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A CD47-associated super-enhancer links
pro-inflammatory signalling to CD47 upregulation
in breast cancer
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CDA47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to
its receptor, SIRPa, on macrophages and other immune cells. CD47 is expressed at different
levels by neoplastic and normal cells. Here, to reveal mechanisms by which different
neoplastic cells generate this dominant ‘don’'t eat me' signal, we analyse the CD47 regulatory
genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in
certain cancer cell types. We show that a set of active constituent enhancers, located within
the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption
of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKBT signalling
pathway directly regulates CD47 by interacting with a constituent enhancer located within a
CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve
SE to drive CD47 overexpression to escape immune surveillance.
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D47 is a cell surface glycoprotein that inhibits

phagocytosis by binding to the extracellular region of

SIRPo on macrophages. CD47 can be expressed on many
normal cells in mice and humans'. Previous work in
hematopoietic stem cells (HSCs) demonstrated that HSCs
increase levels of CD47 expression when mobilized, particularly
as they navigate through macrophage-rich environments. Once
HSCs return to bone marrow, they downregulate CD47 (ref. 2).
However, in cancer cells, CD47 transcript and protein expression
is aberrantly upregulated, protecting the cancer cells from
being recognized and cleared by macrophages®®. Despite all
this information, the mechanisms and upstream regulators
responsible for increasing CD47 expression in cancer cells are
still poorly understood.

Cis-regulatory regions or genomic enhancers are often referred
to as ‘switches’ that regulate the transcription of a gene*. Recently
the discovery of super-enhancers (SEs) has given more insight
into the regulatory architecture of key genes that are highly
expressed in a specific cell type, during a particular developmental
stage or in disease. SEs are generally long stretches of DNA
(>20Kb) that contain clusters of enhancers, termed constituent
enhancers’. SEs are also characterized by high levels of H3K27ac
(an epigenetic modification that marks open chromatin)®’, which
can exceed by one order of magnitude the levels found in a typical
enhancer® 10, SEs were first described in embryonic stem cells as
being associated with genes that control pluripotency'®. More
information has recently emerged that explains the role of SEs in
upregulating master regulatory genes in various diseases,
including atherosclerosis and cancer®!!. During atherosclerosis,
stimulation by tumour necrosis factor-alpha (TNF-a)) increases
the binding of intracellular NFKB in cells associated with arterial
blood vessels, creating SEs and a redistribution of BRD4 near
genes that are upregulated during an inflammatory response!!. In
addition, in many cancers, SEs are acquired at critical genes that
control and define the tumour cell identity>®12,

Cancer cells of all types overexpress CD47 (ref. 3). Due to the
critical role CD47 has in protecting cancer cells from
phagocytosis, we hypothesized that SEs could be evolved by
cancer or pre-cancer cells to induce overexpression of CD47, thus
providing the cells with a selective advantage for growth and
spread. Several studies have described CD47 transcriptional
regulation in cancer cell lines by analysing the CD47 promoter
region and the transcription factors interacting with it!3-16,
However, none of these studies discuss the role of distal
enhancers or SEs in the regulation of CD47. To address this
issue, we analysed the CD47 regulatory genomic landscape, to
locate CD47 distal cis-regulatory regions (enhancers or SEs) and
their upstream activators responsible for the upregulation of
CD47 in cancer cells. Our goal is to identify alternative
mechanisms and pathways directly upstream of CD47 that
might be targeted to downregulate CD47 expression, thereby
making cancer cells vulnerable to phagocytosis and immune
clearance.

Results

SEs are associated with CD47 in breast and other cancers.
To better understand the regulatory genomic landscape of CD47,
we analysed publicly available H3K27ac ChIP-Seq data for
different cancer cell lines. By rank-ordering of enhancer
regions based on H3K27ac enrichment, we discovered that T-cell
acute lymphoblastic leukemia (T-ALL (RPMI18402, Jurkat and
MOLT3)) diffuse large B-cell lymphoma (DLBCL (LY4)) and
breast cancer (MCF7 and HCC1954) cell lines have SEs within
~200kb of CD47 (Fig. la). Correlating this information with
public microarray (Affymetrix U133 Plus 2.0) transcript

2

expression data (Available at http://www.broadinstitute.org/ccle/
home), we found that these cancer cell lines with SEs near CD47
are among those cancer types that express high levels of CD47
(Supplementary Fig. 1la). In contrast, cancer cell lines that
have less SE signal around the CD47 locus (for example, some
examples of lung, neuroblastoma and colorectal cancers;
Supplementary Fig. 1b) express lower levels of CD47
(Supplementary Fig. 1a). In addition, our analyses of H3K27ac
ChIP-Seq data indicated that CD47 is regulated by different sets
of enhancers or SEs in different cancer cell types. For instance, the
breast cancer cell lines HCC1954 and MCF7 have a downstream
SE associated with CD47, while T-ALL and DLBCL cancer
cell lines have either enhancers or SEs upstream of the gene
(Fig. 1a).

Comparison of the CD47 enhancer landscapes of tumour cells
versus corresponding normal (non-tumour) cells revealed that
SEs were present only in the tumour cells. In T-ALL and breast
cancer cells, CD47 is associated with an SE that is not present
in CD3+ T cells or mammary epithelial cells, respectively
(Supplementary Fig. 1c). This result is consistent with previous
work suggesting that SEs are acquired by cancer cells’. However,
in the case of breast cancer the downstream SE associated with
CD47 is only present in two of seven tested breast cancer lines:
MCEF7 (Estrogen Receptor positive (ER+) and Progesterone
Receptor positive (PR+) subtype) and HCC1954 (Human
Epidermal Growth Factor positive (Her2+), ER—, PR—
subtype) (Fig. 1a). Similarly, analyses of SEs in four patient
derived-xenografted (PDX) breast tumour samples revealed that
an ER+ PR+ breast cancer sample has the breast cancer SE
associated with CD47 while the other three PDX breast
tumour samples (triple negative: ER —, PR —, Her2 —) do not
(Fig. 1b).

Identification of CD47 constituent enhancers. SEs are
comprised of multiple regions that function as transcriptional
enhancers termed constituent enhancers. To find functional
CD47 constituent enhancers within SEs that are sufficient to
activate CD47 expression, we searched the CD47 genomic locus
for highly conserved genomic regions across different species!”"18
that were also overlapped by H3K27ac and H3K4mel (epigenetic
hallmarks of open chromatin’!®-2!) using ENCODE publicly
available data and the UCSC genome browser (more details in the
experimental procedure section). These analyses allowed us to
predict 9 CD47-associated constituent enhancers (Supplementary
Fig. 2a). To validate their function experimentally, we cloned each
candidate CD47 enhancer (E1-9) into an EGFP reporter lentiviral
construct containing the minimal (basal) promoter for the
thymidine kinase (TK) gene’. To test each of the constructs, we
transfected MCF7 and Jurkat cell lines because they have CD47
SEs (Supplementary Fig. 2b) and these lines express exceptional
levels of CD47 protein (for example, almost 100 times and 10
times higher than the lowest expressing cell line, HepG2;
Supplementary Fig. 2¢). Since HepG2 cells express low levels
of CD47 (Supplementary Fig. 2c,d) and lack CD47 SEs
(Supplementary Fig. 1b), we used them as a negative control to
confirm that reporter activity was not due to unspecific activation
of the enhancers. We found that two of the CD47 enhancers
(E5 and E3.2) had MCF7- and Jurkat-specific regulatory activity
(Fig. 2a—c). First, E5, in the downstream CD47 SE seen in breast
cancers (Fig. 1a,b), showed increased reporter activity specifically
in the MCF7 breast cancer cell line (Fig. 2a). Further analysis
of publicly available Paired-End Tag (ChIA-PET) data®>?3
confirmed that E5 and the downstream CD47 SE in MCF7 are
connected by a DNA loop containing RNA Polymerase II, part of
the complex of factors that are necessary to initiate transcription
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Figure 1 | H3K27ac ChlIP-Seq profiling reveals upstream and downstream CD47 super-enhancers. (a) Heat map representing H3K27ac enrichment
(grey to dark grey) across different cancer lines shows that T-ALL lines (RPMI-8402, Jurkat and MOLT3), the DLBCL line, LY4 and breast cancer lines
(HCC1954 and MCF7) have SEs (red lines on top) associated with CD47. Green blocks: represent functional E5, E3.2 and E7 constituent enhancers from left
to right respectively. (b) H3K27ac enrichment (y axis) shows that a downstream SE (red line on top) is associated with CD47 in an ER+ PR+ breast
tumour sample (PDX1). Three other triple negative (TN=PR —, ER — and Her2 —) breast tumour samples (PDX2-4) shown H3k27ac enrichment in the
CD47 locus, but these genomic regions do not qualify as SEs. Right panel: H3K27ac ChIP-Seq binding profiles show typical enhancers at the KIT gene for
size comparison between SEs and typical enhancers. Green blocks: represents the functional E5 constituent enhancer. Scale bars:10 kb.

