AAC Accepted Manuscript Posted Online 15 May 2017 Antimicrob. Agents Chemother. doi:10.1128/AAC.00277-17 Copyright © 2017 American Society for Microbiology. All Rights Reserved.

1	In Vitro Cross-Resista	ance Profiles of Rilpivirine, Dapivirine and MIV-150: NNRTI
2	Microbicides in C	linical Development for the Prevention of HIV-1 Infection
3		
4	Nich	olas S. Giacobbi and Nicolas Sluis-Cremer*
5		
6	University of Pittsburgh S	School of Medicine, Division of Infectious Diseases, Pittsburgh, PA
7		15237, USA
8		
9	Running title: Cross-Resist	ance Profiles of RPV, DPV and MIV-150
10		
11	* Corresponding author:	Nicolas Sluis-Cremer
12		University of Pittsburgh School of Medicine, Division of
13		Infectious Diseases
14		S817 Scaife Hall, 3550 Terrace Street,
15		Pittsburgh, PA 15237, US
16		Phone: 412-648-8467
17		E-mail: nps2@pitt.edu
18		
19		
20		
21		
22		
23		

Antimicrobial Agents and Chemotherapy

24

25

known whether they will block infection of circulating NNRTI-resistant HIV-1 variants.
Here, we demonstrate that the activity of DPV and MIV-150 are compromised by many
resistant viruses containing single or double substitutions. High DPV genital tract
concentrations from DPV-ring use may block replication of resistant viruses. However,
MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses,
including those harboring K103N or Y181C.

	-
26	Here, we demonstrate that the activity of DP
27	resistant viruses containing single or double s
28	concentrations from DPV-ring use may block
29	MIV-150 genital tract concentrations may be
30	including those harboring K103N or Y181C.
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	

45 46

AAC

Rilpivirine, dapivirine (DPV) and MIV-150 are in development as microbicides. It is not

Antimicrobial Agents and

Chemotherapy

47 Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) comprise a group of small 48 amphiphilic compounds with diverse chemical structures that inhibit HIV-1 (but not HIV-2) replication. They interact with HIV-1 RT by binding to a single site, termed the NNRTI-binding 49 pocket, on the p66 subunit of the p66/p51 heterodimeric enzyme (1). In many low and middle 50 income countries (LMIC), particularly in sub-Saharan Africa, NNRTIs are used in both HIV-1 51 treatment and prevention strategies (2). Specifically, the NNRTIs nevirapine, efavirenz or 52 53 rilpivirine (RPV) are used in first-line antiretroviral therapies; whereas etravirine is reserved for salvage therapy. For prevention of HIV-1 infection, nevirapine is used to block mother-to-child 54 transmission; a dapivirine (DPV)-containing ring provided moderate efficacy in HIV-1 negative 55 female participants, particularly in compliant women over 25 years of age (3, 4); a microbicide 56 gel formulation (PC-1005) containing the phenylethylthiazolylthiourea derivative MIV-150 is in 57 phase I clinical studies (5); and an injectable long-acting RPV formulation was evaluated in the 58 59 clinical study HPTN 076 for pre-exposure prophylaxis (6, 7).

60

Due to their extensive use in LMIC, there have been significant increases in acquired 61 NNRTI drug resistance, and consequently the proportion of newly infected patients with 62 transmitted drug resistance has also increased (8, 9). In this regard, four NNRTI-resistance 63 mutations — K101E, K103N, Y181C, and G190A — account for > 80% of NNRTI-associated 64 65 transmitted drug resistance in all regions and subtypes (10). Currently, it is unknown whether the NNRTIs used in prevention strategies (e.g. DPV, RPV or MIV-150) will prevent infection of 66 circulating NNRTI-resistant HIV-1 variants. Importantly, and relevant to this study, there is also 67 a paucity of information in regard to the resistance and cross-resistance profiles of DPV and 68 69 MIV-150. To address these important knowledge gaps, we constructed by site-directed

