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Despite progress in the development of targeted cancer therapies, 
evolution of resistance is common. To counter resistance, combina-
tion therapy is rapidly becoming the standard of care in a range of 
cancers where single agents are ineffective1. Repurposing existing 
drugs in combinations could provide new therapeutic possibili-
ties with reduced cost and time for development, while potentially 
minimizing side effects by lowering the dosage requirement for each 
drug1–3. Discovering such drug combinations, however, is a major 
challenge since the number of possible combinations is too large to 
be empirically validated using traditional assays4.

GI maps have been used successfully to study the coordinated 
behaviors of genes, and consist of systematic pairwise measures of 
the extent to which the phenotype of one mutation is modulated by 
the presence of a second mutation5. The pattern of synergistic and 
buffering interactions serves as a ‘phenotypic signature’ for each gene, 
and can be used to cluster genes with similar functions into pathways 
and complexes. These maps have been useful tools for predicting 
gene function, allowing dissection of complexes and pathways6–10 in 
a range of organisms5,7,9,11–15. Notably, a recent study, using a yeast 
GI map, identified synthetic lethal interactions that were conserved 
in mammalian cells as potential cancer therapies16. We15 and oth-
ers17 recently demonstrated scalable, rapid strategies to create pooled 
combinatorial short hairpin RNA (shRNA) and microRNA libraries 
that facilitated the use of GI maps in mammalian cells. Creation of 
such maps using the CRISPR–Cas9 system, which allows for precise 
gene disruption with minimal off-target effects18–20, would be a trans-
formative tool for dissection of genetic interaction networks.

Here, we report a scalable CRISPR-based double knockout (CDKO) 
system that enables massively parallel pairwise gene knockout. 
Although a number of groups have used CRISPR–Cas9 for multiplexed  

genome engineering20–23, our library design minimizes possible 
recombination24,25 and positional bias while enabling simple clon-
ing and direct paired-end sequencing of sgRNAs. Furthermore, we 
developed a robust statistical scoring method for GIs from CRISPR-
deleted gene pairs. Using this system in K562 chronic myeloid leuke-
mia (CML) cells, we demonstrate two diverse applications: first, we 
conduct an ultra-high-throughput search for rare interactions, gen-
erating, to our knowledge, the largest mammalian GI map to date, 
comprising ~490,000 double-sgRNAs corresponding to 21,321 drug 
combinations. Based on the genetic data, we identify synergistic drug 
target combinations and show that the predicted target pairs translate 
to potent synergistic drug combinations in cell culture. In a second 
application, we independently validate the method on a dense net-
work of genetic interactions by creating a GI map that uses interac-
tion patterns to correctly classify known and novel regulators of ricin 
toxicity into functional complexes.

RESULTS
A scalable, efficient CRISPR double-knockout (CDKO) system
We first aimed to design a pairwise sgRNA expression system that 
incorporated several key features (Fig. 1a): (1) efficient double 
knockout, (2) limited lentiviral vector recombination due to long 
homologous sequences, (3) compatibility with paired-end deep 
sequencing, and (4) capacity for easy cloning and multiplexing. We 
tested two approaches to express pairs of sgRNAs from a lentiviral 
vector: a dual-promoter system and a single promoter Csy4 (RNase 
from Pseudomonas aeruginosa) sgRNA system21. For the first, we 
designed a vector to limit homologous sequences by employing two 
distinct promoters (human and mouse U6) driving expression of each 
sgRNA (Fig. 1b). In the second approach, we adapted the Csy4-based  
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multiplex gRNA expression system in which two sgRNAs are tran-
scribed as a single RNA and cleaved into two by Csy4 RNase21.  
We compared the efficiency of both systems to delete GFP and 
mCherry in cells stably expressing the corresponding targets and 
Cas9 (or Cas9 and Csy4). We found that the two-promoter system 
showed far higher double-knockout efficiency (86–88%) than the 
Csy4-based system (37%) without displaying substantial bias when 
the orientation of GFP and mCherry sgRNAs was flipped (Fig. 1b) 
and thus selected this strategy.

Oligonucleotide pools were separately cloned into lentiviral vectors 
with either human U6 (hU6) or mouse U6 (mU6) promoters to gen-
erate two single-sgRNA libraries (Fig. 1c). Subsequently, hU6 single-
sgRNA cassettes were removed by restriction digest and ligated into the 
mU6 library to create a CDKO library. This system allows direct paired-
end sequencing of double-sgRNA cassettes (Supplementary Fig. 1a,b) 
without relying on barcodes. This not only simplifies the structure of 
the oligos and the cloning steps, but should also limit the potential for 
confounding results from possible vector recombination, which could 
lead to incomplete sgRNA pairs or mismatched barcodes. Indeed, a 
vector with two mU6 promoters exhibited substantially reduced activity 
and increased recombination (Supplementary Fig. 1c–f).

To identify synergistic combinations of drug targets in K562 CML 
cells, we selected genes that fit a number of criteria (Fig. 1d). First, 
we chose genes with corresponding drugs in TTD26, DrugBank27, 
or IUPHAR/BPS28. To enhance the likelihood that targets would 
have activity in the selected cancer type, we chose genes expressed in 
K562 cells whose perturbation caused a moderate negative growth 
phenotype in both CRISPR–Cas9 (ref. 29) and shRNA screens30 we 
previously performed in K562 cells. To enrich for synergistic pairs, 
we removed genes with lethal single-gene-deletion phenotypes as 
their phenotypes would not be further aggravated by additional gene 
deletions. For the 207 genes that met these criteria (Supplementary  
Table 1), we hypothesized that drugs targeting these genes would be 
toxic to K562 cells, and searched for interactions between them.

To generate the GI map, we selected the three most effective 
sgRNAs for each gene based on their phenotypes in our previous K562 
genome-wide screens29. We included 79 sgRNAs that target regions 
of the genome with no annotated function (safe-targeting sgRNAs) 
as negative controls29. A total of 700 sgRNAs (Supplementary  
Table 2) directed against 207 drug targets (plus safe-targeting con-
trols) were used to create a CDKO library (DrugTarget-CDKO) com-
prising 490,000 double-sgRNAs, corresponding to 21,321 drug target 
combinations (Fig. 1e). Cas9-expressing K562 cells were infected with 
this library and maintained in exponential growth phase for 14 d (~14 
cell doublings) in duplicate, after which the frequencies of double-
sgRNA cassettes were quantified by deep sequencing.

Precise phenotypic measurements of a large CDKO library
To assess whether the diversity of the large DrugTarget-CDKO library 
was maintained throughout library generation, delivery, and screen-
ing, we examined the distribution of library elements in the plasmid 
library, post-infection and puromycin selection day 0 (T0), and day 
14 (T14) (Fig. 2a). 92% of the expected 490,000 double-sgRNAs were 
detected in both the plasmid and T0 samples, suggesting this large 
library could be efficiently cloned and delivered to cells. 98.7% of 
the observed gene pairs had at least six double-sgRNAs, with 75.2% 
having the maximum of nine double-sgRNA combinations per gene 
pair (Fig. 2b). Since low sequencing read depth could add noise 
to the data, we filtered out double-sgRNAs that had read counts 
below the determined minimum threshold (Supplementary Fig. 2a  
and Supplementary Table 3).

