC-UV. Following 60 minutes of incubation of 127 128 hepatocytes with test compounds together with 5 μ M DRV, 100 μ l of WME incubation medium was removed from each well and was transferred to Corning® Pyrex® 75 x 12 mm borosilicate 129 glass tubes (Appleton-Woods, Cat. No.: KC350) containing 300 µl of 100% acetonitrile. 130 Standards and quality control samples were prepared in WME incubation medium and were 131 132 treated in the same way. All samples were then vortexed for five seconds, and were dried in a Jouan RC10.22 vacuum centrifuge for six hours at room temperature (18-25°C). After drying, 133 samples were re-constituted in 330 μ l of 20% (v/v) acetonitrile in H₂O. One hundred microlitres 134 of the resultant suspension was used to quantify DRV by HPLC-UV. 135

136 Chromatographic separation of DRV was achieved using a Waters Atlantis T3 (4.6 x 100 137 mm, 3 µm) column (Waters, Elstree, UK) equipped with a 10 x 4 mm, 3 µm Fortis C18 Guard (Fortis[™] Technologies Ltd., Chester, UK). A Dionex P680 HPLC pump, Dionex ASI-100 138 automated sample injector and a Dionex UVD170U UV detector (Thermo-Fisher Ltd., Hemel-139 Hempstead, UK) were used. Mobile phases C (25 mM KH₂PO₄, pH 3.3/orthophosphoric acid) 140 and D (100% acetonitrile) were used in a step-gradient elution as follows: 70% C/30% D from 141

Chemotherapy

142 0.0 to 1.5 min, 35% C/65% D from 1.5 to 7.0 min, 20% C/80% D from 7.0 to 9.5 min and 70% 143 C/30% D from 9.5 to 12.5 min. Elution was carried out at room temperature (18-25°C), and the flow rate was maintained at 1.00 ml/min. DRV was quantified at 267 nm and chromatograms 144 were analysed using Chromeleon software (version 6.8; Thermo-Fisher Ltd.). Each experimental 145 condition was assessed in triplicate. The lower limit of detection (LOQ) of DRV was determined 146 147 to be 0.156 μ M. The assay was linear between 0.156 μ M and 10 μ M (upper LOQ). The mean 148 coefficient of variability (CV) of intra-day precision was 2.6%, whilst the mean CV of intra-day accuracy was 2.0%. The mean CV of inter-day precision was 2.2%, and the mean CV of inter-149 day accuracy was 1.2%. The mean recovery of DRV from WME was 96.1%. 150

151 Measurement of Protein Binding of Drugs in Williams' Medium E Incubation Medium.

The degree of binding of COBI, DRV, RIF or RTV to WME incubation medium was determined 152 using a rapid equilibrium dialysis (RED) base plate (Thermo-Fisher Scientific, Cat. No.: 90004) 153 154 fitted with RED device inserts (Thermo-Fisher Scientific, Cat. No.: 89810). Five hundred ul of WME incubation medium (Life Technologies, Cat. No.: A1217601, supplemented with 155 Hepatocyte Maintenance Supplement Pack, Life Technologies, Cat. No.: CM4000) alone, or 156 WME incubation medium containing either COBI (5 μ M); DRV (5 μ M); RIF (5 μ M); or RTV (5 157 158 μ M), was placed into separate sample chambers, whilst 750 μ l of non-supplemented WME (Life 159 Technologies, Cat. No.: A1217601 alone) was placed in into the corresponding buffer chambers. Each experimental condition was tested in triplicate. Following sealing with Parafilm[®] 'M' 160 (Sigma-Aldrich), the RED device containing these samples was incubated for five hours at 37 °C 161 162 with orbital shaking (200 r.p.m.). Following incubation, a 450 µl aliquot was removed from the 163 buffer chamber within each RED device insert and was vortexed for ten seconds with 112 μ l

164	(20% of total final volume) of acetonitrile in a 1.5 ml microcentrifuge tube, prior to transfer to a			
165	300 µl Chromacol fixed insert vial (Thermo-Fisher Scientific), from which 100 µl of the			
166	suspension was analysed directly by HPLC-UV, as described below. For WME incubation			
167	medium samples, a 450 μ l aliquot was removed from each sample chamber within each RED			
168	device insert, and was transferred to a 2.0 ml microcentrifuge tube containing 1350 μl of 100%			
169	acetonitrile. Samples were then vortexed for five seconds prior to centrifugation at 13,100 x g			
170	for ten minutes at room temperature. Resultant supernatants were transferred to $\operatorname{Corning}^{\mathbb{R}}$			
171	Pyrex [®] 75 x 12 mm borosilicate glass tubes, and were dried in a Jouan RC10.22 vacuum			
172	centrifuge at room temperature (18-25°C). After drying, samples were re-constituted in 400 µl			
173	of 20% (v/v) acetonitrile in H_2O, and 100 μl of the resultant suspension was used to quantify			
174	COBI, DRV, RIF or RTV by HPLC-UV. Chromatographic separation of COBI, RIF and RTV			
175	was achieved using a Waters Atlantis T3 (4.6 x 100 mm, 3 $\mu m)$ column equipped with a 10 x 4			
176	mm, 3 µm Fortis C18 Guard. A Dionex P680 HPLC pump, Dionex ASI-100 automated sample			
177	injector and a Dionex UVD170U UV detector were used. Mobile phases A (25 mM KH ₂ PO ₄ ,			
178	pH 3.3/orthophosphoric acid) and B (100% acetonitrile) were used in a step-gradient elution as			
179	follows: 70% A/30% B from 0.0 to 2.0 min, 52.5% A/47.5% B from 2.0 to 4.0 min, 35% A/65%			
180	B from 4.0 to 6.0 min, 20% A/80% B from 6.0 to 9.0 min, and 70% A/30% B from 9.0 to 12.5			
181	min. Elution was carried out at room temperature (18-25°C), and the flow rate was maintained			
182	at 1.00 ml/min. Chromatograms were analysed with COBI and RTV quantified at 220 nm and			
183	RIF quantified at 267 nm using Chromeleon software (version 6.8). Each experimental			
184	condition was assessed in triplicate. Standards and quality control samples for each drug were			
185	prepared and extracted from WME incubation medium to analyse corresponding sample			
186	chamber samples, or were prepared in WME medium containing 20% (v/v) acetonitrile for			
	9			

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGO

Chemotherapy

187 analysis of buffer chamber sample dialysates. The fraction unbound (f_u) of each drug was 188 calculated by dividing the drug concentration quantified in the buffer chamber dialysate with the concentration of drug quantified in sample chamber aliquots. Results are presented as mean $f_{\rm u}$ ± 189 SD (n = 3). 190

Calculation of the apparent intrinsic clearance (CL_{int.app.}) of Darunavir by Hepatocytes. 191 The CL_{int.app.} of DRV was calculated based on a previously described method (28). This is 192 summarised in Equation 1: 193

Equation 1: $CL_{int.app.} = (ln2/in vitro t_{1/2}) \times (\mu l incubation volume/10⁶ hepatocytes)$ 194

Results were expressed as the mean \pm SD (μ l/min/10⁶ hepatocytes) of a total of three 195 donors per condition tested. Three biological replicates were quantified per condition tested, 196 using hepatocytes obtained from three separate donors in each case. All DRV CL_{int.app.} values 197 were calculated using DRV concentrations corrected for DRV protein binding in WME 198 199 incubation medium.