and are associated with promoter regions?>?42> (Supplementary
Fig. 2e). Second, we found that E3.2, located within the upstream
CD47 SE (Fig. 1a), had increased reporter expression specifically
in the Jurkat cell line (Fig. 2b). We also found that a third
functional enhancer, E7, located within the upstream CD47 SE
(Fig. 1a), drove reporter expression in all of the cancer cell lines
tested (Fig. 2d).

NFKBI1 binds to E5 and regulates CD47 in breast cancer cells.
To locate the upstream pathways that are responsible for the
upregulation of CD47 through the binding and activation of distal
cis-regulatory regions, we focused first on finding candidate
transcription factors that bind to the breast cancer specific
constituent, E5. Thus, we performed a competitive protein-DNA
binding assay, in which nuclear extracts from MCF7 and the
negative control cell line, HepG2, were incubated with an array
of 47 DNA probes (composed of consensus sites for well-
characterized transcription factors) in the presence or absence of
E5 DNA. We used this assay to search for transcription factors
that were differentially bound to CD47 E5 constituent enhancer
in MCF7 and not in HepG2 cells. Our results showed that the
transcription factors NFAT, NFKB, PPAR, SMAD, STATS3,

STAT5 and STAT6 from MCF7 and not from HepG2 nuclear
extract bind to E5 (Fig. 3a). With the exception of NFAT and
SMAD (which showed low binding to E5), we confirmed by
quantitative real-time polymerase chain reaction (QPCR) that the
candidate factors we identified in this binding assay are indeed
expressed at different levels in the MCF7 breast cancer line
(Supplementary Fig. 3a). Altogether, these data suggest that the
transcription factors STATSs 3, 5, 6, NFKB and/or PPAR could be
key for the activation of CD47 expression by binding to E5 in
MCF?7 breast cancer cells. Next, we tested the regulatory capacity
of each identified candidate factor on CD47 expression, by
transducing MCF7 cells with short hairpin RNAs (shRNAs) to
knockdown the expression of each candidate E5-binding
transcription factor. We used qPCR to measure the efficiency
of each knockdown (Supplementary Fig. 3b,c) and the effect
on CD47 gene expression. We observed that 72h after shRNA
transduction, expression of CD47 transcript and protein
(measured by flow cytometry) was significantly reduced by
NFKBI1 (Fig. 3b,c) and PPAR« (Fig. 3b, Supplementary Fig. 3d,e)
shRNAs, when compared to control shRNA. On the other hand,
shRNAs against STATSs 3, 5 and 6 did not reduce CD47 expres-
sion significantly (Fig. 3b). This information demonstrates that
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Figure 2 | Identification and characterization of CD47 SEs constituent enhancers. (a) In MCF7 cells, specific EGFP reporter expression was activated by
the E5 (right panel) CD47 constituent enhancer region but not by E3.2 (middle panel) or others. (b) In Jurkat cells, specific EGFP reporter expression was
activated by the E3.2 constituent enhancer (middle panel) but not by E5 (right panel) or others. (¢) Neither E5 (right panel) nor E3.2 (middle panel)
constituent enhancers activate reporter expression in HepG2 cells. Control cells transduced with the lentiviral cassette containing the thymidine kinase
(TK) minimal promoter only (left panels, a-¢). (d) E7 activates EGFP reporter expression in all the cancer cell lines tested, including the HepG2 negative
control. Grey images (a-d) are corresponding bright field micrographs. Histograms show the mean of EGFP reporter signal measured by flow cytometry.
Grey histograms (a-d) are the fluorescence minus one (FMO) controls. Scale bars: 100 pm.

NFKB and PPAR are involved in the regulation of CD47 in MCF7
cells and since knocking down NFKB1 had the strongest effect on
CD47 gene expression, we focus this study on the regulatory role
of this transcription factor.

A deletion containing an NFKB site inhibits E5 activity. To
confirm that the E5 constituent CD47 enhancer carries functional
binding sites that respond to NFKBI binding, we computationally
predicted the genomic locations of NFKB-binding sites within E5
to subsequently delete these regions. To approach this, we relied
on analyses performed and published using a method termed
Protein Interaction Quantification (PIQ)26-2/, By using PIQ, we
predicted the exact location of an NFKBI binding site among
binding sites for other transcription factors within E5 (Fig. 4a).
To test if a region containing the predicted NFKB1 binding motif
was indeed necessary for E5 regulatory activity, we performed two
deletions within E5 and assayed the effect on EGFP reporter
expression in MCF?7 cells (Fig. 4a,b). Deleting 276 bp upstream of
E5, a region that lacks the NFKB putative site (E5A276 bp), did
not affect EGFP reporter expression when compared to the EGFP
expression of the intact E5-TK-EGFP construct. On the other
hand, a deletion close to the 3’ end (E5A400 bp), which included
the NFKBI1 putative binding motif (Fig. 4a), abolished EGFP
reporter expression (Fig. 4b). A smaller version of the E5
(~400bp) containing the predicted NFKB1 binding motif
(E5V400bp) was not sufficient to activate EGFP reporter
expression (Fig. 4a,b). Therefore, the region within E5 that
contains the NFKB1 predicted motif is necessary but not
sufficient for regulating the expression of CD47.

NFKB1 knockdown reduces breast tumour size. To test whether
reducing CD47 expression by knocking down NFKB1 would have
an effect on tumour growth and increase phagocytosis of the
cancer cells, we infected MCF7-Luc cells with turboRFP-control
shRNA or turboRFP shRNA against NFKB1 and then injected
these and uninfected control cells into NSG (immunodeficient)
mice. Prior to injections, we confirmed that the shRNAs did not
affect cell viability (Supplementary Fig. 4a,b). The luciferase signal
indicated that MCF7 cells infected with the NFKB1 shRNA
initially formed tumours, but regressed over time (Fig. 5a);
6 weeks after injection, these tumours were smaller than those
formed by the control MCF7 cells (uninfected or infected with
turboRFP-control shRNA). In parallel, we measured CD47 levels
of expression in the tumours after dissociation of the cells. CD47
expression levels were lower in the turboRFP-NFKB1 shRNA
MCEF7 tumours than in tumours formed by the control MCF7
cells (Fig. 5b). Lastly, we confirmed by in vitro assays that
knocking down NFKBI1 (via infection with a turboRFP shRNA-
containing vector rather than an empty control vector) increases
phagocytosis of MCF7 cells by macrophages. This effect is similar
to the increase in phagocytosis observed when MCEF7 cells
infected with the control vector are treated with CD47-blocking
antibody (clone Hu5F9-G4) before incubation with macrophages.
Interestingly, the combination of NFKB1 knockdown by shRNA
and CD47-blocking antibody dramatically increased phagocytosis
by macrophages (Fig. 5¢, Supplementary Fig. 4c).