Quantification of GI (deviation of an observed double-knockout 
phenotype from that expected from the corresponding two single 
knockouts) requires high-precision phenotypic measurements of both 
single and double knockouts. We defined growth phenotype quantita-
tively as gamma (γ) adapted from previous shRNA and CRISPR inter-
ference (CRISPRi)-based screens15,31,32. γ-phenotype is expressed as a 
phenotype Z score (pZ)32 by dividing the phenotype by the s.d. of all 
safe-sgRNA pairs (Safe_Safe). To calculate γ  for a single gene, we used 
the median of all double-sgRNAs in which the three sgRNAs targeting 
this gene are paired with the 79 safe-sgRNAs (Fig. 2c). To calculate 
the γ of a gene pair, we used the median of the nine double-sgRNAs 
(3 × 3) targeting the gene pair.

Single-gene γ-phenotypes in the CDKO vector showed strong 
correlation (Pearson coefficient = 0.87) with γ from previous single-
sgRNA genome-wide screens29 (Supplementary Fig. 2e), suggesting 
that the effectiveness of deletion is preserved in our double-sgRNA 
system. Furthermore, phenotypes of double-sgRNAs (Fig. 2d) and 
corresponding gene pairs (Supplementary Fig. 2c) were similar in 
both orientations, and γ correlated well between experimental repli-
cates (Fig. 2e and Supplementary Fig. 2d). Thus, the order of sgRNAs 
within the double-sgRNA cassettes had minimal impact on knockout 
efficiency, and measured phenotypes were highly reproducible.

Calculation of GI scores from CRISPR-knockout phenotypes
Previously, we calculated GI of double-shRNAs as the deviation from a 
linear fit of all double-shRNA phenotypes that combine the same sin-
gle-shRNA with second shRNAs of interest15. To determine whether 
the same linear relationship could be used to calculate GIs from 
pairwise CRISPR knockouts, we examined three groups of sgRNAs, 
with an sgRNA in one position of the double-sgRNA, which causes 
either a phenotypically weak (sgFABP4_1), medium (sgKDM1A_1), 
or strong (sgNAMPT_1) sgRNA phenotype (Fig. 3a). Notably, the 
NAMPT-containing double-sgRNA phenotypes leveled off as the 
negative γ-phenotype of the second sgRNAs increased, whereas the 
FABP4- or KDM1A-containing double-sgRNAs showed linear rela-
tionships with second sgRNAs. This suggested that the assumed linear 
relationship would not always hold true as the phenotype of a double-
sgRNA became stronger.

Therefore, to systematically analyze how this relationship  
changed with the γ-phenotype of double-sgRNAs, we plotted the 
observed phenotypes against the expected phenotypes for all dou-
ble-sgRNAs. Expected double phenotypes were calculated as the 
phenotypic sum of the corresponding single-sgRNAs (Fig. 3b). For 
most sgRNA pairs, we observed a strong linear relationship with 
slope close to 1, indicating that the observed γ-phenotypes of most 
double-sgRNAs could be reliably predicted by the simple sums of  
individual sgRNA phenotypes. However, as the expected γ-pheno-
types dropped below ~−20 pZ, the observed γ-phenotypes abruptly 
leveled off. While limited sequencing depth can contribute to the 
plateau (Supplementary Fig. 2f), as discussed below, this can also 
occur due to phenotypic saturation.

To account for this phenotypic plateau, we calculated GIs between 
sgRNAs (Raw-GIs) as the deviation from the smoothed line connecting 
the medians of the observed phenotypes of double-sgRNAs binned over 
the expected phenotypes, similar to a previous method for quantifying  
saturable GI phenotypes8. We defined GIs as buffering (positive sign) 
if the double-knockout phenotype shifted toward that of the Safe_Safe 
controls, while deviations away from Safe_Safe controls were defined 
as synergistic (negative sign). Buffering GIs have also been referred 
to as alleviating7 or positive interactions6, whereas synergistic GIs are 
sometimes referred to as aggravating7 or negative6 interactions.
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We also found that the variation of Raw-GIs increased as the negative 
γ-phenotypes of double-sgRNAs increased (Fig. 3c, top panel). This 
systematic bias would thus overestimate the GI for double-sgRNAs 
with large γ-phenotypes. To account for the increased variation asso-
ciated with phenotype size, the Raw-GI for a given double-sgRNA 
was divided by the s.d. of Raw-GIs from the 200 nearest neighbors.  

This normalized GI (termed Norm-GI) should allow fair comparison 
of GIs across the range of γ-phenotypic strengths and experimental 
replicates (Fig. 3c, bottom panel).

To quantify GIs at the gene level (Fig. 3 and Supplementary Fig. 3),  
we took advantage of the fact that each pair of genes has 18 different 
double-sgRNAs (9 for each of two orientations). Furthermore, the 
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library contains many non-interacting double-sgRNA controls: Safe_
Safe (6,241) and sgRNAs paired with a safe-sgRNA (49,059) (Fig. 3c,  
bottom panel). This allowed us to compare the double-sgRNAs for 
each gene pair to these non-interacting sgRNA pairs to calculate 

scores that reflect both the consistency and strength of GIs. We then 
tested two scoring systems—GIT score (Fig. 3d and Supplementary 
Fig. 3a) and GIM score (Supplementary Fig. 3b)—which are based on 
a modified t-value33 and a signed logarithmic P value determined by 
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the Mann–Whitney U test15, respectively (Supplementary Table 4). 
Nearly identical synergistic and buffering gene pairs were identified 
using each method, suggesting that both scoring systems robustly 
measure GIs in the DrugTarget-CDKO map.

We evaluated gene-level interactions between drug targets in the 
library as GIT scores (Fig. 3d). As expected, genes showed minimal 
interactions with safe-targeting controls. Furthermore, strong buffering 
GIs were observed between a gene and itself (Supplementary Fig. 3c),  
suggesting that, overall, the CDKO system achieved efficient double-
knockout since incomplete knockout would lead to more additive 
or synergistic interactions between two sgRNAs targeting the same 
genes. A few genes appeared self-synergistic (e.g., TK1_TK1), likely 
from a disproportionate increase in gene-deletion efficiency when 
two different ineffective sgRNAs were used to target the same gene 
(Supplementary Fig. 4 and Supplementary Text).

As drug targets were chosen from unrelated pathways, most gene 
pairs did not interact and had small GIT scores, consistent with low 
interaction frequencies in previous GI maps for unrelated genes6,34,35 
(Supplementary Text). Note that the low density and overall small 
effect of interactions resulted in lower correlations between GIs than 
the primary gene effects (Fig. 2d,e), which are highly reproducible. 
However, when we looked at the rare synergistic gene pairs that were 
well separated from the cloud of weakly interacting pairs, a number 
of strong interactions were observed. These consisted of several pairs 
with no annotated interaction, as well as many gene pairs for which 
synergistic interactions are either supported by previous studies or 
readily explained by the known biological functions of the corre-
sponding genes. For example, the AKT1_AKT2 and PIM1_PIM2  
pairs are highly homologous kinase isoforms with known functional 
redundancy36,37 and the BCL2L1_MCL1 and ATM_PRKDC pairs 
have similar biological functions (apoptosis and DNA damage repair, 
respectively). Notably, it has been shown that when both PIM1 and 
PIM2 are deleted, oncogenic ABL-mediated transformation in hemat-
opoietic cells cannot occur38. Because K562 growth is driven by BCR-
ABL, the results suggest that cancer-specific synthetic lethalities can 
be identified with the CDKO system. Overall these results suggest 
that even when interactions are rare, the CDKO system can efficiently 
identify biologically meaningful synergistic relationships.

