
Vol.:(0123456789)1 3

Inflamm. Res. 
DOI 10.1007/s00011-017-1039-1

ORIGINAL RESEARCH PAPER

Daphnetin reduces endotoxin lethality in mice and decreases LPS-
induced inflammation in Raw264.7 cells via suppressing JAK/
STATs activation and ROS production

Lei Shen1 · Ting Zhou1 · Jing Wang1 · Xiumei Sang1 · Lei Lan1 · Lan Luo2 · 
Zhimin Yin1 

Received: 18 November 2016 / Revised: 20 March 2017 / Accepted: 25 March 2017 
© Springer International Publishing 2017

LPS-induced endotoxemia. Both in vivo and in vitro study 
showed that daphnetin prevented the production of pro-
inflammatory factors including TNF-α, IL-1β, IL-6, NO, 
and PGE2 after LPS challenge. In Raw264.7 cells, we 
found that daphnetin reduced LPS-induced expression of 
iNOS and COX-2, and suppressed LPS-induced ROS pro-
duction. In addition, we found that daphnetin suppressed 
the activation of JAK/STATs pathway and inhibited the 
nucleus import of STAT1 and STAT3.
Conclusions  Here, our results indicate that daphne-
tin shows anti-inflammatory properties, at least in part, 
through suppressing LPS-induced activation of JAK/STATs 
cascades and ROS production.

Keywords  Daphnetin · COX-2 · iNOS · JAK/STATs · 
ROS

Abbreviations
DFN	� Daphnetin
LPS	� Lipopolysaccharide
IL	� Interleukin
TNF	� Tumor necrosis factor
NO	� Nitric oxide
PGE2	� Prostaglandin E2
iNOS	� Inducible NO synthase
COX-2	� Cyclooxygenase 2
JAK	� Janus protein tyrosine kinase
STAT	� Signal transducers and activators of 

transcription
MAPKs	� Mitogen-activated protein kinases
ROS	� Reactive oxygen species
I.P. injection	� Intraperitoneal injection

Abstract 
Objective  Here, we used various approaches to inves-
tigate the suppressive role of daphnetin in LPS-induced 
inflammatory response, with the goal to understand the 
underlining molecular mechanism by which daphnetin reg-
ulated these processes.
Methods  We examined the survival rate and the lung 
injury in the mice model of LPS-induced endotoxemia. 
The production of pro-inflammatory factors including 
tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), 
IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2) was 
measured by ELISA and nitrite analysis, respectively. The 
expression of inducible NO synthase (iNOS), cyclooxyge-
nase 2 (COX-2), and the activation of signaling molecules 
was determined by immunoblotting. The production of 
reactive oxygen species (ROS) was measured by the ROS 
assay.
Results  In vivo study showed that daphnetin enhanced 
the survival rate and reduced the lung injury in mice with 
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Introduction

Lipopolysaccharide (LPS), also known as endotoxin, is 
a major component of outer membrane of gram-negative 
bacteria and activates strong immune responses in cells 
and animals. Upon LPS stimulation, monocytes and mac-
rophages are activated and generate pro-inflammatory 
mediators including TNF-α, IL-1β, IL-6, NO, and PGE2 
[1, 2]. Among these pro-inflammatory mediators, NO and 
PGE2 are produced by iNOS and COX-2, respectively 
[3, 4]. These cytokines, in moderate dose, are required 
for host-defense and cell growth. However, the uncon-
trolled production of pro-inflammatory factors results in 
serve immunopathology, including rheumatoid arthritis 
[5], atherosclerosis [6, 7], and systemic inflammatory 
response syndrome (SIRS) [8, 9].