200

Statistical Analysis. Statistical analyses were carried out using IBM® SPSS® Statistics (Version 201 202 22; IBM Corporation, Armonk, NY, USA). All data were assessed for normality using a Shapiro–Wilk test and data were compared using a Mann-Whitney U statistical test. Univariate 203 204 and stepwise-elimination multivariate linear regression analyses (significance threshold = P < P205 0.2; $\alpha = 0.05$) were conducted to characterise the influence of co-incubating primary human hepatocytes with various concentrations of RTV or COBI together with RIF on DRV CLint.app. 206

Antimicrobial Agents and Chemotherapy 207 Calculation of the half-maximal inhibitory concentration (IC₅₀) of RTV and COBI required to 208 inhibit DRV CL_{int.app.} maximally-induced by 10 µM RIF was completed using DRV CL_{int.app.} data obtained from COBI (donors Lot HU1399, Lot HU1574 and Lot HU1587) and RTV (donors Lot 209 HU1399, Lot HU1587 and Lot HU1621) experiments. Data were firstly normalized by defining 210 the mean maximal elevation in DRV CL_{int.app.} induced by 10 µM RIF alone in each respective 211 dataset as 100%, and plotting remaining values relative to this value. GraphPad Prism® (Version 212 5; GraphPad Software, Inc. La Jolla, CA, USA) was used to plot the data using the 213 214 'log(inhibitor) vs. response' equation and a Least Squares fitting method.

215

216

AA

Chemotherapy

217 RESULTS

Assessment of the CL_{int.app.} of Darunavir Following Combination Incubation of Primary 218 219 Human Cryopreserved Hepatocytes with Ritonavir and Rifampicin. Primary human 220 hepatocytes are commonly used as a tool to predict hepatic metabolic clearance of xenobiotics 221 and DDIs in vitro (29, 30). Using this model system, the CL_{int.app.} of DRV was initially 222 calculated under control conditions in which hepatocytes (Lot HU1399, Lot HU1587 and Lot 223 HU1621) were incubated with DRV alone. Experiments aimed at determining the degree of 224 protein binding of DRV within WME incubation medium revealed that the mean $f_{\rm u}$ of DRV was 225 0.76 ± 0.07 (n=3; Table 2). Following correction for DRV protein binding in WME incubation medium, under control conditions, mean DRV $CL_{int.app.}$ was $10.5 \pm 3.8 \ \mu l/min/10^6$ hepatocytes 226 (n=3). Incubation of human hepatocytes with RIF over 72 hours has been previously shown to 227 228 induce CYP3A4 enzymatic activity (31, 32). Similarly, in this model system, incubation of 229 hepatocytes with RIF was sufficient to markedly increase CL_{int.app.} of the CYP3A4 substrate DRV at each concentration of RIF tested (0.5–20 μ M; Fig. 1). The maximal RIF-induced 230 231 increase $(1.9 \pm 0.3 \text{-fold}; n=3)$ in DRV CL_{int.app.} was observed with 10 μ M RIF (Fig. 1).

Co-incubation of RIF with RTV reduced 10 μ M RIF-induced increases in CL_{int.app}. in a RTV concentration-dependent manner (**Fig. 1**). Notably, RTV (1 μ M) was sufficient to overcome the effect of 10 μ M RIF on DRV CL_{int.app}., reducing DRV CL_{int.app}. to 0.78 \pm 0.25-fold – equivalent to -22% when compared to control levels in which cells were treated with DRV alone (*n*=3; **Fig. 1**). Increasing RIF concentrations above 10 μ M (12.5—20 μ M) did not impact the effectiveness of RTV to overcome RIF-elevated DRV CL_{int.app}. (**Fig. 1**). Specifically, 1 μ M RTV lowered 12.5 μ M RIF-induced and 20 μ M RIF-induced DRV CL_{int.app}. by 55% and 47%, to

strat duce , in nt t 5-fol DR¹ mpac 1 μN 7%, t Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGC

 $(8.6 \pm 3.2 \ \mu l/min/10^6 \text{ hepatocytes}; n=3)$ and $(8.8 \pm 3.4 \ \mu l/min/10^6 \text{ hepatocytes}; n=3)$, 239 respectively. 240

Assessment of the CL_{intapp} of Darunavir Following Combination Incubation of Primary 241 242 Human Cryopreserved Hepatocytes with Cobicistat and Rifampicin. In a separate set of experiments, human hepatocytes from three individual donors (Lot HU1399, Lot HU1574 and 243 244 Lot HU1587) were used to determine the effects of incubating RIF together with COBI upon DRV CL_{int.app}. Under control conditions, where primary human cryopreserved hepatocytes were 245 incubated with DRV alone, DRV CL_{int.app.} was $13.2 \pm 1.8 \ \mu l/min/10^6$ hepatocytes, (n=3). 246 Incubation of hepatocytes with RIF (0.5–20 μ M) induced a mean increase in DRV CL_{int.app.} of 247 55.8%. In cells treated with 1 μ M RIF, co-incubation with the lowest concentration of COBI 248 tested (0.42 µM) was effective in lowering RIF-induced DRV CLint.app. by 36.9%, yielding a 249 DRV CL_{int.app.} of $12.2 \pm 2.8 \,\mu$ l/min/10⁶ hepatocytes (n=3). Hepatocytes treated with 10 μ M RIF 250 exhibited a DRV CL_{int.app.} of 21.6 \pm 2.6 μ l/min/10⁶ hepatocytes (n=3). COBI induced a 251 concentration-dependent attenuation of the DRV CL_{int.app.} elicited by 10 µM RIF (Fig. 2), with 252 1.28 μ M COBI being sufficient to lower DRV CL_{int.app} to 11.6 ± 2.6 μ l/min/10⁶ hepatocytes 253 (n=3), 13% below DRV control levels. COBI was also effective at reducing CL_{int.app.} elevations 254 induced by higher concentrations of RIF, as co-incubation with 1.28 µM COBI reduced 20 µM 255 RIF-elevated DRV CL_{int.app.} by 46% ($12.4 \pm 3.9 \mu l/min/10^6$ hepatocytes; n=3). 256