Validation of the CDKO system on a dense ricin GI map
Although the DrugTarget-CDKO map revealed rare, potent, synergis-
tic targets, another useful feature of GI maps is the ability to cluster 
functionally related genes by the similarity of their GI patterns7,33. 
Since genes for the DrugTarget-CDKO library were selected across 
a wide variety of pathways, GIs were sparse6,7,34,35 (Supplementary 
Text), and consequently did not result in meaningful clustering (with 
a few exceptions) (Supplementary Fig. 5). Therefore, we sought to 
rigorously evaluate our CRISPR-based GI map system in a different 
context, where frequent GIs among functionally related genes yield 
interaction patterns that can be used to cluster genes into pathways 
and complexes. For this purpose, we generated a GI map focused on 
the biology of the AB-type protein toxin ricin, for which we have 
extensive data on the dense network of known physical, genetic, 
and functional interactions between regulators of toxicity15,39,40. 
We chose a set of 79 non-essential genes that modulated the cellular  
susceptibility to ricin (Supplementary Tables 5 and 6) in a genome-
wide CRISPR–Cas9 ricin screen29 (Supplementary Fig. 6a), and 
included both genes identified as ricin regulators in our previous 
shRNA-based interaction map15 and novel modifiers identified 
only in the CRISPR screen. We generated a ricin-CDKO library 
(80,656 double-sgRNAs for 3,081 gene pairs), and measured the  

ricin-resistance phenotype (ρ) of double-sgRNAs, as previously 
described15 (Supplementary Fig. 6b–f).

As expected, we observed more frequent and larger GIs between 
ricin pathway regulators compared to the DrugTarget-CDKO library 
(Supplementary Fig. 6g). GIs were highly reproducible between 
experimental replicates (Supplementary Fig. 6g and Supplementary 
Table 7), as were the correlations of GI patterns between sgRNA 
pairs (Fig. 4a), though we also observed phenotypic saturation for 
highly ricin-resistant gene pairs (Supplementary Fig. 6f, top right). 
Furthermore, GI patterns were better correlated between two sgRNAs 
targeting the same gene, as expected for on-target sgRNAs acting 
through the same mechanism (Fig. 4a,b).

We next used hierarchical clustering to generate an interaction map 
for the 79 × 79 matrix of ricin interactors (Fig. 4c). The resulting 
map clearly identified a number of functional complexes with known 
involvement in ricin biology, including the vesicle-trafficking TRAPP, 
COPII, and GARP complexes. Our previous shRNA-based interac-
tion map identified two distinct mammalian TRAPP complexes,  
mTRAPPII and mTRAPPIII, which contain unique subunits 
(TRAPPC9/10 or TRAPPC12/13, respectively) and associate with 
either COPI or COPII complexes, respectively15. Not only did the 
ricin-CDKO map separate the TRAPPC9/10 cluster clearly from the 
TRAPPC12/13 cluster, but these clusters were also grouped with their 
corresponding COPI or COPII modules.

When we compared 91 common GIs between the ricin-CDKO map 
and our previous shRNA-based ricin GI map15, they showed relatively 
high correlation (Pearson coefficient = 0.606, Supplementary Fig. 7a),  
suggesting that the new CRISPR-based map recapitulated previ-
ously reported interactions. We do note some differences between 
two ricin maps, which is not unexpected given that we and others 
have observed significant differences between shRNA-based knock-
down and CRISPR KO studies30,41. However, both maps identified 
common protein complexes such as TRAPPII, TRAPPIII, COPII,  
and GARP (Supplementary Fig. 7b). Overall, these data sug-
gest that functional clustering of genes is robust regardless of gene  
perturbation methods.

The ricin-CDKO map identified a number of known and previ-
ously unidentified protein complexes whose roles in ricin biology 
remain unexplored. For example, a number of genes involved in pro-
tein N-glycosylation, the mTOR pathway, or chromatin remodeling/
transcription control complexes were identified as protective factors 
against ricin toxicity when deleted (Fig. 4c). In each case, the cor-
responding genes were correctly clustered together in complexes 
according to previous annotations42–44.

Next, we systematically tested the ability of GIs to predict the 246 
known protein–protein interactions (PPIs) present in the STRING45 
database among the 79 genes in the ricin map (Supplementary Table 8).  
Similar approaches have been successful for systematic validation 
of GI maps in yeast10,33. We sorted the 3,081 gene pairs present in 
the ricin-CDKO library by the correlation of their GI patterns, their 
buffering GIs, or their synergistic GIs and quantified the percentage 
of the known protein interactions captured by the top N pairs (Fig. 4d  
and Supplementary Fig. 8a). The correlation of GI patterns had a 
high predictive power for known protein interactions (Fig. 4d,e); 
among the 66 gene pairs with a GI correlation > 0.5, 32% of the pairs 
had previously validated interactions, significantly higher than the 
4.8% of 66 randomly sorted gene pairs (Supplementary Fig. 8b and 
Supplementary Table 9). Additionally, we observed that buffering GIs 
had strong predictive power for PPIs. This is consistent with previous 
work showing that gene pairs with highly correlated GIs and buffering 
interactions often exist in the same protein complexes or pathways7,33. 
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Together these results show that the ricin-CDKO map could correctly 
classify complex functional relationships among ricin modulators.

Validation of top interacting drug target gene pairs
We next sought to verify drug target pairs from the initial DrugTarget-
CDKO map, in high throughput, using a ‘batch retest’ mini-map. In 
previous studies, we15 and others46,47 have seen that measurement of 
smaller libraries at higher coverage reduces false positives and/or false 
negatives from larger primary screens. We selected the top synergistic 
and buffering pairs from the DrugTarget-CDKO map and generated 
a mini-map (Supplementary Tables 10 and 11) consisting of 82,369 
(287 × 287) double-sgRNAs targeting 3,081 drug combinations (79 × 
79 genes). Compared to the DrugTarget-CDKO map, the batch retest 
was performed at 3× higher cell coverage and ~3× higher read cover-
age. Both γ-phenotypes (Fig. 5a) and measured GIs (Fig. 5b) in the 
primary DrugTarget-CDKO and batch retest screens correlated well 
and identified the same highly synergistic pairs, indicating that hits 
observed in the large interaction map were robust.