Disrupting the CD47 breast cancer SE reduces CD47 levels.
BRD4, a member of the bromodomain and extraterminal (BET)
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Figure 3 | NFKB1 candidate transcription factor regulates CD47 expression in breast cancer cells. (a) A protein-DNA binding profiling assay reveals that
transcription factors NFAT, NFKB, PPAR, SMAD, STAT3, STAT5 and STAT6 bind significantly to E5 in MCF7 (blue bars) and not in HepG2 cells (red bars).
Nuclear extract from MCF7 and HepG2 were incubated with a plate array containing oligos encoding consensus sites for well-characterized transcription
factors. A competition assay was performed by incubating the nuclear extract with the E5 DNA fragment and the consensus sites oligos simultaneously.
Final RLU (binding of each transcription factor to CD47 E5) was calculated as follows: the average relative luminescence units (RLU) produced by the
binding of each transcription factor to the consensus probes when outcompeted with the E5 DNA fragment (binding competition) was subtracted from the
average RLU produced by the binding of each transcription factor to the consensus sites probes only (control). Thus, binding of transcription factors to the
E5 DNA fragment and not to the consensus sites probes is represented by an increase in RLU while binding to the consensus sites probes and not to E5 is
represented by a no change or decrease in RLU. The binding to E5 of each transcription factor obtained from the MCF7 nuclear extract was compared to the
binding to E5 of each transcription factor obtained from HepG2 nuclear extract. N =4 samples. Values represent mean * s.d. Student’s unpaired t-test for
independent samples was performed. **P<0.01, *P<0.05. (b) Knocking down NFKB1 and PPARa by shRNAs reduces CD47 gene expression more than
knocking down other candidate transcription factors in the breast cancer cell line MCF7. N=5 samples. Values represent mean + s.d. Student’s unpaired
t-test for independent samples was performed. ***P<0.005, *P<0.05. (c) Flow cytometry analyses show that CD47 cell surface protein levels are reduced
after knocking down NFKB1 (red histogram) in MCF7 cells. Grey histogram is the FMO control.

subfamily of proteins, binds to hyperacetylated chromatin regions
to facilitate rapid gene transcription by linking enhancers
or promoters to the TEFb (transcription elongation factor)
complex?8, Previous studies on BRD4 have shown that: (i) BRD4
binds preferentially to SEs; (ii) disrupting BRD4 selectively affects
the expression of genes that are associated with SEs; and (iii) the
binding of NFKB to SEs recruits BRD4 to these sites!»?8-3, Since
our results show that NFKB1 binds to the E5 constituent
enhancer within the breast cancer CD47 SE, we hypothesized that
in breast cancer cells, CD47 expression could be reduced when
disrupting the CD47 SE enhancing function by blocking the
binding of BRD4 to SEs with the JQ1 inhibitor?®. As expected, the
treatment of MCF7 cells with JQ1 (1 uM) led to reduction in
CD47 transcript levels beginning on day 2 and reaching statistical
significance on day 7 of treatment (Fig. 5d). This observation was
confirmed when using other BRD4 inhibitors (I-BET151 and
PFI-1), which reduced CD47 expression dramatically at day 2
(Supplementary Fig. 5). However, these inhibitors seemed to be

more toxic to the cells or be less specific than JQ1 as a decrease on
number of cells was observed in the treated samples.

Blockade of TNF-a decreases CD47 and increases phagocytosis.
Since our experiments demonstrated that NFKBI1 activates the
CD47 E5 constituent enhancer and directly regulates CD47
transcriptional expression, we investigated if the TNF inflam-
matory pathway, upstream of NFKBI, regulates CD47 expression
in MCF7 cells and whether it contributes to the cancer cell’s
ability to avoid immunosurveilance. To approach this question,
we first assayed the expression of a TNF-o receptor (TNFR1) on
various cells. Flow cytometry analyses showed that TNFRI1
expression levels were higher on the surface of the MCF7 cancer
line than on MCFI10 (a breast cancer cell line not considered
tumorigenic) and the HepG2 (hepatoma) cancer line, which
natively expresses low levels of CD47 (Fig. 6a). Next, we tested
whether stimulation of cells with TNF-o ligand affected CD47
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gene and protein expression. Co-incubation with TNF-o for 48 h
led to a significant increase in CD47 expression on MCF7 breast
cancer cells (already CD47™) but only a slight increase on
nontumorigenic breast cancer MCF10 cells (CD47Med) and the
hepatoma cancer cell line HepG2 (CD47%°; Fig. 6b). To deter-
mine whether the increase in CD47 expression occurred at the
transcript level, we performed qPCR at three different time
points: 8, 24 and 48h after addition of TNF-o. CD47 transcript
levels for MCF7 cells increased fourfold starting at 8h and then
decreased. For HepG2 an increase of transcript levels was
observed later, at 24 h (Fig. 6b). Similarly a significant increase in
CD47 expression was observed in three out of four PDX breast
tumour samples (PDX1 showing the greatest effect) and one
primary patient breast tumour after treating the cells with TNF-o
for 24h (Fig. 6¢, Supplementary Fig. 6a).

Upon TNF pathway stimulation, gene transcriptional activa-
tion can be achieved by activation of the Inhibitor of Nuclear
Factor Kappa-B Kinase Subunit Beta (IKK2). IKK2 activation
phosphorylates the inhibitor of NFKB (IkB) complex which
normally binds and prevents NFKB from entering the nucleus of
the cell. Phosphorylated IkB is degraded by the ubiquitination
pathway and NFKB is released and allowed to enter the nucleus
where it activates different target genes’’*2. To confirm that
TNF-mediated upregulation of CD47 on MCF?7 cells is dependent
on active signalling processes initiating NFKB translocation to the

nucleus, we blocked IKK2 by using the TPCA-1 inhibitor and
assayed the effect on CD47 expression. We found that CD47
expression does not increase after stimulating MCF7, MCF10 and
HepG2 with TNF-a and treating with TPCA-1 simultaneously
(Supplementary Fig. 6b). Moreover by western blot we show
that in MCF7 cells phosphorylation and degradation of IkB
occurs after TNF-o stimulation (Supplementary Fig. 6c). Next,
to demonstrate that the CD47 upregulation observed after
stimulating the TNF pathway is mediated by the activation of
the CD47 SE E5 constituent, we stimulated MCF7 cells carrying
the E5-TK-EGFP with the TNF-o ligand and assayed EGFP gene
and protein expression after 24 and 48 h. As a negative control we
stimulated the cells with B-Estradiol (E2), due to: (i) the lack of
functional ER binding sites within the CD47 E5 constituent
enhancer in MCF7 (Fig. 3a) and (ii) the inability of E2 to increase
CD47 transcript and protein expression in treated MCF7 cells
(Supplementary Fig. 6d). As expected, we observed a substantial
increase in EGFP transcript 24 h after TNF-o stimulation and a
significant increase in protein levels 24 and 48 h after treatment.
No significant increase on EGFP or CD47 expression was
observed after ER stimulation (Supplementary Fig. 6d). Lastly,
we blocked BRD4 binding to the CD47 breast cancer SE, by using
the inhibitors I-BET151 and PFI-1 and we observed a reduction
on TNF-o mediated CD47 upregulation in MCEF7 cells
(Supplementary Fig. 6e).
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Figure 5 | NFKB1 knockdown reduces CD47 expression, decreases tumour size and increases phagocytosis of breast cancer cells. (a) NFKB1 shRNA
reduces the size of breast tumours derived from MCF7-Luc in xenotransplants (red dots). N=5 samples. Values represent mean + s.e.m. Student's
unpaired t-test for independent samples was performed. **P<0.01. Black dots: Control shRNA treated breast tumours derived from MCF7-Luc in