Mechanistically, upon LPS challenge, the activation 
of intracellular signaling pathways contributes to the 
immune responses. Nucleus factor κB (NF-κB) plays 
an important role in regulating gene expression and 
inflammatory process. In unstimulated conditions, Iκ-B 
binds to NF-κB and represses its transcription activity. 
Upon LPS stimulation, Iκ-B is phosphorylated by IKK 
and ubiquitinated. As a result, the NF-κB-IκB complex 
is disrupted and the nucleus import of NF-κB initiates 
transcription of target genes including iNOS, COX-2, 
TNF-α, IL-1β, and IL-6 [10–12]. The mitogen-activated 
protein kinases (MAPKs), including extracellular signal-
regulated kinase1/2 (ERK1/2), p38MAPKs, and c-Jun 
NH2-terminal kinase (JNK), are intracellular serine/
threonine kinases and are activated by LPS to trigger 
the expression of iNOS and COX-2 [13, 14]. The janus 
kinase-signal transducers and activators of transcrip-
tion (JAK/STATs) are important signaling pathways in 
regulating cytokines expression [15, 16]. In response to 
LPS stimulation, STATs can be phosphorylated on spe-
cific tyrosine residues by receptor-associated JAK, form 
homo or heterodimers, and then translocate into nucleus 
to drive the transcription of target genes which encode 
pro-inflammatory cytokines, chemokines, and inducible 
enzyme, such as iNOS and COX-2 [17–19].

Daphnetin (7,8-dithydroxycoumarin, DFN; Fig. 1a), a 
coumarin derivative from Daphne koreana Nakai (Ruixi-
ang), is the primary component of Chinese herb medi-
cine Zushima. Daphnetin has been widely used to treat 
clinic inflammatory disease including rheumatism and 
hypertension [20, 21]. However, the potential molecular 
mechanism of daphnetin is still unclear and requires fur-
ther investigation.

In this study, we investigate the anti-inflammatory 
properties of daphnetin after LPS challenge and also its 
role in regulating related signaling pathways.

Materials and methods

Antibodies and reagents

Monoclonal antibodies recognizing iNOS, COX-2, p38-
MAPKs, JNK, phospho-JNK (Thr183/Tyr185), IKK-α, 
IKK-β, phospho-IKKα/β  (Ser176/180), JAK1, phospho-
JAK1 (Tyr1022/Tyr1023), JAK2, and phospho-JAK2 
(Tyr1007/Tyr1008) were purchased from Cell Signaling 
Technology. Antibodies against phospho-p38 MAPKs 
(Thr180/Tyr182), ERK, phospho-ERK (Thr202/Thr204), 
GAPDH, β-Actin, LaminB, phospho-STAT1 (Tyr701), 
phospho-STAT3 (Ser727), and phospho-STAT3 (Tyr705) 
were purchased from Bioworld Technology. Antibodies 
recognizing STAT1 and STAT3 were obtained from Santa 
Cruz Biotechnology. HRP-conjugated secondary antibodies 
against mouse or rabbit IgG were purchased from Vazyme 
Biotech.

Daphnetin (7,8-dihydroxy-2H-1-benzofuran-2-one) 
was purchased from Selleck. LPS (from Escherichia coil 
0111:B4), N-acetyl-l-cysteine (NAC), was purchased from 
Sigma Aldrich. Dimethylsulfoxide (DMSO) was obtained 
from Amresco. CCK8 Cell Viability Assay Kit was pur-
chased from Vazyme Biotech. RIPA lysis buffer and ROS 
Assay Kit are purchased from Beyotime Biotechnology.

Animals

Eight-week-old male mice (C57BL/6) were purchased from 
Nanjing Laboratory Animal Center, Nanjing University 
(Jiangsu, PR China) and maintained in the normal condi-
tions. Laboratory animal handling and experimental pro-
cedures were conducted in accordance with the principles 
and procedures outlined in the Provisions and General Rec-
ommendation of Chinese Experimental Animals Adminis-
tration Legislation and were approved by the Science and 
Technology Department of Jiangsu Province. To investigate 
the effect of daphnetin in mice survival, mice (10 mice/
group) were received daphnetin (5  mg/kg, body weight) 
and LPS (37.5  mg/kg) by intraperitoneal injection. Sur-
vival was monitored every another hour up to 3 days. For 
ELISA assay and histology analysis, mice (5 mice/group) 
were received daphnetin (5 mg/kg, body weight) and LPS 
(37.5 mg/kg) by intraperitoneal injection, serum, and lung 
tissue which were collected 16 h after LPS injection.

H&E staining

For histopathological study, lung tissue was collected, fixed 
in 4% formaldehyde, and embedded in paraffin (Leica). 
Sections (10 μm thickness) were stained with hematoxylin 
and eosin (H&E). Photomicrographs were captured under 
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the FSX100 intelligent biological image navigator (Olym-
pus, Tokyo, Japan).