To test individual gene pairs, their respective single-sgRNAs 
(Supplementary Table 12) were cloned into vectors tagged with 
either GFP or mCherry. To measure their GIs, we simultaneously 
infected Cas9-expressing K562 cells with lentiviruses containing 
each sgRNA to generate four populations of cells: cells that con-
tained both sgRNAs (GFP-mCherry double-positive), one sgRNA 
(GFP or mCherry single-positive), and uninfected cells (Fig. 5c). 
Tracking the change in abundance of each population relative to the 
uninfected control over time allowed us to measure both the sin-
gle- and double-knockout growth phenotypes of the sgRNAs, which 
were subsequently used to calculate the GI. For PIM1_PIM2, a top 
synergistic pair (Fig. 5d,e), the double-knockout phenotype was sig-
nificantly larger (P = 2.1 × 10−4) than the sum of the single-knockout 
phenotypes, resulting in a synergistic GI, whereas the corresponding 
negative control pairs did not interact.

GIs for the six most synergistic and three most buffering pairs 
(ordered by rank-sum of GIT and GIM scores) were individually vali-
dated (Fig. 5e–h and Supplementary Fig. 9a). Testing several pairs 
with a second pair of sgRNAs yielded similar results (Supplementary 
Fig. 9b). A subset of the same pairs were also validated as synergistic 
with the double-sgRNA vector used in the DrugTarget-CDKO library, 
whereas the sgRNAs shuffled into predicted non-interacting pairs 
were confirmed to be non-synergistic (Supplementary Fig. 9c,d).  
A summary of the sgRNA validations is presented in Supplementary 
Table 13. Efficient knockout by the sgRNAs was confirmed by analysis 
of indel frequency using TIDE48 (Supplementary Fig. 9e).

Identification of synergistic drug pairs using a GI map
As cancer therapeutic targets, gene pairs that exhibit both strong syn-
ergistic GIs and a severe growth phenotype when targeted in combi-
nation would be ideal. To identify these pairs, we exploited the ability 
of the DrugTarget-CDKO map to simultaneously measure two critical 
features of gene pairs—γ-phenotypes and GIs. The 30 most synergis-
tic gene pairs with severe γ-phenotypes (<–4 pZ) (Fig. 6a) included 
pairs for which no annotated synergy had been observed, as well as 
gene pairs in related pathways, such as apoptosis modulators, epige-
netic modulators, and DNA repair genes (Supplementary Table 14).  
We selected several candidates based on the availability of highly 
selective inhibitors and tested whether the pairs of corresponding 
drugs synergistically inhibited the growth of K562 cells as predicted in  
the GI map. Overall, we tested 11 drug pairs which resulted in 5 true-
positive synergistic interactions, 4 true non-interactions, 1 false posi-
tive, and 1 false negative (Supplementary Table 13).

We first examined APEX1_ATM because of its mechanistic similar-
ity to the well-known synthetic lethality between BRCA and PARP. 
Synthetic lethality between base excision repair (BER) and double-
strand break (DSB) repair has been successfully exploited to treat 
BRCA-deficient ovarian cancer patients with PARP inhibitors49, and 
APEX1 (BER) and ATM (DSB repair) are involved in the same path-
ways. We observed potent synergistic inhibition of cell viability using 
a combination of inhibitors against APEX1 and ATM as calculated by 
the Bliss independence model (Fig. 6b–d). Furthermore, the drug pair 
synergistically induced DSB as shown by the presence of γH2AX foci 
(Supplementary Fig. 10a–c), and apoptosis (Supplementary Fig. 
10d,e). Drug synergy was also observed between inhibitors of APEX1 
and PRKDC and of ATM and PRKDC (Supplementary Fig. 11a,b). 
These results are consistent with recent studies demonstrating syn-
thetic lethality between APEX1 shRNA knockdown and inhibitors 
of DSB repair, including ATM and PRKDC inhibitors50 and with the 
observed behavior of PRKDC inhibitors used in ATM-deficient can-
cers51. Additionally, a synergistic interaction was identified between 
inhibitors of PRKDC and TSPO (Supplementary Fig. 11c), which 
encodes a mitochondrial translocator protein that is thought to play 
a role in cell death regulation52. As expected, TXN_XPO1, MCL1_
PRKDC, TSPO_XPO1, and CARM1_XPO1, predicted to have little 
interaction, did not show substantial synergy with small-molecule 
inhibitors (Supplementary Fig. 11d–g). However, NAMPT_XPO1, 
predicted to be synergistic, did not show drug synergy (false posi-
tive) (Supplementary Fig. 11h), and BCL2L1_XPO1 demonstrated 
drug synergy despite having little GI (false negative) (Supplementary  
Fig. 11i). Overall, these data show that the use of targeted inhibitors could 
generally recapitulate GIs observed in the DrugTarget-CDKO map.

Because of its strong synergy in the DrugTarget-CDKO map,  
we also examined combination treatment using BCL2L1 (BCL-XL) 
(A-1155463) and MCL1 (A-1210477) inhibitors. Although synergy 
might be expected between BCL2L1 and MCL1, which encode anti-
apoptotic proteins of the BCL-2 family, cancers differ markedly in 
their dependence on particular pro- and anti- apoptotic proteins53, 
and a direct test of combined drug inhibition of BCL2L1 and MCL1  
has not been tested in BCR-ABL-driven cancers to our knowledge. 
We observed robust synergy (Fig. 6e–g) and induction of apoptosis 
with these drugs (Fig. 6h,i). In addition, strong synergy could be seen 
when the BCL2L1 inhibitor was coupled with another MCL1 inhibitor 
(UMI-77) (Supplementary Fig. 11j), indicating the observed synergy 
is likely due to on-target effects. Furthermore, combined BCL2L1  
and MCL1 treatment was synergistic in MV4-11 acute myeloid 
leukemia cells (Supplementary Fig. 11k). Because effective can-
cer therapeutics require a therapeutic window for cancer-selective 
toxicity, we additionally tested the BCL2L1 and MCL1 combination 
treatment in two non-cancerous cell lines—immortalized GM12892 
lymphoblastoid cell line (LCL) and primary CD34+ hematopoietic 
stem-progenitor cells (HSPCs) isolated from human cord blood. The 
treatment was less effective and synergistic in both cell types (Fig. 6j), 
suggesting this combination may be selective for certain cancer cells 
over normal cell types.

Although tyrosine kinase inhibitors such as imatinib (Gleevec) that 
target BCR-ABL have been effective in treating CML, around 33% of 
CML patients treated with imatinib do not achieve complete cytoge-
netic response, largely due to resistance54. Notably, when applied 
to imatinib-resistant K562 (K562-r) cells, the BCL2L1_MCL1 drug 
combination was even more synergistic than in parental K562 cells 
(Fig. 6k). We found that K562-r had markedly increased levels of 
BCL2L1 expression, suggesting a greater dependence upon anti-apop-
totic machinery (Fig. 6l). Given that overexpression of BCL2L1 and 
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MCL1 has been associated with increased cancer cell survival and 
drug resistance55 and that K562 cells actively regulate anti-apoptotic 
machinery in response to imatinib (Fig. 6l)56,57, co-treatment with 
BCL2L1 and MCL1 inhibitors in addition to imatinib may be an effec-
tive strategy to prevent resistance in CML.