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGC

258 Comparison of Cobicistat- and Ritonavir-mediated Reduction of Rifampicin-Induced Darunavir CL_{int.app.}. To compare the relative effectiveness of RTV and COBI to attenuate 259 RIF-induced increases in DRV CLint.app., the percentage inhibition of 10 µM RIF-induced 260 261 elevations in DRV $CL_{int,app}$ achieved by co-incubation with either COBI (0.13—12.76 μ M), or 262 RTV (0.1—10 μ M), was determined in comparison to control conditions where cells were 263 treated with 10 μ M RIF alone (Fig. 3). Following correction for protein binding, the IC₅₀ of 264 COBI and RTV - calculated from the percentage-change in DRV CL_{int.app}, under these conditions 265 - was 0.223 μM for COBI and 0.025 μM for RTV (Fig. 3). In addition, the maximal inhibition 266 of 10 µM RIF-induced elevations achieved by COBI and RTV were different, with RTV 267 resulting in a 69.5% inhibition of 10 µM RIF-induced increases in DRV CL_{int.app.}, whilst COBImediated reduction in 10 µM RIF-induced increases in DRV CL_{int.app.} was 56.9% (P=0.05). 268

269 Following data normalisation and correction for protein binding, linear regression 270 analysis of the effects of RTV and COBI in combination with RIF at each concentration tested on the percentage change in DRV CL_{int.app.} showed an association between log10 RTV unbound 271 272 concentrations, and log₁₀ COBI unbound concentrations and percentage inhibition of RIFinduced DRV CL_{int.app.} of β = -234 (95% CI = -275 to -193; P < 0.0001), and β = -73 (95% CI = 273 274 -89 to -57; P < 0.0001), respectively. Conducting linear regression analysis of the effects of RIF 275 on DRV CL_{int.app.} revealed that RIF exerted a similar effect on DRV CL_{int.app.} in the two 276 independent sets of RTV and COBI experiments, with a positive association observed between RIF unbound concentration and DRV CL_{int.app.} of $\beta = 19$ (95% CI = 4 to 34; P=0.017) and $\beta =$ 277 278 16 (95% CI = 4 to 29; P=0.013) in the RTV experiments, and COBI experiments, respectively.

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGC

279 DISCUSSION AND CONCLUSIONS

Chemotherapy

280 RIF strongly induces the expression of metabolic enzymes such as CYP3A4 (33-35), and can 281 also induce the activity of drug transporters (36). Collectively, this can result in clinicallyrelevant DDIs in patients that receive RIF together with other medications (11, 37). These DDIs 282 present challenges for the treatment of HIV-TB patients as several therapeutic options are 283 contraindicated due to known DDIs (10), whilst other potentially viable treatment regimens may 284 285 either be delayed, or avoided completely, due to hypothetical DDIs that are predicted to occur 286 between anti-TB drugs and ARVs such as PIs. For example, co-administering the standard-dose of any PI with RIF is currently contraindicated under WHO guidelines (15), but the extent of 287 288 potential DDIs between RIF and PIs has not been determined for all PIs, including DRV. Currently, co-administering dose-adjusted LPV/r, or SQV/r together with RIF is indicated, albeit 289 with the caveat that high levels of toxicity can occur. This raises the possibility that 290 administering other PIs, such as RTV-, or COBI-boosted DRV, together with RIF may also be 291 292 feasible. The present study addresses this issue by providing the first experimental insight into 293 the effects of co-incubating either RTV, or COBI, together with RIF on DRV CL_{int.app}, in a 294 human hepatocyte-based in vitro model of drug metabolism.

295 Utilisation of human hepatocytes to predict hepatic metabolic clearance of xenobiotics is well-established (29, 30). In this study, incubation of cryopreserved human hepatocytes with 296 297 RIF increased DRV CL_{int.app.} (Fig. 1 and Fig. 2). This is likely due to induction of CYP3A4 (17, 298 26), although the effects of RIF on transporters may also be important (30). Uptake transporters 299 such as organic anion transporting polypeptide isoform 1B1 (OATP1B1) (38), and efflux 300 transporters such as P-gp (39), have been shown to play a role in PI elimination, and therefore may also be relevant in the DDIs between RIF and COBI-, or RTV-boosted DRV. Indeed, RIF 301 has been shown to inhibit OATP1B1 (40), and DRV uptake by OATP1B1 and OATP1B3 in 302

transfected CHO cells has also been reported (41). Utilising a pop-PK-model, it has been
suggested that OATP3A1 polymorphisms are associated with DRV PK (42), in addition, a recent
physiologically-based PK (PBPK) modelling-based study that investigated the PK of DRV/r
during pregnancy has also suggested a role for hepatic transporters in DRV disposition (43).

307 Co-incubation of human cryopreserved hepatocytes with COBI and RIF, or RTV and RIF 308 - using concentrations spanning the in vivo therapeutic range of these compounds - revealed that 309 both RTV and COBI could reduce RIF-enhanced DRV CLintapp, in a concentration-dependent manner (Fig. 1 and Fig. 2). RTV was more effective than COBI at attenuating the RIF-induced 310 increase in DRV CLint.app., with RTV exhibiting a lower IC50 compared to COBI, whilst RTV also 311 312 achieved greater maximal inhibition of the 10 µM RIF-induced increase in DRV CL_{int.app} compared to COBI (Fig. 3). Furthermore, regression analysis revealed a stronger effect of RTV 313 in comparison to COBI for their relative contribution in reducing RIF-induced increases in DRV 314 315 CL_{int.app}. Due to the more recent approval of COBI, data regarding potential DDIs between COBI and other medications is more limited than that of RTV. The expected differential DDI 316 317 profiles of COBI and RTV when administered with co-medications have been recently reviewed (44, 45). RTV and COBI both serve as mechanism-based inhibitors of CYP3A4 in vivo (46, 47); 318 319 however, RTV is also known to induce the expression of various metabolic enzymes, including 320 CYP3A4, in primary human hepatocytes in vitro (34). Very few studies aimed at investigating 321 the relative effects of COBI as an inducer of metabolic enzyme expression have thus far been conducted, although it has been suggested that the induction potential of COBI is less than that 322 323 of RTV (48), and that COBI is not expected to induce CYP3A4 expression (27). It was recently 324 suggested that hepatic uptake of RTV occurs chiefly by passive diffusion (49). In addition, RTV