Cell culture

Murine macrophage cells Raw264.7 were purchased from 
Biochemistry and Cell Biology, the Chinese Academy 
of Sciences (Shanghai, PR China), and were cultured in 
DMEM with 10% FBS, 100 U/ml penicillin, and 100 µg/ml 
streptomycin (Wisent Corporation) at 37 °C in an atmos-
phere of 5% CO2.

Cell viability

Cell viability was determined using CCK8 Cell Viabil-
ity Assay Kit. Raw264.7 cells were treated with indicated 

concentrations of daphnetin for 24  h, respectively, and 
then cell viability was measured using CCK8 Cell Via-
bility Assay Kit according to the manufacturer’s instruc-
tions. The absorbance was measured at 500 nm using the 
Synergy 2 Multi-Mode Microplate Reader (BIO-TEK, 
INC).

Determination of cytokines

Mice serum and the culture media were collected and 
centrifuged at 10,000  rpm, 4 °C for 10  min. The con-
tent of cytokines in the supernatants was determined 
using Sandwich ELISA according to the manufacturer’s 
instructions (R&D System).

Fig. 1   Daphnetin reduces 
endotoxin lethality in mice. a 
Chemical structure of daphnetin 
(DFN). b C57/BL6 mice (10 
mice/group) were intraperito-
neally injected with daphnetin 
(DFN, 5 mg/kg) or DMSO, 
and then challenged with LPS 
(37.5 mg/kg) or saline. The time 
of death after LPS challenge 
was recorded. The diagram 
showed the survival rate in each 
group. c–h C57/BL6 mice (5 
mice/group) were intraperito-
neally injected with daphnetin 
(DFN, 5 mg/kg) or DMSO, 
and then challenged with LPS 
(37.5 mg/kg) or saline. 16 h 
after LPS challenge, mice were 
sacrificed, and then lung and 
serum were collected. c Rep-
resentative photomicrographs 
showed H&E staining of lung 
tissue. d–h Results from ELISA 
assay showed the content of 
IL-1β, IL-6, TNF-α, NO, and 
PGE2 in the serum. The results 
were expressed as mean ± SD, 
n = 3. *p < 0.05, comparing with 
matched controls
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Nitrite analysis

Mice serum and the culture media were collected and 
centrifuged at 10,000  rpm, 4 °C for 10  min. The amount 
of nitrite was determined using NO Assay Kit (JianChen) 
according to the manufacturer’s instructions. Sodium 
nitrite was used as standard. The absorbance was measured 
at 550  nm using the Synergy 2 Multi-Mode Microplate 
Reader (BIO-TEK, INC).

Western blotting

Whole cells lysates were prepared with RIPA lysis buffer 
supplement with protease inhibitor cocktail (Calbiochem) 
and phosphatase inhibitor (Roche). Cytoplasmic and 
nucleus proteins were extracted using NE-PER Nucleus 
and Cytoplasmic Extraction Reagent (Thermo Scientific) 
according to the manufacturer’s instructions. Protein con-
centrations were assayed using Modified BCA Protein 
Assay Kit (Bioworld Technology).

For immunoblotting, a total of 20  µg protein of each 
sample was electrophoresed in 12% SDS-PAGE and trans-
ferred to polyvinylidene difluoride (PVDF) western mem-
brane (Bio-Rad). Following blocking with 5% non-fatty 
milk in TBST, membranes were incubated with indicated 
primary antibodies at 4 °C overnight. HRP-conjugated sec-
ondary antibodies (Vazyme Biotech co., ltd) were used and 
the antibody-antigen complexes were visualized by chemi-
luminescence method using the enhanced ECL immunob-
lotting system (Tanon, Shanghai, China).