DISCUSSION
High-throughput interrogation of cancer dependencies have suc-
cessfully revealed oncogenes58,59, drug-resistance mechanisms60,61,  
and synthetic lethal interactions62,63, and have led to the develop-
ment of new therapies that are now being tested in clinical trials62,63. 
However, these studies have primarily used single-gene targeting 
libraries, limiting their capacity to interrogate combinations of tar-
gets for effective therapies.

To address this, we developed and optimized a scalable pairwise 
CRISPR–Cas9 gene-deletion platform that allows for easy cloning, 
minimized recombination, and paired-end sequencing. We also estab-
lished robust scoring methods for calculating GIs between CRISPR-
deleted gene pairs. This system enabled a rapid search through 
combinations of drug targets at an unprecedented scale—490,000 
sgRNA pairs directed against 21,321 drug target combinations. From 
this large space of potential candidates, we identified a small number 
of highly synergistic drug combinations in K562 CML cells. In par-
ticular, the BCL2L1_MCL1 drug combination demonstrated a strong 
synergy. Given the importance of apoptosis evasion in cancer55, there 
has been enormous interest in targeting the anti-apoptotic BCL2 fam-
ily for cancer therapy64. BH3 mimetics such as the BCL2L1/BCL2-
targeting navitoclax and BCL2-specific venetoclax have demonstrated 
efficacy in patients in a variety of cancers. Additionally, these mol-
ecules can sensitize cancers to other drugs; numerous clinical trials 
are underway to evaluate these in combination with standard-of-care 
therapies55.

The anti-apoptotic BCL-2 family members act in parallel to block 
apoptosis, and MCL1 upregulation has been reported as a mechanism 
of resistance to Bcl-2 family inhibitors in certain cancers55,64 and co-
targeting of anti-apoptotics has been explored in certain contexts65,66. 
Our CRISPR-based drug target interaction map identified BCL2L1_
MCL1 as an especially potent synergistic pair in BCR-ABL-driven 
CML (K562). Furthermore, we showed that imatinib-resistant K562 
cells have markedly increased sensitivity to combination BCL2L1 
and MCL1 drug treatment. Given that previous studies have shown 
synergy between imatinib and BCL2 family inhibitors67, combining 
imatinib with both BCL2L1 and MCL1 inhibition may represent an 
effective strategy to combat resistance in CML.

The results of genetic screens can suggest promising candidates 
for drug development when potent, selective drugs are unavailable. 
For example, the GI map identified many promising synergistic  
drug target pairs such as CDC25A_RELA and CIT_STMN1 that cur-
rently lack specific drugs, but represent promising synergistic tar-
gets based on their known biological roles in NF-kB signaling68 and 
microtubule regulation69, respectively (Supplementary Table 14). 
The map also identified a number of drug targets that show weak 
synergy or additivity that might have therapeutic value in combina-
tion (e.g., TXN_XPO1, for which potent drugs in clinical trials exist, 
Supplementary Fig. 11d).

Beyond the ability to search for rare synthetic lethal pairs, we 
show here that systematic, quantitative phenotypic measurements of 
interactions between CRISPR-deleted genes can be effectively used to 
define functional relationships and pathways. Focusing on the well-
validated physical and genetic interactions of the ricin pathway, we 
created a dense map of interactions between regulators that correctly 

classified genes—including previously unidentified ricin modifiers 
from a genome-wide CRISPR screen—into known physical complexes 
and pathways. Furthermore, the similarity of interaction patterns 
accurately predicted membership in protein complexes independ-
ently reported in the STRING PPI database (Fig. 4d).

In summary, our work demonstrates a highly robust, efficient 
method that can be used to search through the expansive space of 
potential synergistic drug target pairs for use in cancer therapies, 
and might even facilitate personalized targeted cancer therapies when 
applied in diverse cancer types or patient-derived samples. More gen-
erally, we expect that this system will enable systematic dissection of 
genetic networks in mammalian cells.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Cell culture. K562 cells (ATCC) were cultured in RPMI 1640 (Gibco) supple-
mented with 10% FBS (HyClone), penicillin/streptomycin, and l-glutamine. 
GM12892 cells (gift from S.B. Montgomery) were cultured in RPMI, supple-
mented with 10% FBS, penicillin/streptomycin, and GlutaMAX (Gibco). The 
imatinib-resistant K562-r cell line was generated by culturing K562 cells in the 
presence of increasing dosages of imatinib for 6 weeks. Dosages of imatinib were 
doubled weekly from 50 nM to 1.6 µM. CD34+ HSPCs isolated from primary 
bone marrow (provided by S. Mantri and M. Porteus) were cultured in StemSpan 
SFEM II media (StemCell Technologies) supplemented with 100 ng/mL  
recombinant human SCF, TPO, Flt3-l, and IL-6 (PeproTech), 0.75 µM 
StemRegenin 1 (Cellagen Technology), and penicillin/streptomycin. HEK293T 
cells were cultured in DMEM (Gibco) supplemented with 10% FBS, penicillin/
streptomycin, and l-glutamine. Cells were maintained in logarithmic growth 
in a humidified incubator (37 °C, 5% CO2) for all biological assays.

Lentivirus production and infection. Lentivirus production and infection 
were performed as previously described21. Briefly, HEK293T cells were trans-
fected with third-generation packaging plasmids and individual sgRNA vectors 
or CDKO libraries. Lentivirus was harvested after 48 h and 72 h and filtered 
through a 0.45-µm polyvinylidene difluoride (PVDF) filter (Millipore). Spin 
infections were used to deliver sgRNA vectors and libraries into K562 cells.

Construction of CDKO library. The mouse U6 (mU6) single-sgRNA vec-
tor was derived from a pSico lentiviral vector which expresses GFP and a 
puromycin-resistance cassette separated by a T2A sequence from EF-1 alpha 
promoter, as previously described32,70. We then replaced the mU6 promoter 
with a human U6 promoter and moved a XhoI restriction site to the 5′ end of 
the hU6 promoter to generate the hU6 single-sgRNA vector. This allowed us 
to cut out the hU6-sgRNA-tracrRNA cassette and ligate it into the mU6 vector 
following the mU6-sgRNA-tracrRNA cassette to generate the CDKO library 
(Fig. 1c). To clone the mU6 and hU6 single-sgRNA libraries with 700 sgRNAs 
targeting 207 druggable genes, we PCR-amplified two sets of DNAs that have 
identical sgRNA sequences but with different adaptors from single pooled-
oligo chip (Agilent) and separately ligated into the mU6 and hU6 vectors using 
T4-ligase-mediated ligation and Gibson assembly, respectively. hU6-sgRNA-
tracrRNA cassettes were cut out by XhoI and BamHI and ligated into the mU6 
library that was also cut with the same restriction enzyme pair. This generated 
the DrugTarget-CDKO library, which has 490,000 double-sgRNA combina-
tions. To prevent cutting inside sgRNA sequences by restriction enzymes, we 
excluded sgRNA that have target sequences of XhoI, BamHI, BstXI or BlpI. 
(The last two enzymes were used to cut the mU6 vector and amplified sgRNA 
cassettes during cloning of the mU6 single-sgRNA library.) The batch retest 
and ricin-CDKO libraries were constructed in the same way.