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGC

Chemotherapy

has been shown to induce expression of the efflux transporters P-gp (34), and multidrug 326 resistance-associated protein 1 (MRP1; ABCC1) in primary human hepatocytes in vitro (34). DRV is a substrate of P-gp (50) and OATP1A2 and OATP1B1 (38), whilst RTV appears to 327 inhibit P-gp (50), as well as OATP1B1 and OATP1B3 (41), in vitro, RTV is also reported to be a 328 substrate of P-gp (51). At the same time, RIF has been described as both a substrate and an 329 330 inhibitor of OATP1B1 and OATP1B3 in vitro (52). In addition, chronic exposure to RIF has 331 been shown to exert an inhibitory effect on P-gp in vitro (53), whilst RIF-induced induction of Pgp/ABCB1 and OATP1B1 and ABCC2 expression has also been reported (54). It remains to be 332 333 seen therefore what the net contribution of transporters such as OATP1B1, OATB1B3 and P-gp may be on plasma levels of DRV in vivo, especially when DRV is administered in combination 334 with other compounds such as RIF. 335

336 The PK profiles of DRV/r (800/100 mg, qd) and DRV/c (800/150 mg, qd) in HIV-337 infected patients are broadly similar (55, 56). However, in a study conducted in healthy volunteers, it has been reported that DRV Cmin values were 30% lower in individuals treated with 338 DRV/c compared with individuals treated with DRV/r (57). In addition, PK analysis of the PI 339 tipranavir (TPV), when administered in combination with COBI or RTV in healthy volunteers, 340 showed that TPV AUC, C_{max} and C_{tau} levels were significantly lower with COBI compared to 341 342 RTV (58). Collectively, these studies suggest that the pharmacoenhancment with COBI is not 343 always equal to that of RTV.

Whilst no studies have been conducted investigating the effects of co-administering 344 either DRV/r or DRV/c with RIF on DRV bioavailability, it has recently been shown using a 345 pop-PK modelling approach that administering dose-adjusted DRV/r (1600/200 mg qd; 800/100 346

Chemotherapy

347

348 with the caveat that RTV-related side-effects may occur and that a higher pill burden would be required (23). These *in silico* findings are in general agreement with the *in vitro* outcomes of 349 the present study. However, extrapolating the *in vivo* significance of *in vitro* data presents 350 multiple challenges (59, 60), and it is difficult to directly infer how the results of the current 351 352 study may translate in vivo. For example, increasing the dose of RTV in combination with a 353 given PI is not always sufficient to overcome the effects of RIF. Indeed, a study of the effects of RIF on the steady-state PK of ATV with RTV in healthy volunteers showed that administering 354 ATV/RTV 300/100 mg, ATV/RTV 300/200 mg, and ATV/RTV 400/200 mg was insufficient to 355 completely overcome the inductive potential of RIF 600 mg (12). In an effort to better 356 understand the absorption, distribution, metabolism and elimination of various compounds, the 357 use of PBPK models has recently gained popularity (61). Various PBPK models have been 358 359 developed that have proven useful in predicting the effects of administering ARVs in HIV 360 patients with co-morbidities (62). Indeed, a recent study described the development of a PBPK 361 model for predicting clinical DDIs from RIF-based in vitro human hepatocyte data (63), and it is therefore hoped that the data presented herein will be of use in the development of PBPK models 362 to predict the effects of co-administering boosted PIs with anti-TB drugs. 363

mg bid; or 1200/150 mg bid) can potentially overcome the effects of RIF on DRV Ctrough, albeit

In conclusion, the results presented here provide insight into the relative effects of RTV and COBI as pharmacoenhancers of DRV in the presence of RIF in an *in vitro* model of drug metabolism, which can be used in conjunction with PBPK models to rationalise future strategies aimed at optimising treatment regimens for HIV-TB patients. Further work should aim to elucidate the mechanisms that give rise to the differential inhibitory potential of COBI and RTV 374

Antimicrobial Agents and Chemotherapy

Accepted Manuscript Posted Online

375 ACKNOWLEDGEMENTS

- 376 This work was presented in part at Conference on Retroviruses and Opportunistic Infections
- 377 (CROI), Boston, Massachusetts, USA, 22-25 February 2016, (Poster Number 459). S. K. has
- 378 received research grants and/or travel bursaries from ViiV healthcare, Gilead Sciences, Janssen
- 379 Pharmaceutica NV and Merck. A.O. has received research grants and/or consultancy from
- 380 AstraZeneca, ViiV Healthcare, Merck and Janssen Pharmaceutica NV, and is a co-inventor on
- 381 patents relating to drug delivery of anti-infective drugs. M. S. has received research grants from

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGO

382 Janssen Pharmaceutica NV and ViiV.

384 FUNDING INFORMATION

385 This study was funded by Janssen, Pharmaceutical Companies of Johnson & Johnson. Grant

386 number JXR11327.