RNA isolation and quantitative real‑time PCR

Total RNA was extracted from Raw264.7 cells using 
High Pure RNA Extraction Kit (Roche) according to the 
manufacturer’s instructions. Reverse transcription was 
performed using a two-step RT-PCR System kit (Invitro-
gen). Quantitative polymerase chain reaction (qPCR) was 
carried out using the SYBR Premix Ex Taq (TaKaRa). 
GAPDH levels were taken for endogenous control, and 
the fold changes of iNOS and COX-2 expression were 
calculated by applying 2

−ΔΔC
t. The following prim-

ers were used: iNOS: sense primer 5′-cccttccgaagttctg-
gcagc-3′, antisense primer 5′-ggctgtcagagcctgggctt-3′; 
COX-2: sense primer 5′-tctccaacctctcctactac-3′, anti-
sense primer 5′-gcacgtagtcttcgatcact-3′; GAPDH: sense 
primer 5′-tgaaggtcggtgtgaacggatttggc-3′, antisense primer 
5′-tggttcacacccatcacaaacatgg-3′.

Detection of ROS production

Raw264.7 cells were seeded on 96-well plate and treated 
with LPS for 30 min. Following washing with serum free 

medium, 10  µM DCFH-DA was added and the plate was 
incubated at 37 °C for 30  min. Then, fluorescence was 
measured using Synergy 2 Multi-Mode Microplate Reader 
(BIO-TEK, INC) after excitation at 485 nm and emission at 
535 nm. The relative ROS level was expressed as percent-
age of control.

Statistical analysis

Unless otherwise mentioned, individual animal and cell 
culture experiments were performed in triplicate and 
repeated at least twice, and the data were pooled. The data 
were shown as mean ± SD. Statistical significance of differ-
ences was assayed by Student’s t test and one-way ANOVA 
(version 17.0 SPSS, Chicago, IL). In all analyses, a value 
of *p < 0.05 was taken as significant, whereas n.s. means 
no significance.

Results

Daphnetin reduces endotoxin lethality in mice

To investigate the anti-inflammatory properties of daphne-
tin in  vivo, the mice model of LPS-induced endotoxemia 
was established as described in the “Materials and meth-
ods”. Before LPS challenge, half of mice were intraperi-
toneally injected with daphnetin (5 mg/kg), the other with 
vehicle DMSO. As shown in Fig. 1b, daphnetin treatment 
enhanced the survival rate compared with the vehicle. In 
LPS-induced inflammatory process, acute lung injury is 
caused by the overproduction of pro-inflammatory factors, 
and leads to pulmonary dysfunction, with a mortality rate 
of 40%. H&E staining of lung tissue showed that daphne-
tin treatment reduced LPS-induced pulmonary interstitial 
edema and inflammatory infiltrates (Fig.  1c). In addition, 
results of ELISA assay and nitrite analysis showed that 
daphnetin administration suppressed LPS-induced produc-
tion of pro-inflammatory mediators including IL-1β, IL-6, 
TNF-α, nitrite, and PGE2 in mice serum (Fig. 1d–h). Col-
lectively, these findings suggest that daphnetin protects 
mice from LPS-induced mortality, lung injury and reduces 
the production of pro-inflammatory factors in serum.

Daphnetin suppresses LPS‑induced inflammatory 
response in Raw264.7 cells

To investigate the anti-inflammatory effect of daphnetin 
in macrophages, Raw264.7 cells were exposed to different 
concentrations of daphnetin. First, CCK8 assay was car-
ried out to exclude the toxicity of daphnetin. As shown in 
Fig. 2a, daphnetin showed no notable effect on the cell via-
bility at concentrations from 5 to 20 µM. Pro-inflammatory 
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Fig. 2   Daphnetin suppresses LPS-induced inflammatory response 
in Raw264.7 cells. a Raw264.7 cells were treated with indicated 
concentrations of daphnetin (DFN) for 24 h, and then, cell viability 
was detected by CCK8 assay. b–g Raw264.7 cells were treated with 
indicated concentrations of daphnetin (DFN) for 2  h, followed by 
16 h treatment with LPS (100 ng/ml). b–f Results from ELISA assay 
showed the content of IL-1β, IL-6, TNF-α, NO, and PGE2 in the cul-

ture medium. g Immunoblotting and densitometric analysis showed 
the protein levels of iNOS and COX-2 in Raw264.7 cells. h Raw264.7 
cells were treated with daphnetin (DFN 20  µM) for 2  h, followed 
by 6  h treatment with LPS (100  ng/ml). The message RNA levels 
(expressed as the fold changes above the control group) were detected 
by the real-time PCR. The results were expressed as mean ± SD, 
n = 3. *p < 0.05, comparing with matched controls
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factors play an important role in LPS-induced inflam-
matory response. Consistent with our previous findings 
(Fig. 1d–h), results from the ELISA assay and nitrite analy-
sis showed that daphnetin reduced the production of LPS-
induced pro-inflammatory mediators including IL-1β, IL-6, 
TNF-α, NO, and PGE2 in a dose-dependent manner in 
Raw264.7 cells (Fig. 2b–f).