Selection of 207 drug target genes for the DrugTarget-CDKO library and  
79 genes for the ricin-CDKO library. For the DrugTarget-CDKO library, genes 
with moderate negative-growth phenotypes in K562 cells were first selected 
from genome-wide CRISPR screens previously performed in our laboratory; 
these were genes for which the estimated effect size calculated by the casTLE 
algorithm41 was between −4 and −0.2. We then filtered out genes that did 
not have corresponding drugs in any of the following database: Therapeutic 
Target Database, DrugBank, and the IUPHAR/BPS Guide to Pharmacology 
(http://guidetopharmacology.org/). We further removed genes if their knock-
down positively affected K562 cell growth in the genome-wide shRNA screen 
previously performed in our laboratory30,41 or they were not expressed in K562 
cells (NCBI GEO Database) (Supplementary Table 1). For the ricin-CDKO 
library, we first measured the ricin-resistance phenotype (ρ) of genes in a 
genome-wide CRISPR screen29. From the hits of this screen, we first chose 
genes whose roles in ricin biology are known, and which are parts of well-
characterized protein complexes15. In addition, we included genes whose roles 
in ricin biology are unknown. Essential genes (casTLE41 effect size < −3.6)  
were removed from the final list (Supplementary Table 5).

CRISPR–Cas9 screens with DrugTarget-CDKO, batch retest, and ricin-
CDKO libraries. For the CRISPR–Cas9 screens, we used a K562 cell line sta-
bly expressing the Cas9 endonuclease, as previously described30,41. In short,  

we transduced K562 cells with an SFFV-Cas9-BFP lentiviral vector , and sorted 
the cells for BFP. We infected the Cas9-expressing K562 cells with the CDKO 
libraries, waited for 3 d, and applied puromycin selection for another 3 d until 
over 90% of the population contained the library (measured by GFP signal). At 
this point, aliquots of the library were frozen in liquid nitrogen as T0 samples, 
while the rest were used for the screen. For the DrugTarget-CDKO and batch 
retest screens, cells were grown for 14 d (~14 doublings), after which genomic 
DNA from the plasmid library and the T14 sample were isolated for PCR ampli-
fication of double-sgRNA cassettes and deep sequencing. The DrugTarget-
CDKO screen was performed at ~1,000× coverage (maintained above 500 × 
106 cells in a 1-liter culture) while the batch retest was performed at ~3,000× 
coverage (maintained above 250 × 106 cells in a 500-ml culture). For the ricin-
CDKO screen, cells were split into two conditions, untreated and ricin-treated, 
each maintained at ~3,000× coverage. For the untreated sample, cells were 
grown for 14 d (~14 doublings). For the ricin-treated sample, cells were treated 
with four pulses of ricin at LD50 (first two pulses: 0.25 ng/ml ricin, third pulse: 
0.3 ng/ml, fourth pulse: 0.35 ng/ml) so that there were about six doubling differ-
ences between the untreated and the ricin-treated samples. Genomic DNA from 
both samples were isolated and frequencies of double-sgRNAs were compared 
between the untreated and the ricin-treated sample through deep sequencing. 
All screens were carried out in two experimental replicates starting from the 
same T0 population and phenotypes of double-sgRNAs were normalized and 
pooled together before the medians of phenotypes and GIs were measured.

Paired-end deep-sequencing of double-sgRNA cassettes. For each screen, 
cells at ~1,000× coverage (i.e., 500 × 106 cells for the DrugTarget-CDKO 
screen) were lysed and genomic DNA was purified using QIAGEN Blood 
Maxi kits. Two rounds of PCR were carried out to amplify double-sgRNA 
cassettes from the genomic DNA using Herculase II Fusion Polymerase 
(Agilent) as previously described71. For every ~5,000 unique double-sgRNAs, 
10 µg of genomic DNA was used as template in each 100 µl reaction: about  
100 µl × 100 reactions were used to amplify double-sgRNA cassettes from 
the genomic DNA of the DrugTarget-CDKO library which has 490,0000 
double-sgRNAs. In the first PCR, the forward PCR primer that binds to  
3′ end of the mU6 promoter (5′-ggcttggatttctataacttcgtatagc-3′) and the 
reverse PCR primer that binds to the 3′ end of a typical double-sgRNA cassette  
(5′-ccgcctaatgg-atcccctaggaaa-3′) were used. Adapters that have Illumina P5, 
P7, a 6-bp index, and sequencing primers binding sites were added in the 
second round of PCR using the following forward and reverse PCR prim-
ers: 5′-aatgatacggcgaccaccgagatctacactgtgtgttttgagactataagtatcccttggag-3′ and  
5′-caagcagaagacggcatacgagatagacagcagtcccgtgttccggttcattctatcaNNNNNNg-
gatcccctaggaaaaaaa-gcaccg-3′, respectively, where Ns indicate Illumina index 
barcodes. From these two rounds of PCR, a PCR fragment around 640 bp that 
contains both sgRNAs was amplified and gel-purified. The amplicons were 
then sequenced on a NextSeq 550 (Illumina) using its paired-end sequencing 
protocol. The paired-end sequencing protocol was slightly modified to read 
two sgRNAs and a sample index barcode (Supplementary Fig. 1a,b) with three 
custom sequencing primers listed below. The typical paired-end sequencing 
protocol proceeds with Read1, Index Read, and Read2 steps, but the modified 
protocol uses the Index Read step to read the second sgRNA and the Read2 
step to read the illumina index barcode.

Custom Read1 primer: 5′-gtgtgttttgagactataagtatcccttggagaaccaccttgttgg-3′
Custom Read2 primer: 5′-agacagcagtcccgtgttccggttcattctatca-3′
Custom Index Read primer: 5′-ttgaaagtatttcgatttcttggctttatatatcttgtggaaag-

gacgaaacaccg-3′
In short, the custom Read1 primer that binds to the 3′ end of the mU6 pro-

moter reads 20 bp of the front sgRNA. The custom Read2 primer that binds to 
the 3′ end of hU6 promoter reads 20 bp of the rear sgRNA in the same direction 
as the first read. Clusters in the flow cells are then stripped off and flipped over 
through cluster regeneration. Finally, the custom Index Read primer reads 6 bp 
of the Illumina index barcode. From one NextSeq run (NextSeq 500/550 High 
Output Kit, 75 cycles), we can acquire ~700–800 M reads. Sequencing was per-
formed at ~200× read-coverage for the DrugTarget-CDKO screen and ~600× 
coverage for the batch retest screen. The ricin-CDKO screen was sequenced 
at about 500× read-coverage. The two sgRNA sequences were then aligned to 
the known library sequences using Bowtie72 with one mismatch allowed and 
we typically acquire about 400 M aligned reads of double-sgRNAs.

http://guidetopharmacology.org/
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Minimum count threshold. We determined a minimum threshold for read 
counts (Supplementary Fig. 2a) and masked out double-sgRNAs that have 
read counts below the threshold. To do this, we first measured frequencies of 
the single-sgRNAs in both the hU6 and mU6 libraries, calculated expected fre-
quencies of the double-sgRNAs, and compared them to observed frequencies 
in the CDKO library (Supplementary Fig. 2a). Ratios of the two frequencies 
showed that under ~50 read counts, the observed frequencies markedly fell 
below the expected; therefore, we removed double-sgRNAs with less than 50 
read counts at T = 0 from further analyses. Zero count in T14 samples were 
replaced with count = 1.