REFERENCES 387

388 389	1.	Kwan CK, Ernst JD. 2011. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24:351-376.
390	2.	Lawn SD, Meintjes G, McIlleron H, Harries AD, Wood R. 2013. Management of HIV-associated
391		tuberculosis in resource-limited settings: a state-of-the-art review. BMC Med 11 :253.
392	3.	WHO. 2014. World Health Organization (WHO). Global Tuberculosis Report 2014, Geneva.
393	4.	Bruchfeld J, Correia-Neves M, Kallenius G. 2015. Tuberculosis and HIV Coinfection. Cold Spring
394	ч.	Harb Perspect Med 5.
395	5.	Horseinipour MC, Gupta RK, Van Zyl G, Eron JJ, Nachega JB. 2013. Emergence of HIV drug
396	Э.	resistance during first- and second-line antiretroviral therapy in resource-limited settings. J
390 397		Infect Dis 207 Suppl 2: S49-56.
398	6.	Sankatsing SU, Beijnen JH, Schinkel AH, Lange JM, Prins JM. 2004. P glycoprotein in human
399	0.	immunodeficiency virus type 1 infection and therapy. Antimicrob Agents Chemother 48 :1073-
400		1081.
400 401	7.	Josephson F. 2010. Drug-drug interactions in the treatment of HIV infection: focus on
401	7.	pharmacokinetic enhancement through CYP3A inhibition. J Intern Med 268: 530-539.
402	8.	Zeldin RK, Petruschke RA. 2004. Pharmacological and therapeutic properties of ritonavir-
403 404	٥.	boosted protease inhibitor therapy in HIV-infected patients. J Antimicrob Chemother 53: 4-9.
	•	
405	9.	Larson KB, Wang K, Delille C, Otofokun I, Acosta EP. 2014. Pharmacokinetic enhancers in HIV
406	10	therapeutics. Clin Pharmacokinet 53 :865-872.
407	10.	Regazzi M, Carvalho AC, Villani P, Matteelli A. 2014. Treatment optimization in patients co-
408		infected with HIV and Mycobacterium tuberculosis infections: focus on drug-drug interactions
409	11	with rifamycins. Clin Pharmacokinet 53 :489-507.
410	11.	Baciewicz AM, Chrisman CR, Finch CK, Self TH. 2013. Update on rifampin, rifabutin, and
411	10	rifapentine drug interactions. Curr Med Res Opin 29: 1-12.
412	12.	Burger DM, Agarwala S, Child M, Been-Tiktak A, Wang Y, Bertz R. 2006. Effect of rifampin on
413		steady-state pharmacokinetics of atazanavir with ritonavir in healthy volunteers. Antimicrob
414 415	10	Agents Chemother 50 :3336-3342.
	13.	Justesen US, Andersen AB, Klitgaard NA, Brosen K, Gerstoft J, Pedersen C. 2004.
416 417		Pharmacokinetic interaction between rifampin and the combination of indinavir and low-dose
417	11	ritonavir in HIV-infected patients. Clin Infect Dis 38 :426-429.
418 419	14.	la Porte CJ, Colbers EP, Bertz R, Voncken DS, Wikstrom K, Boeree MJ, Koopmans PP, Hekster YA, Burger DM. 2004. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with
419		rifampin in healthy volunteers. Antimicrob Agents Chemother 48: 1553-1560.
420 421	15.	WHO. 2013. WHO Consolidated guidelines on the use of antiretroviral drugs for treating and
421	15.	preventing HIV infection
422		(<u>http://apps.who.int/iris/bitstream/10665/85321/1/9789241505727_eng.pdf?ua=1</u>). World
423 424		
	16	Health Organization Geneva.
425 426	16.	Dooley KE, Kim PS, Williams SD, Hafner R. 2012. TB and HIV Therapeutics: Pharmacology
	17	Research Priorities. AIDS Res Treat 2012: 874083.
427 428	17.	Rittweger M, Arasteh K. 2007. Clinical pharmacokinetics of darunavir. Clin Pharmacokinet
428 429	10	46:739-756.
	18.	Vermeir M, Lachau-Durand S, Mannens G, Cuyckens F, van Hoof B, Raoof A. 2009. Absorption,
430 421		metabolism, and excretion of darunavir, a new protease inhibitor, administered alone and with
431		low-dose ritonavir in healthy subjects. Drug Metab Dispos 37: 809-820.

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGO

432

19.

432	19.	Kakuda TN, van De Casteele T, Petrovic K, Neujens M, Sain H, Opsomer M, Hoeteimans KM.
433		2014. Bioequivalence of a darunavir/cobicistat fixed-dose combination tablet versus single
434		agents and food effect in healthy volunteers. Antivir Ther 19: 597-606.
435	20.	Deeks ED. 2014. Darunavir: a review of its use in the management of HIV-1 infection. Drugs
436		74: 99-125.
437	21.	Capetti A, Cossu MV, Rizzardini G. 2015. Darunavir/cobicistat for the treatment of HIV-1: a new
438		era for compact drugs with high genetic barrier to resistance. Expert Opin Pharmacother
439		16: 2689-2702.
440	22.	Putcharoen O, Do T, Avihingsanon A, Ruxrungtham K. 2015. Rationale and clinical utility of the
441		darunavir-cobicistat combination in the treatment of HIV/AIDS. Drug Des Devel Ther 9 :5763-
442		5769.
443	23.	Dickinson L, Winston A, Boffito M, Khoo S, Back D, Siccardi M. 2016. Simulation of the impact
444		of rifampicin on once-daily darunavir/ritonavir pharmacokinetics and dose adjustment
445		strategies: a population pharmacokinetic approach. J Antimicrob Chemother 71: 1041-1045.
446	24.	Ruslami R, Nijland HM, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE. 2007.
447		Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in
448		pulmonary tuberculosis patients. Antimicrob Agents Chemother 51: 2546-2551.
449	25.	AbbVie Limited Nmf-ct, Product Information Sheet
450	201	https://www.medicines.org.uk/emc/medicine/22952. Accessed on: 04 April 2016.
451	26.	EMA. 2013. EMA Anex I (Darunavir) Janssen-Cilag International NV. Prezista: EU summary of
452	produc	ct characteristics;. http://wwwemaeuropaeu/docs/en_GB/document_library/EPAR
453		Product_Information/human/000707/WC500041756pdf Accessed on: 23 December 2016.
454	27.	Gilead Sciences Ltd Tmfct, Annex I Summary of Product Characteristics
455		http://ec.europa.eu/health/documents/community-
456		register/2015/20150210131020/anx_131020_en.pdf. Accessed on: 23 December 2016.
457	28.	Lu C, Li P, Gallegos R, Uttamsingh V, Xia CQ, Miwa GT, Balani SK, Gan LS. 2006. Comparison of
458		intrinsic clearance in liver microsomes and hepatocytes from rats and humans: evaluation of
459		free fraction and uptake in hepatocytes. Drug Metab Dispos 34: 1600-1605.
460	29.	McGinnity DF, Soars MG, Urbanowicz RA, Riley RJ. 2004. Evaluation of fresh and cryopreserved
461		hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug
462		Metab Dispos 32: 1247-1253.
463	30.	Chiba M, Ishii Y, Sugiyama Y. 2009. Prediction of hepatic clearance in human from in vitro data
464		for successful drug development. AAPS J 11:262-276.
465	31.	Fahmi OA, Kish M, Boldt S, Obach RS. 2010. Cytochrome P450 3A4 mRNA is a more reliable
466		marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-
467		metabolizing enzymes. Drug Metab Dispos 38: 1605-1611.
468	32.	Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L,
469		Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D,
470		Vega JM, Walsh J, Wrighton SA, Pharmaceutical R, Manufacturers of America Drug
471		Metabolism/Clinical Pharmacology Technical Working G, Evaluation FDACfD, Research. 2003.
472		The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and
473		Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815-832.
474	33.	Watkins PB, Wrighton SA, Maurel P, Schuetz EG, Mendez-Picon G, Parker GA, Guzelian PS.
475		1985. Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci
476		U S A 82: 6310-6314.