Among these pro-inflammatory factors, NO and PGE2 
are produced by iNOS and COX-2, respectively. To inves-
tigate the role of daphnetin in regulating iNOS and COX-2 
expression, Raw264.7 cells were treated with indicated 
concentrations of daphnetin for 2 h, respectively, followed 
by administration of LPS for 16 h. We observed that daph-
netin suppressed LPS-induced expression of iNOS and 
COX-2 in a dose-dependent manner (Fig. 2g). Furthermore, 
results from qPCR showed that daphnetin reduced the tran-
scription of iNOS and COX-2 (Fig.  2h). Taken together, 
these results indicate that daphnetin exhibits anti-inflamma-
tory properties in Raw264.7 cells.

Daphnetin inhibits LPS‑induced activation of JAK/
STATs, but not of MAPKs or NF‑κB

Transcription factors are critical to regulating the pro-
inflammatory genes expressing. NF-κB has been reported 
to drive the expression of iNOS, COX-2, TNF-ɑ, and IL-6 
[22, 23]. However, results from immunoblotting showed 
that daphnetin exhibited no notable effect on LPS-induced 
phosphorylation of IKKɑ/β, suggesting that daphnetin does 
not affect the LPS-induced activation of NF-κB (Fig. 3a). 
In addition, signal transducer and activator of transcription 
(STATs) play important role in LPS-induced production of 
pro-inflammatory components including iNOS and COX-2 
and other cytokines [24–27]. As shown in Fig.  3b, daph-
netin down-regulated the phosphorylation of both STAT1 
(Tyr701) and STAT3 (Tyr705, Ser727). The phosphoryla-
tion of STATs results in dimerization, nucleus transloca-
tion, and then initiates the transcription of target genes 
[27–29]. As shown in Fig. 3c, daphnetin suppressed LPS-
induced nucleus import of STAT1 and STAT3. These find-
ings indicate that daphnetin suppresses the activation of 
STAT1 and STAT3.

Furthermore, in response to LPS stimulation, STAT1 
and STAT3 can be phosphorylated by the Janus kinases 
(JAKs) [30]. Results from immunoblotting showed that 
daphnetin suppressed LPS-induced phosphorylation of 
JAK1 and JAK2 (Fig. 3d). MAPKs have been also reported 
to play important role in inflammatory response and to 
activate the STATs transcription factors [31–33]. How-
ever, as shown in Fig.  3e, daphnetin did not suppress the 
LPS-induced phosphorylation of p38MAPK, ERK or 
JNK. Taken together, these results suggest that daphnetin 

suppresses LPS-induced activation of JAK/STATs cascade, 
without altering the activation of NF-κB or MAPKs.

Daphnetin reduces LPS‑induced production of ROS

Reactive oxygen species (ROS), the chemically reactive 
molecules containing oxygen, is important to regulate 
intracellular signaling and homeostasis. During LPS expo-
sure, ROS is accumulated and results in cell injury and cell 
death [34]. We, therefore, investigated whether daphnetin 
showed anti-oxidant activity. N-acetylcysteine (NAC), a 
generally accepted anti-anti-oxidant, was used as positive 
control. As shown in Fig.  4a, consistent with the results 
from NAC, daphnetin reduced LPS-induced ROS accumu-
lation. In addition, ROS has been regarded as the signaling 
molecules in LPS-induced inflammatory process [33, 35]. 
As shown in Fig. 4b, NAC suppressed LPS-induced expres-
sion of iNOS and COX-2, suggesting that ROS is critical 
factors involved in LPS-induced inflammatory process.