Measurement of phenotypes and GIs. To calculate the phenotype of double-
sgRNAs, we compared frequencies of double-sgRNAs between the plasmid 
library and T14 sample to calculate the growth phenotype (γ) and between the 
ricin-treated T14 and untreated T14 samples to calculate the ricin-resistance 
phenotype (ρ) as previously described31. In short, we measured the frequency 
of each double-sgRNA between two samples and calculated the log2 enrich-
ment ratio (log2e) between them, which was then normalized to the median 
log2e of the negative control double-sgRNAs, comprising 79 × 79 Safe_Safe 
sgRNA pairs. Equations used here are as follows:

Growth phenotype (γ) 

= −( (( / ) ( / )) )/Log N N X C C Phe D2 p p 14 ctrl14

Where:
Phectrl is the median of Log2 ((Nctrl-14/Nctrl-p) X (CP/C14)) of Safe_Safe 

double-sgRNAs.
N14: the read counts of a double-sgRNA in the T14 sample
Nctrl-14: the read counts of a Safe_Safe double-sgRNA in the T14 sample
Np: the read counts of a double-sgRNA in the plasmid library
Nctrl-p: the read counts of a Safe_Safe double-sgRNA in the plasmid 

library
Cp: the total read counts of the plasmid library
C14: the total read counts of the T14 sample
D: the number of doublings of the infected cells between infection and T14

Ricin-resistance phenotype (ρ) is calculated in the same way except that 
read counts are compared between the ricin-treated T14 sample and the ricin-
untreated T14 sample instead of the T14 sample and the plasmid library in 
γ-phenotype.

Lastly, we calculated a phenotype Z score (pZ)32 by dividing the phenotype 
of each double-sgRNA by the s.d. of Safe_Safe pairs. To calculate log fold 
enrichment of double-sgRNAs, we compared counts in T14 to counts in the 
plasmid library instead of those in the T0, since we observed that genes with 
large negative growth phenotypes dropped out quickly even between infection 
and T0 (6 d after infection, puromycin selection for lentiviral integration, and 
expansion) (Supplementary Fig. 2b). To calculate the expected phenotype of 
double-sgRNAs, we first calculated the phenotype of individual sgRNAs: a 
phenotype of an individual sgRNA was measured as the median phenotype of 
all double-sgRNAs comprising this sgRNA and one safe-sgRNA. For example, 
to calculate the phenotype of AKT1 sgRNA_1, we measured phenotypes of all 
AKT1 sgRNA_1’s paired with any of the 79 safe-sgRNAs and calculated the 
median of the phenotype distribution. The expected double-sgRNA pheno-
type was then calculated by summing the phenotypes of the two individual 
sgRNAs. To measure the GI between two sgRNAs, the expected phenotype of 
double-sgRNAs were plotted against their observed phenotypes (Fig. 3b). Data 
were then binned along the expected phenotype so that each bin contained 
200 data points. The median of each bin was measured and the line connect-
ing the median values was then smoothed by a three-point moving averaging 
filter. The smoothed line represents the typical behavior of double-sgRNAs and 
deviations from this line were measured to calculate the GIs between sgRNA 
pairs. Deviations that moved the double-sgRNA phenotypes closer to the 
phenotype of the Safe_Safe controls were given a positive sign and defined as 
buffering GIs, while those that moved away from the Safe_Safe phenotype were 
given a negative sign and defined as synergistic GIs. A signed GI (Raw-GI) was 
then divided by the s.d. of the Raw-GIs of the 200 (arbitrary number) near-
est neighbors along the expected phenotype. This normalized GI (Norm-GI) 
measures GI between sgRNA pairs, and we found that the normalization sta-

bilizes variance of GIs, improving reproducibility of GIs between experimental  
replicates (Supplementary Fig. 12) To calculate a quantitative GI score for a 
given gene pair, we pooled all double-sgRNAs targeting the same gene pair 
in both orientations from two experimental replicates. This would give us 36 
data points at most for any given gene pair (9 combinations × 2 orientations 
× 2 replicates). We filtered out gene pairs if they have less than 3 data points. 
Then, GI scores between gene pairs were defined with two scoring methods. 
GIT score for a given gene pair was calculated based on the modified t-value 
score using the following equation (a similarly modified t-value score was used 
to calculate a quantitative GI score, S score, in budding yeast33): 

GI score U U sqrt(S N S NT ctrl var var ctrl= − +( )/ / / )exp exp

Where: 
S V X N V X N N Nctrl ctrl ctrlvar exp exp exp( ) ( )/( )= − + − + −1 1 2

Uexp: the median of Norm-GIs of all double-sgRNAs targeting the gene pair
Nexp: the number of all double-sgRNAs targeting the gene pair
Vexp: the variance of Norm-GIs of all double-sgRNAs targeting the gene pair
Uctrl: the median of Norm-GIs of genetically non-interacting double-

sgRNAs (all double-sgRNAs containing at least one safe-sgRNA)
Nctrl: the median number of double-sgRNAs per gene pair for all gene pairs
Vctrl: the variance of Norm-GIs of all genetically non-interacting double-sgRNAs

To calculate the GIM score, the probability that the distribution of Norm-GIs 
of all double-sgRNAs targeting a given gene pair was significantly different 
from that of non-interacting double-sgRNAs was measured using the Mann-
Whitney U test. A similar concept has been used to score phenotypes of genes 
from ultracomplex pooled shRNA and CRISPRi screens15,32. Log10 of P values 
were then given a positive sign if gene pairs were buffering according to the 
median of Norm-GIs and a negative sign if gene pairs were synergistic. The 
two GI scores generally identified similar top buffering and synergistic hits 
(Fig. 3e and Supplementary Fig. 3b) and the rank-sum of the two GI scores 
was used to prioritize synergistic, toxic gene pairs for subsequent validation 
with corresponding drugs.

Systematic comparison between GI and PPI. To systematically compare GI 
and PPI, we examined the previously reported interactions among 79 ricin 
modulators from STRING45. Among all the validated and predicted PPIs for 
the 79 ricin modulators, we used only the experimentally validated interac-
tions for the comparison (minimum required interaction score was set to 
0.15 in STRING). Gene pairs were then sorted by one of the three features 
of GIs—buffering GI, synergistic GI, or correlation of GI profiles (Pearson 
correlation coefficient, uncentered). Here, correlation of GI profiles were cal-
culated as previously described15,31,73. Next, for a given top N pairs of genes, 
we measured how many of the pairs have the reported interactions in STRING 
and plotted the measured percent coverage by the STRING interactions on the 
y axis against the N number on the x axis (Fig. 4d). Functional interactomes 
of the 66 most correlated gene pairs in terms of GI profiles were drawn using 
Cytoscape software74 in Supplementary Figure 8b. Edges were drawn between 
genes whose correlation of GI profiles were greater than 0.5 and the width of 
the edges were determined by their GI correlation values. If an interaction was 
already reported in STRING for a given edge, it was colored in red. Comparison 
of GIs to PPIs in BioGrid75 also showed similar results (data not shown).