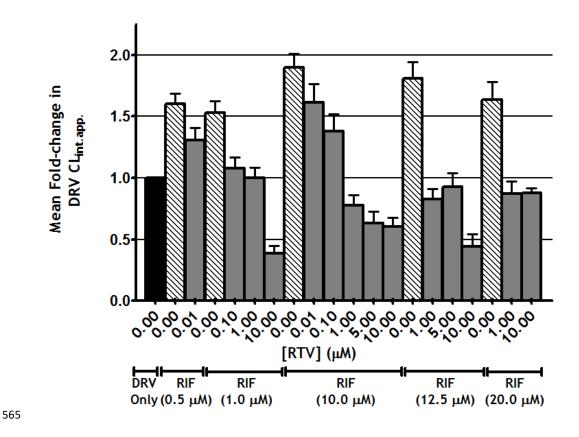
Kakuda TN, Van De Casteele T, Petrovic R, Neujens M, Salih H, Opsomer M, Hoetelmans RM.

477	24	Divite V. Usering and M. Liff, Description, JKF, User Hart ID, 2007, Orthodorem, DAFO, and and a				
477	34.	Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD. 2007. Cytochrome P450 enzymes				
478		and transporters induced by anti-human immunodeficiency virus protease inhibitors in human				
479		hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos 35: 1853-				
480	25	1859. Char I. Barrand K. 2006. Balan of rife analysis in data data interaction and balance in the second statement of				
481	35.	Chen J, Raymond K. 2006. Roles of rifampicin in drug-drug interactions: underlying molecular				
482		mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob 5:3.				
483	36.	Schuetz EG, Schinkel AH, Relling MV, Schuetz JD. 1996. P-glycoprotein: a major determinant of				
484		rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U				
485		S A 93:4001-4005.				
486	37.	Baciewicz AM, Chrisman CR, Finch CK, Self TH. 2008. Update on rifampin and rifabutin drug				
487	20	interactions. Am J Med Sci 335 :126-136.				
488	38.	Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, Sora ES, James CE,				
489		Gibbons S, Bray PG, Back DJ, Khoo SH, Owen A. 2010. HIV protease inhibitors are substrates for				
490		OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by				
491	20	SLCO1B1 polymorphisms. Pharmacogenet Genomics 20 :112-120.				
492	39.	Huang L, Wring SA, Woolley JL, Brouwer KR, Serabjit-Singh C, Polli JW. 2001. Induction of P-				
493		glycoprotein and cytochrome P450 3A by HIV protease inhibitors. Drug Metab Dispos 29: 754-				
494 405	40	760. Chai MAK Jin OB Chai XI, Ahn SH, Ban MA, Sana IS, 2011, Jubikitany officity of katagonegals and				
495	40.	Choi MK, Jin QR, Choi YL, Ahn SH, Bae MA, Song IS. 2011. Inhibitory effects of ketoconazole and				
496		rifampin on OAT1 and OATP1B1 transport activities: considerations on drug-drug interactions.				
497	4.1	Biopharm Drug Dispos 32: 175-184.				
498	41.	 Annaert P, Ye ZW, Stieger B, Augustijns P. 2010. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica 40:163-176. 				
499	42					
500	42.	Molto J, Xinarianos G, Miranda C, Pushpakom S, Cedeno S, Clotet B, Owen A, Valle M. 2013.				
501 502		Simultaneous pharmacogenetics-based population pharmacokinetic analysis of darunavir and ritonavir in HIV-infected patients. Clin Pharmacokinet 52: 543-553.				
502 503	43.	Colbers A, Greupink R, Litjens C, Burger D, Russel FG. 2016. Physiologically Based Modelling of				
503 504	45.	Darunavir/Ritonavir Pharmacokinetics During Pregnancy. Clin Pharmacokinet 55: 381-396.				
504	44.	Marzolini C, Gibbons S, Khoo S, Back D. 2016. Cobicistat versus ritonavir boosting and				
505	44.	differences in the drug-drug interaction profiles with co-medications. J Antimicrob Chemother				
507		doi:10.1093/jac/dkw032.				
508	45.	Renjifo B, van Wyk J, Salem AH, Bow D, Ng J, Norton M. 2015. Pharmacokinetic enhancement				
508	45.	in HIV antiretroviral therapy: a comparison of ritonavir and cobicistat. AIDS Rev 17: 37-46.				
510	46.	Mathias AA, West S, Hui J, Kearney BP. 2009. Dose-response of ritonavir on hepatic CYP3A				
510	40.	activity and elvitegravir oral exposure. Clin Pharmacol Ther 85: 64-70.				
512	47.	Mathias AA, German P, Murray BP, Wei L, Jain A, West S, Warren D, Hui J, Kearney BP. 2010.				
513	47.	Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer				
514		without anti-HIV activity. Clin Pharmacol Ther 87: 322-329.				
515	48.	Xu L, Liu H, Murray BP, Callebaut C, Lee MS, Hong A, Strickley RG, Tsai LK, Stray KM, Wang Y,				
515	40.	Rhodes GR, Desai MC. 2010. Cobicistat (GS-9350): A Potent and Selective Inhibitor of Human				
517		CYP3A as a Novel Pharmacoenhancer. ACS Med Chem Lett 1 :209-213.				
518	49.	Liu L, Unadkat JD. 2013. Interaction between HIV protease inhibitors (PIs) and hepatic				
519	45.	transporters in sandwich cultured human hepatocytes: implication for PI-based DDIs. Biopharm				
520		Drug Dispos 34: 155-164.				
520	50.	Fujimoto H, Higuchi M, Watanabe H, Koh Y, Ghosh AK, Mitsuya H, Tanoue N, Hamada A, Saito				
521	50.	H. 2009. P-glycoprotein mediates efflux transport of darunavir in human intestinal Caco-2 and				
523		ABCB1 gene-transfected renal LLC-PK1 cell lines. Biol Pharm Bull 32: 1588-1593.				
525		24				
		24				