Furthermore, it has been reported that ROS contributes 
to LPS-induced activation of JAK/STATs cascade [25, 36]. 
We, therefore, investigated whether the inhibitory effect of 
daphnetin on LPS-induced JAK/STATs activation was cor-
related to its anti-oxidant properties on ROS. As shown in 
Fig. 4c and d, consistent with the role of daphnetin, NAC 
suppressed LPS-induced phosphorylation of JAK1, JAK2, 
STAT1, and STAT3, indicating the inhibition of JAK/
STATs cascade by NAC. Taken together, these results sug-
gest that the anti-oxidant activity of daphnetin is correlated 
to its anti-inflammatory properties.

Discussion

Daphnetin is the primarily component of Chinese herb 
medicine Zushima which has the beneficial effect on rheu-
matic arthritis, vasculitis, and coronary heart disease [37, 
38]. Recent report has shown that daphnetin exerts anti-
inflammatory property through inhibiting NF-κB activation 
[39]. However, the more detailed molecular mechanism of 
daphnetin is still unclear and requires further investigation. 
Thus, in this work, we explore the anti-inflammatory poten-
tial of daphnetin. We demonstrate that daphnetin reduces 
the endotoxin lethality in the mice model of LPS-induced 
endotoxemia and decreases LPS-induced inflammatory 
response in Raw264.7 cells. Our results indicate that daph-
netin suppresses LPS-induced activation of JAK1 and 
JAK2, facilitates the inhibition of STAT1 and STAT3 phos-
phorylation, and then blocks the nucleus import of STAT1 
and STAT3. In addition, daphnetin reduces LPS-induced 
ROS production.

Inflammation is the protective reaction in response to 
multiple harmful stimuli including microbial invasion 
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Fig. 3   Daphnetin inhibits 
LPS-induced activation of 
JAK/STATs, but not MAPK or 
NF-κB. a Raw264.7 cells were 
treated with daphnetin (DFN) 
for 2 h, followed by 30 min 
treatment with LPS (100 ng/
ml). Immunoblotting and 
densitometric analysis showed 
the total IKKα, total IKKβ, and 
phosphorylated IKKα/β protein 
levels in Raw264.7 cells. b 
Raw264.7 cells were treated 
with daphnetin (DFN) for 2 h, 
followed by 4 h treatment with 
LPS (100 ng/ml). Immunoblot-
ting and densitometric analysis 
showed the total STAT1, total 
STAT3, phosphorylated STAT1 
(Y701), phosphorylated STAT3 
(Y705), and phosphorylated 
STAT3 (S727) protein levels 
in Raw264.7 cells. c Raw264.7 
cells were treated with daph-
netin (DFN, 20 µM) for 2 h, 
followed by 4 h treatment with 
LPS (100 ng/ml). Immunoblot-
ting and densitometric analysis 
showed the nucleus import 
of STAT1 and STAT3. The 
purity of nucleus extracts was 
determined by nucleus LaminB 
(nucleus envelop protein) and 
GAPDH. d Raw264.7 cells 
were treated with daphnetin 
(DFN) for 2 h, followed by 1 h 
treatment with LPS (100 ng/
ml). Immunoblotting and den-
sitometric analysis showed the 
total JAK1, total JAK2, phos-
phorylated JAK1, and phospho-
rylated JAK2 protein levels in 
Raw264.7 cells. e Raw264.7 
cells were treated with daphne-
tin for 2 h, followed by 30 min 
treatment with LPS (100 ng/
ml). Immunoblotting and 
densitometric analysis showed 
the total p38, total ERK, total 
JNK, phosphorylated p38, 
phosphorylated ERK, and phos-
phorylated JNK protein levels 
in Raw264.7 cells. The results 
were expressed as mean ± SD, 
n = 3. *p < 0.05, comparing with 
matched controls
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and tissue injury. During inflammatory process, the mac-
rophages are activated and produce a series of pro-inflam-
matory cytokines which are responsible for the pathphysi-
ology of sepsis. Normally, the inflammatory responses 

can initiate tissue repair and eliminate cell injury. How-
ever, the uncontrolled inflammatory responses lead to tis-
sue lesion, organ dysfunction, and even severe inflamma-
tory responses syndrome with high fatality rate, such as 