Constructing GI maps. To construct the GI maps, GI profiles of genes were 
generated based on GI scores. Genes were then hierarchically clustered with 
Cluster 3.0 software76 based on the uncentered Pearson correlation coefficients 
of their GI profiles as a similarity metric and average linkage as the clustering 
method. Generated clusters were displayed using Java TreeView77. Both GIM 
score and GIT score identified similar clusters.

Validation of identified GIs using individual sgRNAs. For each gene pair, 
we selected the pair of sgRNAs that showed the greatest GI in the DrugTarget-
CDKO screen. The first sgRNA in the pair was cloned into a sgRNA expres-
sion vector (pMCB306), which expresses GFP-T2A-puromycin from an EF-1 
alpha promoter. The second sgRNA was cloned into a vector (pMCB320) that 
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expresses mCherry-T2A-puromycin. Two lentiviruses were produced separately  
and pooled together to infect Cas9-expressing K562 cells. We adjusted virus 
titers so that the infection generated four populations of cells: uninfected, 
GFP-positive, mCherry-positive, and GFP-mCherry double positive. The 
single knockout phenotype for each sgRNA was measured by comparing the 
abundance of either GFP-positive or mCherry-positive cells relative to the 
uninfected cells between T0 (day 5 post-infection) and T7 (day 12 post-infec-
tion). Similarly, the double-knockout phenotype was measured by compar-
ing the relative abundance of the double positive cells between T0 and T7. 
Log2 enrichment of each population divided by 7 (the estimated number of 
doublings) was used to calculate the growth phenotype. GI was calculated as 
the difference between the expected phenotype (sum of two single-knockout 
phenotypes) and the observed phenotype of the double knockout. The GI 
between two gene-targeting sgRNAs was compared to GIs from each indi-
vidual sgRNA paired with a safe-sgRNA as non-interacting controls. The 
statistical significance (P value) used to compare the average phenotype or 
GI of two samples was determined by unpaired, two-tailed Student’s t-test 
implemented in Microsoft Excel.

Sequencing analysis for indel detection. Genomic DNA was extracted from 
cells using a QIAamp DNA mini kit (Qiagen). A ~600- to 700-bp region con-
taining the sgRNA cut site was amplified by PCR. The PCR product was run 
on a 0.8% TAE-agarose gel, bands containing the amplicons were excised, 
and DNA was purified from the gel slice using a QIAquick Gel Extraction kit 
(Qiagen). Samples were sent for Sanger sequencing. To assess indel frequency, 
TIDE was used to compare the sequence trace files from the test sample con-
taining the targeting sgRNA to a control sample containing a safe-targeting 
sgRNA and quantify the distribution of indels in the test sample48.

Cell viability assay for drug synergy. Cells were seeded in 24-well plates 
and treated with no drug, single drug, or in combination at the indicated 
concentrations for 72 h. For the drug synergy tests, drug pairs were tested in 
wild-type K562 cells without Cas9, and thus represent effects independent 
of possible Cas9-induced DNA damage. The final concentration of DMSO 
in each well was <0.4%, an amount determined to have no observable tox-
icity in K562 cells. Following drugs were used for the assay: A-1155463 
(Chemietek CT-A115), A-1210477 (Chemietek CT-A121), CRT0044876 
(Selleckchem S7449), KU-60019 (Selleckchem S1570), UMI-77 (Sigma 
SML1492), NU 7441 (Selleckchem S2638), PK-11195 (Enzo BML-CM118), 
PX-12 (Cayman 14192), KPT-330 (Selleckchem S7252), 1-benzyl-3,5-bis-(3-
bromo-4-hydroxybenzylidene)piperidin-4-one (Millipore 217531), FK866 
(Selleckchem S2799). K562 cells were seeded at 100,000 cells/ml, MV4-11  
cells were seeded at 200,000 cells/ml, and GM12892 cells and CD34+ HSPCs 
were seeded at 300,000 cells/ml. After 72 h incubation, the number of viable 
cells was counted by flow cytometry (FSC/SSC) using a BD Accuri C6 flow 
cytometer. Drug synergy was evaluated using the Bliss independence model 
(Bliss CI, 1939). Briefly, the predicted fractional growth inhibition of the drug 
combination is calculated using the equation FA + FB – (FA x FB), where FA 
and FB are the fractional growth inhibitions of the individual drugs A and B 
at a given dose. Bliss excess is the difference between the expected growth 
inhibition and the observed inhibition from the drug combination. Bliss scores 
greater than zero, close to zero, and less than zero denote synergy, additivity, 
and antagonism, respectively. Bliss sum is the sum of individual Bliss scores in 
the 3 × 3 matrix of drug doses. P values where indicated were determined by 

one-tailed Student’s t-test between the observed effect of the drug combination 
and the expected effect calculated from the individual drug effects.

Apoptosis assay. K562 cells were seeded in 24-well plates at 100,000 cells/ml 
and treated with no drug, single drug, or in combination at the indicated 
concentrations for 48 h. After 48 h treatment, apoptosis was measured using 
an Annexin V-FITC Apoptosis Kit (BioVision). Cells were collected and incu-
bated with Annexin V-FITC and propidium iodide (PI) before quantification 
using a BD Accuri C6 flow cytometer.

Immunoblot analysis. Whole-cell protein extracts were prepared using lysis 
buffer containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, and 1% 
Triton X-100 supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich). 
Samples (100 µg of protein) were separated by SDS-PAGE and transferred to 
PVDF membranes. Immunoblot analysis was performed using Rabbit anti-Bcl-
xL (CST 2762S), Rabbit anti-Mcl-1 (CST 4572S), Mouse anti-tubulin (Sigma 
T6199), Goat anti-rabbit IRDye 800CW (LI-COR 926-32211), and Donkey 
anti-mouse IRDye 680LT (LI-COR 926-68022) antibodies, and imaged on a 
Li-Cor Odyssey Infrared Imaging System.

gH2AX flow cytometric analysis and immunofluorescence microscopy. 
K562 cells were seeded in six-well plates at 250,000 cells/ml and treated with 
no drug, single drug, or in combination at the indicated concentrations for 
48 h. Cells were washed in PBS, fixed in 4% paraformaldehyde for 10 min, 
washed twice in PBS, permeabilized/blocked in 0.1% Triton/2% BSA/PBS for 
30 min, washed twice in PBS, probed with anti-γH2AX monoclonal antibody 
(Millipore 05-636) for 1 h, washed twice in PBS, incubated with Alexa Fluor 
488 goat anti-mouse IgG secondary antibody (Invitrogen A-11029) for 45 min, 
and washed twice in PBS before quantification using a BD Accuri C6 flow 
cytometer. Remaining cells were stained with Hoescht 33342 (ThermoFisher 
Scientific) for 10 min, washed twice with PBS, and mounted on coverslips in 
ProLong Gold (Thermo Fisher). Cells were imaged with a Nikon Ti-E spinning 
disk microscope at 100× magnification.
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