AAC

Antimicrobial Agents and Chemotherapy

524 525	51.	Horita Y, Doi N. 2014. Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein. Antimicrob Agents Chemother
526		58 :3168-3176.
527	52.	Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. 2002. Interactions of rifamycin SV
528	50	and rifampicin with organic anion uptake systems of human liver. Hepatology 36 :164-172.
529	53.	Reitman ML, Chu X, Cai X, Yabut J, Venkatasubramanian R, Zajic S, Stone JA, Ding Y, Witter R,
530		Gibson C, Roupe K, Evers R, Wagner JA, Stoch A. 2011. Rifampin's acute inhibitory and chronic
531		inductive drug interactions: experimental and model-based approaches to drug-drug interaction
532		trial design. Clin Pharmacol Ther 89: 234-242.
533	54.	Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. 2013. Induction of influx and efflux
534		transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin,
535		and rifapentine. Antimicrob Agents Chemother 57: 6366-6369.
536	55.	Boffito M, Miralles D, Hill A. 2008. Pharmacokinetics, efficacy, and safety of darunavir/ritonavir
537		800/100 mg once-daily in treatment-naive and -experienced patients. HIV Clin Trials 9: 418-427.
538	56.	Tashima K, Crofoot G, Tomaka FL, Kakuda TN, Brochot A, Van de Casteele T, Opsomer M,
539		Garner W, Margot N, Custodio JM, Fordyce MW, Szwarcberg J. 2014. Cobicistat-boosted
540		darunavir in HIV-1-infected adults: week 48 results of a Phase IIIb, open-label single-arm trial.
541		AIDS Res Ther 11: 39.
542	57.	Mascolini M. Darunavir Boosting with GS-9350 (Cobicistat) or Ritonavir in Healthy Volunteers, p.
543		In (ed),
544	58.	Ramanathan S, Wang, H., Szwarcberg, J. & Kearney, B.P. 2012. Safety/Tolerability,
545		Pharmacokinetics, and Boosting of Twice-daily Cobicistat Administered Alone or in Combination
546		with Darunavir or Tipranavir abstr 13th International Workshop on Clinical Pharmacology of HIV
547		Therapy, Barcelona, Spain, Apr 16-18.
548	59.	Rostami-Hodjegan A, Tucker GT. 2007. Simulation and prediction of in vivo drug metabolism in
549		human populations from in vitro data. Nat Rev Drug Discov 6:140-148.
550	60.	Wienkers LC, Heath TG. 2005. Predicting in vivo drug interactions from in vitro drug discovery
551		data. Nat Rev Drug Discov 4: 825-833.
552	61.	Jamei M. 2016. Recent Advances in Development and Application of Physiologically-Based
553		Pharmacokinetic (PBPK) Models: a Transition from Academic Curiosity to Regulatory
554		Acceptance. Curr Pharmacol Rep 2:161-169.
555	62.	Siccardi M, Rajoli RKR, Curley P, Olagunju A, Moss D, Owen A. 2013. Physiologically based
556		pharmacokinetic models for the optimization of antiretroviral therapy: recent progress and
557		future perspective. Future Virology 8:871-890.
558	63.	Yamashita F, Sasa Y, Yoshida S, Hisaka A, Asai Y, Kitano H, Hashida M, Suzuki H. 2013.
559		Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-
560		drug interactions from in vitro data. PLoS One 8:e70330.
561		


Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGO

562

AAC

563 FIGURES AND FIGURE LEGENDS

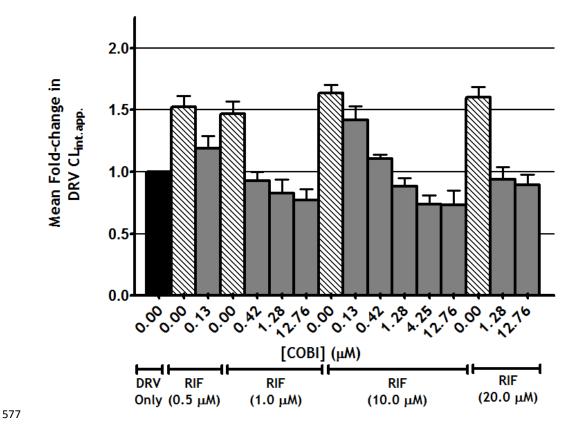
FIGURE 1 564

566

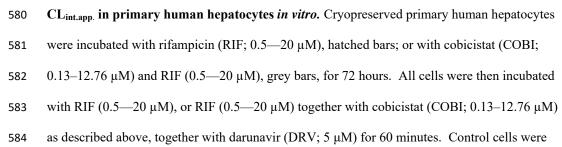
567 Figure 1: Effects of rifampicin alone, or in combination with ritonavir, on mean DRV 568 CL_{int.app.} in primary human hepatocytes in vitro. Cryopreserved primary human hepatocytes 569 were incubated with rifampicin alone (RIF; 0.5-20 µM), hatched bars; or with RIF (0.5-20 μM) together with ritonavir (RTV; 0.01-10 μM), grey bars, for 72 hours. All cells were then 570

AAC

571	incubated with RIF (0.5–20 μ M), or RIF (0.5–20 μ M) together with RTV (0.01–10 μ M) as					
572	described above, together with darunavir (DRV; 5 μ M), for 60 minutes. Control cells were					
573	treated with DRV (5 μ M) alone for 60 minutes (black bar). The results shown represent the					
574	mean DRV CL _{int.app.} from three biological replicates measured in hepatocytes from three					
575	independent donors (Lot HU1399, HU1587 and HU1621). Error bars: SD.					


27

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGO


Antimicrobial Agents and Chemotherapy

AAC

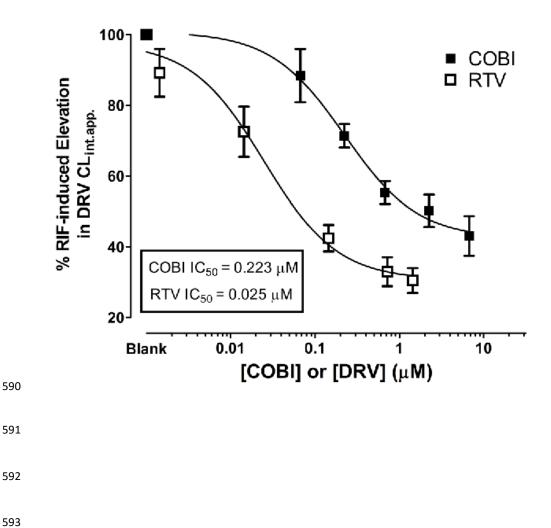
576 FIGURE 2

579 Figure 2: Effects of rifampicin alone, or in combination with cobicistat, on mean DRV

treated with DRV (5 µM) alone for 60 minutes (black bar). The results shown represent the 585

- mean DRV CL_{int.app.} from three biological replicates measured in hepatocytes from three 586
- independent donors (Lot HU1399, HU1574 and HU1587). Error bars: SD. 587

Antimicrobial Agents and Chemotherapy


AAC

594

595

596

589 FIGURE 3

597	Figure 3: Comparative effectiveness of COBI and RTV at lowering RIF-induced DRV
598	CL _{int.app.} in human primary hepatocytes in vitro. Graph shows the relative effects of cobicistat
599	(COBI) and ritonavir (RTV) on inhibition of 10 μM rifampicin (RIF)-induced elevations in DRV
600	$CL_{int.app.}$ in cryopreserved primary human hepatocytes. Cells were co-incubated with RTV
601	(starting total concentrations of 0.1—10 μ M; donors HU1399, HU1587 and HU1621), or COBI
602	(starting total concentrations of 0.13—12.76 μ M; donors HU1399, HU1574 and HU1587) in
603	combination with RIF (10 $\mu M)$ for 72 hours prior to co-incubation with DRV (5 $\mu M)$ for one
604	hour. Each condition was tested in triplicate in each donor. The concentrations of RTV and
605	COBI plotted represent the unbound concentrations present in WME incubation medium
606	following correction for protein binding. Untreated control (blank) was assigned a value of
607	$0.001 \ \mu M$ in each case. Error bars: SEM.