xenotransplants. (b) Upper panels: Images of tumours 6 weeks after injection of MCF7 cells that were: untreated (control; left); infected with turboRFP-
control shRNA (middle); or infected with turboRFP-NFKB1 shRNA (right). NFKB1 knockdown led to smaller tumour sizes. Scale bar: 500 um. Lower panels:
flow cytometry analysis of cells from dissociated tumours that had grown for 6 weeks. Left panel: TurboRFP (reporter) expression levels are similar in cells
treated with turboRFP-control shRNA (yellow) versus turboRFP-NFKB1 shRNA (pink). Orange histogram shows overlap. Right panel: CD47 protein levels
are lower on cells in tumours generated from MCF7 cells with NFKB1 knockdown (red) versus those without knockdown (controls with no shRNA
(turquoise) or with control shRNA (orange)). CD47 expression is slightly higher in MCF7 cells infected with control shRNA than in uninfected MCF7,
because any intracellular infection leads to an increased CD47 expression. Grey histograms are the FMO controls. (¢) Phagocytic index of MCF7 cells is
increased over control levels (empty vector lacking shRNA) by anti-CD47 blocking antibody (CD47x), NFKBT shRNA infection, and more so by NFKB1
shRNA infection followed by anti-CD47 treatment. N =3 samples. Values represent mean * s.d. Student’s unpaired t-test for independent samples was
performed. **P<0.0025 when compared to Control shRNA, ***P<0.0010, ****P < 0.0005. (d) Inhibiting the binding of BRD4 to SEs by using JQ1 (1puM)
reduces CD47 expression over time in MCF7 breast cancer cells. N=3 samples. Values represent mean + s.d. Student’s unpaired t-test for independent

samples was performed. *P<0.05, **P<0.01.

Since stimulating MCF7 cells with TNF-o increases CD47
expression, we then blocked the TNF pathway as a possible
translational approach to reduce CD47 expression and aid
phagocytosis of the cancer cells. To do so, we used infliximab
(trademark, Remicade), a chimeric monoclonal antibody that
binds to TNF-o and prevents its binding to cellular TNF
receptors®. This blocking antibody is already used for the
treatment of inflammatory diseases such as ulcerative colitis,
psoriasis, arthritis and Crohn’s disease. Flow cytometry analysis
of CD47 expression confirmed that blocking TNF-o with
infliximab reduces the expression of CD47 at the cell surface,
with or without stimulation with TNF-o (Fig. 6d). The reduction
of CD47 observed without TNF-o stimulation could be in part
due to the fact that MCF7 breast cancer cells also express
transmembrane TNF-o at very low levels®, and thus, TNF-o
could be activating the TNF pathway through an autocrine
and/or paracrine interaction with the receptor. Moreover,

a greater reduction of CD47 expression was observed when we
combined the infliximab antibody treatment with the shRNA
against NFKB1 (Fig. 6d), implicating NFKB as a transducer of
CD47 upregulation. In vitro phagocytosis assays demonstrated that
blocking the TNF pathway with infliximab increases phagocytosis
of the cancer cells, and the effect is greater if infliximab is
combined with an anti-CD47 blocking antibody (clone Hu5F9-
G4). A greater increase in phagocytosis was observed when the
NFKB1 shRNA-MCF7 line was treated with both blocking
antibodies (Fig. 6e). Surprisingly, we also observed an unexpected
increase in phagocytosis of MCF7 cancer cells after stimulation
with TNF-o ligand. Since (i) MCF7 cells are known to be sensitive
to soluble TNF-u-induced cell death3* and (ii) TNF-o has been
previously reported to induce long-term tumour regression>>3°, we
speculated that TNF-a could be upregulating CD47 and apoptotic
or prophagocytic genes in MCF7 cells simultaneously. Indeed, we
observed a slight increase in the expression of the prophagocytic
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signal, calreticulin, on the surface of MCF?7 cells after stimulation

macrophage to phagocytose and destroy the cancer cells.
with TNF-o (Supplementary Fig. 7).

However, important questions that have yet to be answered
include: (1) What is or are the mechanism(s) by which
CD47 becomes overexpressed in cancer cells; and (2) What
are the upstream regulators involved in the overexpression
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To answer the first question, we performed a genomic
regulatory analysis to locate the CD47 cis-regulatory regions or
enhancers active in cancer cells. Our in silico analyses suggest that
cancer types characterized by the presence of CD47 SEs have high
levels of CD47 transcript. Thus, we believe that activation of SEs
is a mechanism used by certain cancers, such as breast cancer,
T-ALL and DLBCL, to obtain high CD47 levels. However, to add
to the complexity of CD47 regulation by SEs, we found that not
all the breast cancer subtypes have associated SEs with CD47.
Breast cancer is divided into five subtypes with distinguishable
features and distinct clinical outcomes, based on the expression of
ER, PR, HER2, CK5/6 and EGFR markers’®. So far we found that
two breast cancer cell lines (HER2 or ER + PR + ) and one PDX
breast tumour (ER+ PR+) have SEs associated with CD47.
Perhaps SEs are subtype specific or patient specific. Now that the
tools to perform SEs analyses in patient samples are becoming
more available, it would be important to address this possibility
by analysing many more breast cancer subtype samples for the
presence of specific SEs.

While screening for functional CD47 cis-regulatory regions
(enhancers or constituent enhancers within SEs), we discovered
that (i) a functional enhancer (E7), located upstream CD47, had
enhancing activity that was common to all the cancer cell lines
tested; (ii) two functional constituent enhancers, E5 present
within a downstream CD47-associated SE and E3.2 present within
an upstream CD47-associated SE, are to date only active in MCF7
breast cancer cells or Jurkat T-ALL cells respectively. This
information suggests that even though CD47 gene expression can
be regulated in a broader range of cancer cells by one common
enhancer, certain constituent enhancers located within CD47 SEs
seem to have a more tumour type-specific regulatory activity.
Enhancers with such specific roles have been previously described
to occur during development®*~#2. On the other hand, other
candidate CD47 enhancers tested did not have regulatory activity.
We place the CD47 candidate E6 enhancer in this category, even
though it is located within the CD47 downstream breast cancer
SE. It is possible that these enhancers that fail to increase reporter
expression are not functional, have specific regulatory activity to
other cells types not tested, or they function as cooperative
enhancers® and their regulatory activity alone is not sufficient to
increase transcriptional expression, as previously described.

In this study, analyses of H3K27ac enrichment around the
CD47 locus indicated that SEs are present in T-ALL and breast
cancer cells but not in their normal counterparts, CD3 + T cells
and human mammary epithelium (Supplementary Fig. 1c). This
suggests that cancer cells with CD47 SEs have newly acquired
these SEs, which perhaps increase the probability of high CD47
expression by simultaneously recruiting multiple constituent
enhancers, including the constituent enhancers that have specific