Fig. 4   Daphnetin reduces LPS-induced ROS production. a Raw264.7 
cells were treated with daphnetin (DFN 20 µM) or NAC (10 mM) for 
2  h, followed by 30 min treatment with LPS (100 ng/ml). The pro-
duction of ROS was detected using DCFH-HA. NAC was used as a 
positive control. b Raw264.7 cells were treated with NAC (10 mM) 
for 2  h, followed by 16  h treatment with LPS. Immunoblotting and 
densitometric analysis showed the protein levels of iNOS and 
COX-2 in Raw264.7 cells. c Raw264.7 cells were treated with NAC 
(10 mM) for 2 h, followed by 1 h treatment with LPS (100 ng/ml). 

Immunoblotting and densitometric analysis showed the total JAK1, 
total JAK2, phosphorylated JAK1 and phosphorylated JAK2 pro-
tein levels in Raw264.7 cells. d Raw264.7 cells were treated with 
NAC (10 mM) for 2 h, followed by 4 h treatment with LPS (100 ng/
ml). Immunoblotting and densitometric analysis showed the total 
STAT1, total STAT3, phosphorylated STAT1 (Y701), phosphoryl-
ated STAT3 (Y705) and phosphorylated STAT3 (S727) protein levels 
in Raw264.7 cells. The results were expressed as mean ± SD, n = 3. 
*p < 0.05, comparing with matched controls
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systemic inflammatory responses syndrome (SIRS) [6, 7, 
40, 41]. Under LPS-induced endotoxemia, the acute lung 
injury is the excessive inflammatory response in lung and 
can process to the deficiency of lung [42]. In this study, we 
first investigated the anti-inflammatory activity of daphne-
tin in vivo and in vitro. We found that daphnetin obviously 
protected animals from mortality, reduced the LPS-induced 
alveolar edema and inflammation cells infiltration, and sup-
pressed the production of pro-inflammatory factors includ-
ing IL-1β, IL-6, and TNF-α (Figs. 1, 2). These observations 
are in agreement with the find of Yu et  al., in which the 
authors found the anti-inflammatory and protect properties 
of daphnetin in endotoxin-induced lung injury [39]. Fur-
thermore, we observed that daphnetin reduced of the pro-
duction of NO and PGE2 (Figs. 1g, h, 2e, f). NO particu-
larly works in the early stage of inflammation to regulate 
the transmission of inflammatory cells, and plays its role in 
almost all stages of inflammation. Though, PGE2 has been 
shown to have both anti- and pro-inflammatory actions. 
In some studies, PGE2 is considered as anti-inflammatory 
prostaglandin, whereas PGF2 is known as a inflammatory 
prostaglandin [43, 44]. It is also well accepted that PGE2 
plays an important role in inflammatory response gener-
ating. In response to LPS stimulation, the biosynthesis of 
PGE2 is rapidly increased and it participates in the devel-
opment of the cardinal signs (redness, heat, swelling, and 
pain) of acute inflammatory [45, 46]. In LPS-induced 
inflammation, NO and PGE2 are expressed by iNOS and 
COX-2, respectively [3, 4, 47]. We then observed that 
daphnetin suppressed the expression of iNOS and COX-2 
in Raw264.7 cells (Fig.  2g, h). These results suggest that 
daphnetin exerts anti-inflammatory functions in LPS-
induced inflammation both in vivo and in vitro.

LPS causes harmful disorders with complicated mecha-
nism. During LPS-induced inflammatory response, the 
initiation of intracellular signaling cascades leads to the 
activation of macrophages, and contributes to the produc-
tion of and the release of pro-inflammatory factors. STAT1 
and STAT3 have been reported to regulate the expres-
sion of iNOS and COX-2 [18, 28, 48]. The inhibition of 
STATs activation is beneficial in inhibiting LPS-induced 
inflammatory process by reducing NO, IL-1β, IL-6, and 
IFN-γ production [24–27, 29, 36]. The phosphorylation of 
STATs is required for their nucleus import and transcrip-
tional activity [49, 50]. Therefore, we investigate whether 
the anti-inflammatory effect of daphnetin is related to 
STATs activation in Raw264.7 cells. We found that daph-
netin not only suppressed LPS-induced phosphorylation of 
STAT1 and STAT3, but also blocked the nucleus import 
of them (Fig. 3b, c). These results indicate that daphnetin 
suppresses LPS-induced inflammatory responses through, 
at least in part, inhibiting STAT1 and STAT3 activation. 
We further study the effect of daphnetin on the upstream 