608

Antimicrobial Agents and Chemotherapy

AAC

Downloaded from http://aac.asm.org/ on February 15, 2017 by UNIV OF CALIF SAN DIEGO

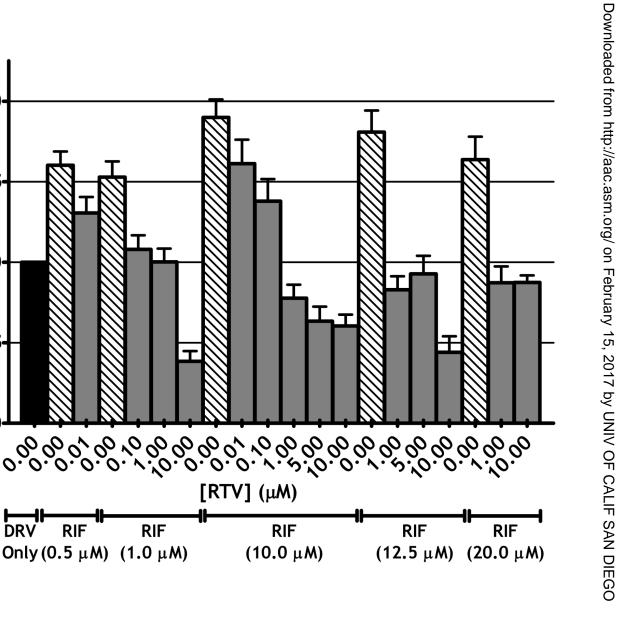
610 **TABLE 1**

611 **Table 1:** Donor Information for Cryopreserved Primary Human Hepatocytes Used

Donor	Sex	Race	Age	Medications	Drug Use
HU1399	Female	Caucasian	72	Insulin glargine: 10 units <i>qd</i> ; Metoprolol: 100 mg <i>qd</i> ; Lisinopril hydrochlorothiazide: 20/12.5 mg <i>qd</i> ; Calcium + Vitamin D: 500 mg <i>qd</i> ; Multivitamin: <i>qd</i> ; Aspirin: 81 mg <i>qd</i>	Historic long- term tobacco use
HU1574	Male	Caucasian	70	Atorvastatin: 80 mg <i>qd</i> ; Lisinopril: 5 mg <i>qd</i> .; Aspirin: 81 mg <i>qd</i> ; Tamsulosin: 4 mg <i>qd</i>	None reported
HU1587	Female	Caucasian	43	Vitamin D oral; Multivitamin oral; Calcium + Vitamin D + Vitamin K	None reported
HU1621	Male	Caucasian	66	Pazopanib: 800 mg <i>qd</i>	Rare alcohol use. Historic tobacco use

612

Antimicrobial Agents and Chemotherapy


Antimicrobial Agents and Chemotherapy

613 **TABLE 2**

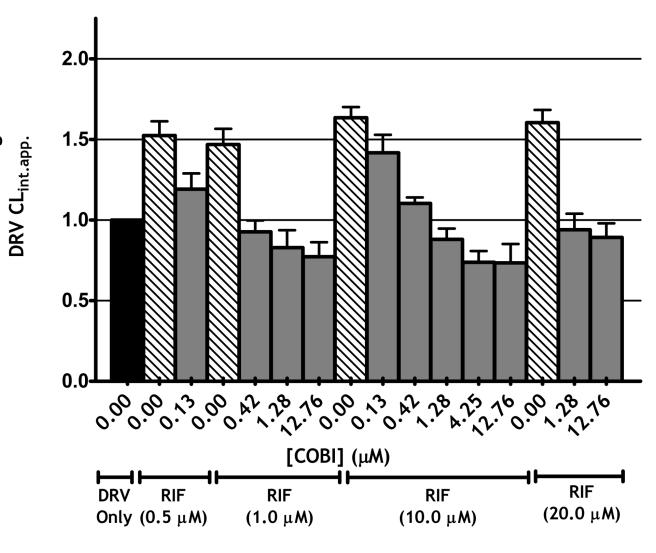
- **Table 2:** Fraction Unbound (f_u) Values in Williams' Medium E (WME) Incubation Medium of
- 615 each Compound Used in This Study (mean \pm SD; n=3)

Compound	Fraction Unbound (f _u) in
	WME Incubation Medium
	(mean ± SD)
COBI	0.53 ± 0.04
DRV	0.76 ± 0.07
RIF	0.63 ± 0.05
RTV	0.14 ± 0.01

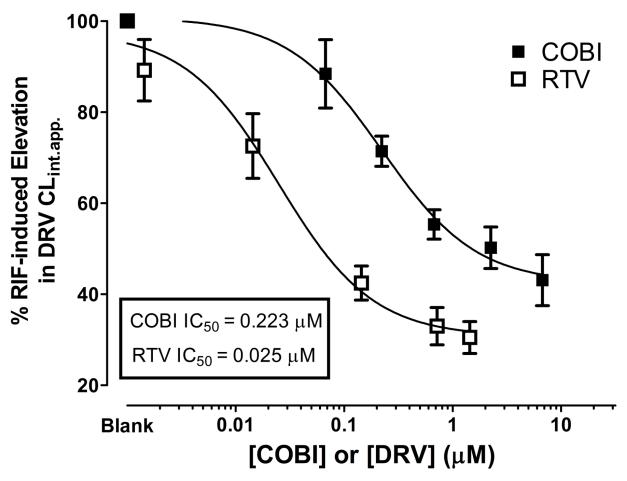
AAC

Mean Fold-change in DRV CL_{int.app}. 2.0

1.5


1.0

0.5


0.0

DRV

RIF