regulatory activity. Supporting this idea, in silico analyses of
H3K27ac enrichment around the CD47 locus in different normal
cells from various tissue types showed that in normal cells
analysed, including, embryonic cells and cells obtained from
tissue such as liver, ovary and lung, CD47 seems to be regulated
by typical enhancers broadly distributed upstream and down-
stream of the CD47 genomic locus. Although it appears that cells
obtained from the chorion and amniotic extraembryonic tissues
have CD47 SEs (due to H3K27ac enrichment), their CD47
genomic regions do not qualify as such based on the ranking of
enhancers in order of H3K27ac binding density (Supplementary
Fig. 8)!103043 Our studies also show that SEs are indispensable
for the upregulation of CD47. In MCF7 cancer cells, we observed
that disrupting SEs by using several BRD4 inhibitors reduces
CD47 expression. The ~60% reduction on CD47 transcript
observed at day seven after inhibiting the binding of BRD4 to the
CD47 SE indicates that perhaps transcription factors such as HIF-
1, that bind to the CD47 promoter region, could upregulate CD47
expression independently of the downstream CD47 E5
constituent enhancer in breast cancer!®. In Jurkat cancer cells
we also observed a great CD47 reduction (60%) 48h after JQ1
treatment (Supplementary Fig. 9a). CD47 downregulation in this
case may be caused by disrupting the SE located upstream of
CD47 and at the same time, the SE associated with the Myc gene,
a transcription factor that also can regulate CD47 in Jurkat'>.
In addressing the second issue of identifying upstream
regulators of CD47 expression, we used the PIQ computational
predictions together with a binding assay array to identify binding
motifs for transcription factors directly modulating CD47
expression. We found that in MCF7 cells perturbing the
transcription factor PPARa reduces CD47 expression by 60%
suggesting the involvement of a metabolic pathway in the
regulation of CD47 at least in breast cancer®®*. Such role is
currently being explored. More importantly, our study shows that
the transcription factor NFKB1 binds to and is necessary for the
activation of the CD47 constituent enhancer E5. Thus, NFKB1
binding to CD47 E5 works as a switch for the regulation of CD47
expression. To turn off this regulatory switch, we performed an
shRNA knockdown to inhibit the NFKB1 regulatory input on
CD47. The turning off of this ‘switch’ resulted in a 70% reduction
of CD47 levels, which promoted phagocytosis of MCF7 cancer
cells in vitro and reduced tumour size in xenotransplantation
models. Our data support reports where NFKB family members
have been found to improve cancer cell survival and to likely
play crucial roles in cancer initiation, progression and moreover,
resistance to chemotherapy and hormonal therapy in breast
cancer’46-48 " Finding that NFKB1 is an upstream CD47
regulator also corroborates the utility of PIQ predictions
in determining functional upstream factors regulating the

Figure 6 | The TNF inflammatory pathway affects phagocytosis of breast cancer cells through the regulation of CD47 expression. (a) Flow cytometry
analysis showing TNFR1 expression in the breast cancer line MCF7 (CD47™), non-tumorigenic breast line MCF10 (CD47Med) and HepG2 (CD471)
hepatoma cancer line shows that TNFRT expression is higher in the MCF7 breast cancer cells. Mean values of TNFR1-FITC fluorescence are shown in blue
to the right of each grey histogram. Grey histograms represent FMO controls. (b) Upper figure: A greater increase in CD47 expression is observed in MCF7
when compared to MCF10 or HepG2 cell lines after stimulation with TNF-a (green histogram). Mean values of CD47-APC are shown next to each
histogram. Lower figure: Increase in CD47 transcript expression begins to occur after 8h in MCF7 cells and after 24 h in HepG2 cells upon TNF-o
stimulation. N=23 samples. Values represent mean + s.d. Student’s unpaired t-test for independent samples was performed. ***P<0.001. (¢) Treating
patient-derived xenografted (PDX) and primary patient (PP) breast tumour cells with TNF-a significantly increases CD47 gene expression in four out of five
breast tumour samples. Values represent mean + s.d. Student’s unpaired t-test for independent samples was performed. ***P<0.001, **P<0.01, *P<0.1.
NS =not significant. ER+ PR+ =oestrogen and progesterone positive; TN =triple negative. (d) Upper panels: Blocking TNF-a with infliximab reduces
CD47 expression regardless of TNF-a stimulation. Lower panels: Blocking TNF-a with infliximab while knocking down NFKB1 causes a greater reduction on
CD47 expression regardless of TNF-a stimulation. (e) Treating MCF7 with infliximab increases phagocytosis of the cancer cells, and, to a greater extent, if
infliximab is combined with CD47 blocking antibody. A more pronounced increase in phagocytosis of the cancer cells was observed for MCF7 cells that
have NFKB1 knockdown and were treated with the infliximab and CD47 antibodies combined. N =6 samples. Values represent mean + s.d. ****P<0.0005,

***P<0.001, **P<0.05, *P=0.15 (upper figure), *P=0.20 (bottom figure).
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expression of a particular target gene in a cell. Other PIQ analysis
predicts the location of binding motifs for NFKB family members
within the functional CD47 E7, which is active in other cancer cell
lines besides MCF7 (Supplementary Fig. 9b). This suggests that
inflammation and the NFKBI ‘switch’ could also be involved in
the upregulation of CD47 expression in other cancer types,
such as T-ALL, through the activation of a different CD47
cis-regulatory region.

It is well known that the NFKBI transcription factor is
downstream from the TNF inflammatory pathway>2. Thus, we
also investigated the role of the TNF pathway. Our experiments
show that stimulating cell lines that express TNFR1 receptor with
TNF-o forces the cells to upregulate CD47 protein levels.
Moreover, the CD47 increase was greatest in the MCF7 breast
cancer cell line compared to other lines, even though MCF?7 cells
already express high CD47 levels. CD47 transcripts were also
more rapidly upregulated in MCF7 than in the low-CD47-
expressing, HepG2 cancer line. Perhaps the prominent CD47
protein increase and rapid transcript upregulation occurring in
MCF7 cancer cells is due to the presence of the CD47 SE
characterized by hyper H3K27ac (which is absent in HepG2).
Thus, we speculate that open chromatin around the CD47 locus
in the MCF7 breast cancer cell line is more accessible and
sensitive to the binding of NFKBI1 after TNF-a stimulation,
making CD47 cis-regulatory regions more responsive to
inflammation in these cancer cells than HepG2 cancer cells for
instance. Overall our data demonstrate for the first time that the
TNF inflammatory pathway upregulates CD47 expression in
breast cancer cells. Our results also validate recent results
observed in a hepatoma cell lines resistant to Sorafenib, where
it was proposed that resistance to the drug treatment was
associated with high CD47 protein levels achieved by the binding
of NFKB2 subunit to the CD47 promoter upon TNF-o
stimulation!®. In a different study, it was also shown by our
group that regulation of CD47 by the TNF pathway occurs in
vascular smooth muscle cells (SMCs) during atherosclerosis,
where TNF-NFKB1 was found to interact with the CD47
promoter49.

Lastly in this report, we also demonstrate that blocking the
TNF pathway, by using the antibody infliximab, increases
phagocytosis of MCF?7 breast cancer cells mediated by a reduction
on CD47 expression. We show that a further increase in
phagocytosis was achieved when treating the MCF7 cells with
the CD47 blocking antibody combined with infliximab or NFKB1
shRNA or both. Perhaps this increase in phagocytosis is a result
of indirect regulation by NFKB1 or TNF-a on genes other than
CD47, encoding antiphagocytic or prophagocytic signalling
proteins. Thus, treating MCF7 cells with the CD47 blocking
antibody while perturbing the TNF pathway creates the right
balance of prophagocytic and antiphagocytic signals necessary to
recruit macrophages to engulf the cells. Supporting this, we
observed an increase in calreticulin after TNF-o treatment®”->0,
This information altogether suggests that combining treatments,
for instance the infliximab antibody with the CD47 antibody,
could be considered as a therapy to increase engulfment of cancer
cells by macrophages. Such combinatorial treatments have been
shown to increase the efficacy of antibody treatment by blocking
in parallel different mechanisms that cancer cells use to avoid
being cleared by the immune system. For instance, recently it was
demonstrated that the blocking of programmed death-ligand in
tumour cells to recruit the adaptive immune system is important
to potentiate the recruitment of the innate immune system
(through the disruption of CD47-SIRPa interaction) to target
cancer cells®!. Our study describes in detail a mechanism that
through the downregulation of CD47 increases the recruitment of
the innate immune system. Thus, investigating if the blocking of
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Figure 7 | Schematic model representing how CD47 transcriptional
expression is regulated during inflammation in cancer. The TNF pathway
activates the translocation to the nucleus of NFKB1. Upstream unknown
factors, bind to closed DNA, making SE constituents accessible to NFKB1
binding, which in turn activate SEs and recruit BRD4 to these SEs promoting
the interaction between the distal SE(s) and the promoter of the gene to
initiate transcription. Dotted lines indicate indirect interactions while solid
lines indicate direct interactions.

the TNF pathway also has an effect in the recruitment of the
adaptive immune system (perhaps through the regulation of
programmed death-ligand) is important.