signaling pathways of STATs. In response to cytokines 
stimulation, JAKs can be phosphorylated on tyrosine resi-
dues, and then activates downstream transcription factors 
including STATs [30, 32]. The JAK-STATs pathway shows 
important role in immune and inflammatory responses and 
is involved in LPS-induced iNOS expression [15, 16, 49]. 
As shown in Fig. 3d, we found that daphnetin suppressed 
the phosphorylation of JAK1 and JAK2. In addition, 
MAPKs can be activated by multiple intracellular disorders 
and environmental stimulation. In addition, the MAPKs 
can be involved in the phosphorylation of STATs, which is 
correlated to the production of IL-6 [13, 31, 51, 52]. How-
ever, in response to LPS stimulation, we did not observe the 
inhibitory effect of daphnetin on MAPKs (Fig. 3e). Further-
more, upon LPS stimulation, NF-κB signaling is also trig-
gered and plays important role in regulating iNOS, COX-2, 
TNF-α, and IL-6 expression [23]. The LPS-induced phos-
phorylation of IKK disrupts the interaction between IκB 
and NF-κB, and facilitates the activation of NF-κB signal-
ing [10, 53]. The interaction of STAT3 and NF-κB has also 
been found to suppress iNOS transcription [28]. The pre-
vious work showed an important role of NF-κB signaling 
and a potential cross-talk between NF-κB and STATs path-
ways. However, we did not observe the suppressive effect 
of daphnetin on the phosphorylation of IKK (Fig. 3a), indi-
cating that the inhibitory role of daphnetin on inflammatory 
is not through NF-κB. These observations are inconsistent 
with the data of Yu et al., in which the authors reported that 
daphnetin inhibited NF-κB or MAPKs signaling. We rea-
son that the discrepancy may result from the differences in 
the source, purity, and concentration of the daphnetin used. 
In this study, we only detected the phosphorylation of IKK 
to show the activation of NF-κB pathway. For more precise 
study, it is worth detecting the nucleus import of p65 and 
p50. Collectively, these foundings indicate that daphnetin 
suppresses LPS-induced inflammatory responses via inhib-
iting JAKs/STATs signaling. Moreover, daphnetin showed 
no notable effect on cell viability, suggesting the potential 
use of daphnetin in clinical activity.

ROS is a by-product of metabolism. In response to LPS 
stimulation, ROS is largely accumulated by the activated 
macrophages. Besides its role in differentiation and sign-
aling transduction at normal concentrations, the excessive 
production of ROS disrupts the intracellular oxygen sup-
ply-demands balance and is lethal. The uncontrolled pro-
duction of ROS can result in cell apoptosis, necrosis, and 
tissue injury [54]. As shown in Fig. 4a, daphnetin showed 
anti-oxidant activities by suppressing LPS-induced ROS 
production. As second messengers, ROS activates a series 
of signaling pathways including NF-κB, MAPKs, and JAK/
STATs [52, 55–58]. Therefore, NAC was used as a positive 
control to study the effect of ROS in inflammatory response 
and the activation of JAK/STATs. We observed that NAC 
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suppressed the release of pro-inflammatory factors, inhib-
ited the expression of iNOS and COX-2, and blocked the 
activation of JAK/STATs cascades (Fig.  4b–d). These 
results suggest that daphnetin exerts anti-oxidant activities 
which contribute to its suppressive effect on LPS-induced 
inflammatory response and the activation of JAK/STATs 
cascades. Given the potential link between ROS and STAT-
related pro-inflammatory genes expression, further investi-
gation can focus on the precise cross-talk in ROS and JAK-
STATs cascades.

In summary, we demonstrate that daphnetin suppresses 
LPS-induced inflammatory responses, at least through 
inhibiting JAK/STATs activation and ROS production. 
This work not only highlights a potential clinic use of 
daphnetin in treating LPS-induced acute inflammation, but 
also provides a new insight into the underling molecular 
mechanism.
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