In summary, CD47 is regulated by sets of different enhancers
and SEs in different cancer types. We found that particularly in
breast cancer cells, CD47 expression is increased by an
inflammatory pathway whereby the NFKBI transcription factor
directly regulates the expression of the gene by binding to a
specific constituent enhancer within an active breast cancer SE
(proposed mechanism, Fig. 7). Furthermore we showed, by
perturbing the TNF-NFKB1 pathway, that reduction of CD47
expression leads to increased phagocytosis of MCF7 breast cancer
cells. It is critical to understand the events regulating CD47 gene
expression at the transcriptional level as this has the potential to
lead to alternative cancer gene therapies targeting the upstream
group of transcription factors, epigenetic modifiers and molecular
pathways responsible for CD47 upregulation, thus allowing for
the recruitment of the host innate immune system to specifically
recognize, target and destroy the cancer tumorigenic cells.

Methods

In silico identification of super-enhancers. Publicly available ChIP-Seq data
targeting H3K27ac were downloaded from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/) and processed to identify SEs in a panel of human cell types
(accession numbers for data sets used are listed in Supplementary Table 1). Raw
reads were aligned to the hgl9 revision of the human reference genome using
bowtie®? with parameters -k 2 -m 2 -sam -best and -1 set to the read length.
Constituent enhancers were identified using MACS (ref. 53) twice with parameters
-p 1e9 and -keep-dup 1 or -p le-9 and -keep-dup all. The union of both peak calls
was used as input for ROSE (https://bitbucket.org/young_computation/rose/).
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ROSE separated SEs from typical enhancers with parameters -s 12,500 -t 2,000.
Wiggle files for display of H3K27ac signal were created using MACS with
parameters -w -S -space =50 -nomodel -shiftsize = 200. Displays were created
using the UCSC Genome Browser**. H3K27ac ChIP-Seq data obtained from four
PDX samples were also processed using the same parameters described above.

In silico analysis and CD47 enhancer constructs generation. For many decades
the study of enhancers has been based on the principle that non-coding genomic
sequences that are conserved through evolution must be carrying important gene
expression regulatory functions®>*°. To predict CD47 functional cis-regulatory
regions (enhancers) within SEs, we used The UCSC genome browser (https://
genome.ucsc.edu) to identify highly conserved non-coding genomic regions across
different species. To approach this, we aligned the human annotated CD47
genomic locus (~100kb) to the CD47 annotated genomic locus available for a
group of other vertebrate species including mouse, dog, armadillo, opossum,
platypus, chicken, Xenopus, zebrafish and lamprey. In our analyses, the CD47
non-coding genomic sequence starts to diverge substantially in opossum and
platypus, thus allowing for the visualization of isolated non-coding genomic
patches of DNA that remain conserved across the different species compared
(Supplementary Fig. 2a, black bars). To identify highly evolutionary conserved
genomic regions also marked by H3K27ac and H3K4mel epigenetic modifiers
(well characterized for marking open chromatin), we looked at ENCODE H3K27ac
and H3K4mel ChIP-Seq profiles within the CD47 genomic locus available for a
panel of seven human cell types (Supplementary Fig. 2a, coloured peaks) and
aligned them to the non-coding genomic CD47 sequences that were already aligned
to find evolutionary conservation across different species (Supplementary Fig. 2a,
black bars). Putative CD47 enhancers (that is, non-coding regions highly conserved
and H3K27ac and H3K4mel enriched) identified in silico (E1-E9) were amplified
by PCR from human bacterial artificial chromosome (BAC) libraries (CHORI:
Clone # RP11-25F15 or RP11-1008K13) and cloned into a lentiviral reporter
construct (Sin-minTK-eGFP) containing a minimal TK promoter (generously
provided by Alvaro Rada-Iglesias). Fragments were cloned using restriction
enzymes Xhol or BamHI at the 5" end and Mlul or Xhol at the 3’ end. Primer
sequences are listed in Supplementary Table 2.

Testing of regulatory regions. Lentiviruses carrying the constructs containing
CD47 putative enhancers were used to transduce MCF7, Jurkat, HepG2, U-87 and
KBM?7 cancer cell lines. MCF7, HepG2, U-87 cell lines (ATCC) were seeded
overnight in a six-well plate at 5 x 10° cells per well. Then, cells were transduced
for 2 days. Enhanced or decreased regulatory activity was measured 4 days

after transduction by analysing EGFP fluorescence activity using fluorescence
microscopy or flow cytometry. Jurkat (ATCC) and KBM?7 (kindly provided by
Dr Calo-Velazquez) cancer cell lines were seeded in a 24-well plate at 1 x 10° cells
per well. Then, cells were transduced by spin infection (cycle time: 45 min, speed:
2,000 r.p.m. and temperature: 25 °C). Enhanced or decreased regulatory activity
was measured 4 days after transduction. No additional cell authentication or
mycoplasma contamination was performed in the cell lines used in this study.

Locating the functional region within CD47 E5. To locate the minimal region
containing functional binding motif(s) within CD47 E5 (1,300 bp), we first pre-
dicted regions within E5 that had motifs with binding capacity by using published
PIQ analyses. PIQ is an analytical method that combines existing ENCODE K562
DNase I hypersensitivity data?” with aggregate transcription factor specific scores
obtained from JASPAR, UniPROBE and TRANSFAC to predict the probability of
occupancy for a given candidate binding site in the genome by using standard
parameters previously described?®. The published resulting calls for putative
binding motifs in the genome were visualized using the custom track feature from
the UCSC genome browser (https://genome.ucsc.edu), with a score threshold
of 800.

Based on these analyses, we deleted two regions from E5 (E5A276 bp and
E5A400 bp) by fusion PCR and generated a smaller CD47 E5 construct
(E5V400 bp). The set of primers used for the generation of these new constructs
were as follows:

E5A276bp (~ 276 bp deletion)

_F': ATAAGGATCCTCAGACTTAGTTTGTAGATGG

_R': ATAACCTTCAAACAGGCCTGCTTGATTGGGAGAAAACACC

_F': CAGGCCTGTTTGAAGGTTAT

_R’: TAATACGCGTATAACACAGGGAATAGAAGC

E5A400bp (~ 400bp deletion)

_F: ATAAGGATCCTCAGACTTAGTTTGTAGATGG

_R’: CTTGATTGGGAGAAAACACCTGCATCTTGTATGTGGTTGG

_F': GGTGTTTTCTCCCAATCAAG

_R': TAATACGCGTATAACACAGGGAATAGAAGC

E5V400bp (~ 400bp fragment)

_F': AATTGGATCCTCCCAACCACATACAAGATG

_R: ATATACGCGTCTTGATTGGGAGAAAACACC

MCF?7 cells were infected with each new CD47 E5 construct and the effect on
EGFP reporter expression assayed by fluorescence microscopy 4 days after
infection.

Phagocytosis in vitro assay. In vitro macrophages were induced and cultured for
7 days as previously described?. Macrophages were collected from a GFP murine
line. Target cells (MCF7 cells) transduced with turboRFP-NFKB1 shRNAs or
turboRFP alone (control) were subjected to 10 pgml ~ ! of CD47 blocking antibody
(Hu5F9-G4) for 30 min at 37 °C. Target cells with the different conditions were
then plated with macrophages in a low-attachment 96-well plate and incubated for
2h at 37 °C. To determine the phagocytic index (target cells ingested divided by the
total number of macrophages multiplied by 100), flow cytometry was used.

Stimulation and inhibition of the TNF pathway. 1.5 x 10> MCF7 and MCF10
cells were seeded in a 24-well plate and stimulated with 100 or 1,000 ngml ~! of
recombinant human TNF-o (PeproTech). The following day 0.5 uM of the IKK2
(IkB kinase inhibitor), TPCA-1 (Tocris Bioscience), was added 4 h after TNF-o
addition. CD47 expression was analysed by flow cytometry 48 and 72 h after
TNF-o treatment. To block the binding of TNF- to its receptor, 3 x 10> MCF7
and 3 x 10° MCF7-NFKB1shRNA cell lines were seeded in a six-well plate.

The next day cells were stimulated with TNF-o. (100 ngml ~!) for up to 2 days.
To block the TNF-o interaction with the TNF receptor, cells were treated with
100 pgml ~ ! of a blocking monoclonal antibody (infliximab, Janssen), 1h before
TNF-o treatment. Effects on CD47 expression were analysed by flow cytometry 24
and 48 h after TNF-o treatment. Phagocytosis assays were performed as described
above, 48 h after TNF-o treatment.

ER stimulation. B-Estradiol (Sigma Aldrich) was kindly provided by Maider
Zabala Ugalde. MCF?7 cells were grown in DMEM without phenol-red (Gibco),
supplemented with 10% charcoal-filtered fetal bovine serum (FBS) (Gibco) and 1%
pen/strep. 1.5 x 10° cells were seeded in a 24-well plate. The next day, half the cells
were serum starved overnight and 2 days later all cells were stimulated with 100 nM
B-Estradiol (E2). CD47 expression was analysed by flow cytometry and qPCR 24
and 48 h after E2 treatment. Presence or absence of serum had no effect on levels of
CD47 expression on live cells; however, cells that were serum starved had a
reduction on cell viability. Thus, in this study we only show the data obtained from
cells that were not serum starved.

Competition binding assay. For the protein-DNA binding profiling assay, nuclear
extract from either MCF7 or HePG2 cells was incubated with biotin-labelled oligos
corresponding to an array of 48 (— 1 used as a negative control) consensus sites
for well-characterized transcription factors. Unbound oligo probes were washed
and transcription factors-oligo probes complexes were hybridized to a plate
(Signosis Inc). The captured probes were detected with streptavidin-HRP and a
chemiluminescent substrate. To detect luminescence, a SpectraMax M3 Microplate
Reader was used. Integration time was set to 1s with no filter position. Binding of
transcription factors to the corresponding consensus oligo probes was competed by
incubating the nuclear extract with the CD47 E5 enhancer and the biotin-labelled
consensus site oligos simultaneously. Thus, binding of each transcription factor to
E5 results in reduced transcription factor-oligo probe complexes leading to lower
luminescence detection. In this study, binding to E5 was calculated by taking the
average of the relative luminescence units (RLU) produced by the binding of each
transcription factor to the consensus probes when outcompeted with the E5 DNA
fragment (binding competition) and subtracting this number from the average
RLU produced by the binding of each transcription factor to the consensus sites
probes only (control). Thus, binding of transcription factors to the E5 DNA
fragment and not to the consensus sites probes is represented by an increase

in RLU while not binding to E5 and binding to the consensus sites probes is
represented by a no change or decrease in RLU. In some instances, we noticed for
transcription factors that do not bind to E5 (for example, FAST-1, HIF, NF-E2,
Statl) a large decrease in RLU. It appears that addition of the CD47 E5 DNA
fragment can promote more binding to the consensus oligo probes of some of
E5 non-binding transcription factors (resulting in a substantial RLU decrease).
Perhaps transcription factors-CD47 E5 bound complexes are not interfering with
the ‘non-binding transcription factors’ allowing them to freely complex with their
corresponding consensus probe.

shRNA knockdown. Candidate transcription factors were knockdown using
TRIPZ inducible lentiviral ShRNA constructs (ThermoFisher). Sense sequences
within hairpins used to knockdown each of the candidate factors identified in the
binding assay, are as follows:

STAT3: 1_ AAGTTCATGGCCTTAGGTA 2_GGCGTCCAGTTCACTACTA
3_TGACTTTGATTTCAACTAT

STAT5A: 1_GGCACATTCTGTACAATGA 2_CTGTGGAACCTGAAACCAT
3_TGGCTAAAGCTGTTGATGG

STAT5b: 1_CACCCTAATTTGACATCAA_

STAT6: 1_GCCTCTCTGACATATGCTA 2_GTTACTAGCCTTCTTCTCA
3_AGGAGACCACTGGAGAGCT

NFKB1: 1_ GCCCATACCTTCAAATATT 2_CAGGTATTTGACATATTAA
3_CCACAGATGTTCATAGACA

PPARa: 1_CGGACGATATCTTTCTCTT 2_TGAAGAGTTCCTGCAAGAA
3_CTTCTAAACGTAGGACACA. TurboRFP empty vector was used as an shRNA
control.

| 8:14802 | DOI: 10.1038/ncomms14802 | www.nature.com/naturecommunications 1


https://genome.ucsc.edu
https://genome.ucsc.edu
https://genome.ucsc.edu
http://www.nature.com/naturecommunications

ARTICLE

MCEF7 cells were seeded in six-well plates overnight and transduced the next
day with each construct for 24 h. Transduced cells were selected with puromycin.
To induce the shRNA and turboRFP, doxycycline was added to the cells media for
48h. The efficiency of the knockdown was quantified by qPCR, and the effect on
CD47 expression was analysed by qPCR and flow cytometry.

BRD4 inhibition. MCF7 cancer cells were seeded at 5 x 10° in a six-well plate
overnight. The next day, cells were treated with 200 nM tol uM JQ1 dissolved in
DMSO, 500 uM PFI-1 (Selleckchem) dissolved in DMSO or 100 uM I-BET151
(Selleckchem) dissolved in EtOH. The following day, MCF7 cells were washed and
the effect on CD47 expression was analysed by qPCR over a period of 1 week for
JQ1 and 2 days for PFI-1 and I-BET151. Jurkat cancer cells were treated with JQ1
following the same procedure performed for MCF?7 cells. Jurkat cells were washed
the next day after JQ1 treatment and effect on CD47 expression analysed by qPCR
over a period of 48 h. For this experiment, we used DMSO as a vehicle.

Xenotransplants. MCF7-GFP/Luc (GFP/Luciferase) cell line (kindly provided by
Mingye Feng) was transduced with either turboRFP-NFKB1 shRNA or turboRFP
empty vector (control). Then, cells were suspended in DMEM media containing
25% Matrix Matrigel (Becton Dickinson 354248). Cells were injected into the
mammary fat pad of 4-8-week-old NOD.Cg-Prkdcscid I12rgtm1Wijl/Sz] (NSG)
female mice (N =5). Tumours were allowed to grow, and a week later, doxycycline
(100 pg) was injected into the mammary fat pad to induce the shRNAs and tur-
boRFP. We followed tumour growth in individual mice for a period of six weeks,
by measuring luciferase intensity.

Patient-derived xenografts. To grow patient-derived primary tumour samples,
primary breast tumours obtained from informed and consented human subjects
were dissociated as described below, lineage (CD3, CD16, CD31, CD45 and
CD61)-depleted by flow cytometry and injected into cleared fat pads of 8-week-old
female NSG mice (N=7) as previously described”’.

Animal models. The NSG mice used for this study were maintained at the
Stanford Animal Facility in accordance with the guidelines of the Administrative
Panel on Laboratory Animal Care use committee (APLAC).

Human samples. Tissue specimens were obtained from consented patients as
approved by Stanford University Institutional Review Board (IRB) protocol #350.

Tumour dissociation. Specimens were mechanically and enzymatically dissociated
in DMEM/F12 media supplemented with 2% bovine serum albumin (BSA)
containing collagenase hyaluronidase (Stem Cell Technologies) and DNAse
(Worthington). Tissue was incubated for 16 h at 37 °C until single cell suspension
was achieved. The single cell suspension was washed and treated with ACK
(ammonium-chloride potassium) to lyse red blood cells, then washed and treated
with Dispase and DNAse. Cells were filtered through a 40-micron filter, counted
and stained with fluorescent antibodies for flow cytometry analyses.

ChIP-Seq. PDX breast tumours were dissociated as described above. Cells were
resuspended in Hanks Balanced Salt Solution (Thermo Fisher) supplemented with
heat-treated 2% FBS. Live cells were isolated using Ficoll-Paque Plus (GE Health
Care Life Science) and counted. Due to a low number of cells recovered, bulk
populations from samples PDX2 and PDX3 were submitted to ChIP-Seq. Samples
PDX1 and PDX4 yielded enough number of cells allowing for the sorting of the
tumorigenic population (that is, CD45 and H-2Kd negative, EpCAMH! and
CD49f1) prior ChIP-Seq. 1 x 10° cells were resuspended in 0.5ml chromatin
digestion buffer (33 mM Tris-acetate, pH 7.9, 66 mM potassium acetate, 10 mM
magnesium acetate, 0.25% TX-100, 1 mM EGTA, 10 mM sodium butyrate) mixed
with protease inhibitors (Roche Complete, EDTA free) and 15 pl of enzyme mix
(equal volume each Fast Digest SaqAl, Bfal, Csp6l and Ndel from Thermo
Fisher/Finnzymes). Chromatin digestions were performed at 37 °C for 30 min,
followed by dilution with 0.5 ml 2X ChIP dilution buffer (220 mM KCl, 50 mM
Tris-acetate, pH 7.9, 0.2% Sarkosyl, 0.2% Na-deoxycholate, 1.75% Tx-100, 40 mM
EDTA, 1 mM EGTA). Debris were removed by centrifugation at 10,000 g for

10 min. The chromatin solution was transferred to a new tube, then precleared with
40 pl Protein A-Dyna Beads for 2 h. chromatin solution (50 pl) was saved for Input.
Anti-H3K27ac antibody (2 ng) (Active Motif #39133) and 40 pl Protein A-Dyna
beads were added to remaining 0.95 ml of chromatin. Samples were then incubated
overnight at 4 °C with rotation, in 1.5 ml tubes. Bead bound chromatin was washed
twice with 1 x ChIP dilution buffer, once with 1 x ChIP dilution buffer (at 0.4 M
NaCl), twice with Tris-EDTA (TE). DNA was eluted by resuspending beads in
100 pl TE containing 1% SDS and 10 mg Proteinase K, incubated at 65 °C for 1h,
with mixing every 15 min. Eluted DNA was column purified with Zymo DNA
clean and concentrator kit in a final volume of 25 pl. ChIP-enriched DNA was
quantified using a Qubit 3.0 and dsDNA HS assay. ChIP-enriched DNA (10-20 ng)
was used to construct next generation sequencing libraries with NEXTERA.
Indexed libraries were sequenced by NextSeq500 single end sequencing (75 bp).

12

Flow cytometry analysis. For staining, 1 x 105-10° cells were incubated with
indicated antibodies (1:50-1:200) in cell sorting buffer (PBS with 2% FBS) on ice
for 30 min. Cells were washed twice and analysed by fluorescence-activated cell
sorting. Flow cytometry analyses were performed using a BD LSRFortessa. The
antibodies used for this study were the following: PE anti-CD47 clone: B6H12
(BD 556046), APC anti-CD47 clone: B6H12 (eBioscience), PE anti-TNF
RI/TNFRSF1A clone: 16803 (R&D Biosystem), APC anti-CRT (US Biological),
PE-Cy7 anti-CD49f, clone: GoH3 (Biolegend), FITC anti-EpCAM, clone: 9C4c
(Biolegend), Pac Blue anti-CD45, clone: HI30 (Biolegend), Pac Blue anti-H-2Kd,
clone: SF1-1.1 (Biolegend). To quantify CD47 expression in different cancer

cell lines, CD47-PE antibody bound per cell (ABC) was estimated by using
phycoerithrin (PE) conjugated beads (QuantiBRITE, BD bioscience) and flow
cytometry following the company’s protocol.

Protein extraction and western blotting. Total protein was extracted from
cultured MCF?7 cells (TNF-o treated or untreated) using cell lysis buffer (Cell
Signaling) supplemented with 1 x Halt Protease and Phosphatase Single-use
Inhibitor Cocktail (Thermo Scientific) as recommended by the manufacturers.
Western blots were performed as previously described*®. TkBo. (1:1,000) rabbit
polyclonal, Phospho-IkBa: (1:1,000) rabbit monoclonal and Tubulin (1:1,000)
rabbit monoclonal (Cell Signaling) antibodies were used for detection of the
proteins.

Cell-death assay. MCF?7 cells (5 x 10°) were treated with 1 uM STS for 24 h. Cells
were collected from the media and detached using TrypLe (Thermo Fisher). After
detachment, cells were washed twice and resuspended in binding buffer (10 mM
HEPES/NaOH, pH 7.4, 140 mM NacCl, 2.5 mM CaCl,) with Annexin-V-AF488
antibody and incubated for 15 min on ice. Next, cells were washed twice and
resuspended in binding buffer containing DAPI, and analysed by flow cytometry.
Bivariant analysis of AF488-fluorescence (Annexin V) and DAPI-fluorescence
marked the different cell populations.

Quantitative real-time PCR (qQPCR). Total RNA was extracted using RNeasy Plus
kits (Qiagen). cDNA was reversed transcribed using SuperScript III First-Strand
Synthesis SuperMix (Invitrogen) and then amplified on the 7900HT Fast
Real-Time PCR System (Applied Biosystems). Specific primers designed to amplify
the desired gene were combined with cDNA and power SYBR Green (Thermo
Fisher) following the manufacturer’s instructions.

Primers used in this study are:

CD47

_F:CATGGCCCTCTTCTGATTTC

_R:GGAGGTTGTATAGTCTTCTGATTGG

NFKB1

_F': CCCAGTGAAGACCACCTCTC

_R’: GGCACCACTGGTCAGAGACT

PPARa

_F: CTGGAAGCTTTGGCTTTACG

_R’: CAATGCTCCACTGGGAGACT

STAT3

_F': ACTAAGCCTCCAGGCACCTT

_R’ CGGACTGGATCTGGGTCTTA

STAT5a

_F': GAGAAGTTGGCCGAGATCAT

_R': GGTCACCAGGGCTGAGATAA

STAT5b

_F': AAGATCAAGCTGGGGCACTA

_R' CGGACCAACCTCTGTTCATT

STAT6

_F': AGATGAGCCTGCCCTTTGA

_R’: GAGGAAACGCTGTCACTGG

TFF1

_F': AATTCCTTCCAGCGCAAC

_R’: CACCATGGAGAACAAGGTGA

EGFP

_F': ACTACCTGAGCACCCAGTCC

_R’: CTTGTACAGCTCGTCCATGC

B-actin

_F: TCCCTGGAGAAGAGCTACG

_R’: GTAGTTTCGTGGATGCCACA

Data availability. The dbGAP accession number for the PDX breast tumour
H3K27ac ChIP-Seq data sets generated in this study is phs001264. GEO database
accession numbers for publicly available H3K27ac ChIP-Seq data sets analysed in
this study are listed in Supplementary Table 1. All other relevant data are available
from the corresponding authors on request.
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