70	mutagenesis twenty-eight subtype B HIV-1 ^{LAI} infectious viruses containing single NNRTI
71	resistance mutations spanning 17 different codons (V90I; L100I/V; K101E/P; K103N/S; V106I;
72	V108I; E138A/K; V179D/F, G190A/S; I181C/I/V; Y188C/H/L; H221Y; P225H; F227C/L;
73	M230L; P236L; N348I). We also constructed six subtype B HIV-1 ^{LAI} infectious viruses
74	containing two NNRTI resistance mutations (K101E/G190A; K101E/K103N; K101E/Y181C;
75	K103N/G190A; K103N/Y181C; Y181C/G190A). Drug susceptibility in a single cycle assay
76	using TZM-bl cells was determined for RPV (Selleckchem, TX, USA), DPV (Selleckchem, TX,
77	USA) and MIV-150 (Cayman Chemical Company, MI, USA) as described previously (11, 12).
78	Low-, intermediate- and high-level resistance was defined as $2 \rightarrow 8$, $8 \rightarrow 20$, and > 20 -fold changes
79	in drug susceptibility compared to the wild type (WT) virus. Of the three NNRTIs studied, RPV
80	exhibited the best antiviral activity across the panel of mutant viruses tested, and retained full
81	sensitivity against 19 of 28 variants containing a single substitution; and 2 of 6 variants
82	containing double substitutions (Table 1; Fig. 1). The E138A/K, F227C, K101E, Y188L,
83	M230L, K101E/G190A and K103N/Y181C substitutions conferred low-level RPV resistance,
84	while the Y181I/V and K101P substitutions conferred high-level resistance. The RPV resistance
85	profile reported in this study is consistent with those previously published (13, 14). In contrast to
86	RPV, DPV only retained activity against 15 of the 28 viruses containing a single substitution;
87	and 1 of 6 viruses containing double substitutions (Table 1; Fig. 1). The K101E, E138K,
88	K103N/S, F227C, Y181C and K101E/G190A substitutions conferred low-level resistance to
89	DPV; whereas the L100I/V, M230L, K101E/K103N and Y181C/G190A substitutions, and the
90	Y188L, K101P, Y181I/V and K101E/Y181C and K103N/Y181C substitutions were found to
91	confer intermediate and high-level resistance, respectively. The DPV cross-resistance profile
92	reported in our study is consistent with prior in vitro studies of DPV resistance selection and

93 cross-resistance profiling (15-17). Additionally, Penrose et al recently reported that there was 94 frequent cross-resistance to DPV in subtype C-infected individuals after first-line therapy failure, and reported that L100I and K103N were significantly more frequent in samples with >500-fold 95 resistance to DPV compared to samples with a \leq 500-fold resistance (18). However, the 96 97 limitation of this latter study is that each clinical isolate contained on average 3 NNRTI resistance mutations, making it difficult to identify the genetic determinants for resistance. 98 99 Similar to DPV, MIV-150 was also found to be active against only 15 of the HIV-1 variants containing single NNRTI substitutions tested; and 2 of 6 variants containing two substitutions 100 tested. However, high-level resistance was more frequently observed for MIV-150 than for either 101 DPV or RPV (Table 1; Fig. 1). Notably, the M230L, K103S, K103N, Y181V, K101P, Y181I, 102 103 Y188L, K101E/K103N, K101E/Y181C and K103N/Y181C substitutions all conferred high-level resistance. The F227C and Y181C substitutions, and the L100L/V, K101E and K101E/G190A 104 substitutions, were found to confer intermediate- and low-level MIV-150 resistance, respectively 105 106 (Table 1, Fig. 1). To our knowledge, this is the first study to define in detail the cross-resistance 107 profile for MIV-150, although one prior study identified different combinations of E138K, Y181I, Y181C, K103N, L100I or K101E in SHIV-RT viruses exposed to MIV-150 in rhesus 108 macaques, although no phenotypic data were provided (19). Additionally, prior studies have 109 reported on the resistance profiles of the MIV-150 analogs, namely MIV-160 and MIV-170 110 111 (16, 17).

112

Recently we reported that an E138A substitution occurs more frequently in subtype C 113 (range: 5.9-7.5%) than B (range: 0-2.3%) sequences from treatment-naïve individuals (p<0.01) 114 115 (11). Because E138A in subtype C HIV-1 decreases RPV susceptibility, we previously proposed Antimicrobial Agents and

Chemotherapy

116 that this polymorphism may impact prevention (and treatment) strategies that include RPV in 117 geographic areas where subtype C infection is prevalent (11). Accordingly, in this study we synthesized (GenScript, NJ, USA) and cloned into our HIV-1^{LAI} viral vector (as described 118 previously (12)) full length subtype C RT sequences from two antiretroviral-naïve individuals 119 that did not harbor E138A, and from 6 antiretroviral-naïve individuals that contained E138A. 120 121 Phenotypic analyses revealed that 2 of the recombinant viruses that contained E138A conferred low-level resistance (2.4- and 2.0-fold, respectively) to RPV (Table 2). In contrast, 4 of the 6 122 recombinant viruses that contained E138A conferred decreased susceptibility to DPV (range; 123 2.1- to 4.7-fold) and MIV-150 (range: 1.9- to 3.4-fold) (Table 2). These data highlight that the 124 125 RT genetic backbone influences, at least to some extent, the ability of E138A to decrease NNRTI susceptibility; and suggests that the low level resistance conferred by E138A is unlikely to 126

impact RPV, DPV or MIV-150 activity.

127 128

129 In summary, this study provides the first detailed insights into the antiviral activity of 130 RPV, DPV and MIV-150 against a broad panel of recombinant viruses containing substitutions that are known to decrease NNRTI susceptibility. We also evaluated their activity against WT 131 subtype C RTs that contained E138A. The pharmacokinetics of the long-acting RPV formulation 132 has been investigated in healthy individuals in two different studies (20,21). In cervicovaginal 133 fluid (CVL), RPV concentrations at day 28 post-administration were 12, 15 and 98 ng/mL (68, 134 107 and 232 nM) following injected doses of 300, 600 and 1200 mg, respectively. In the rectal 135 136 fluid (RF), RPV concentrations at day 28 post-administration were 11.9 ng/mL (32 nM), following a 600 mg injection. The RPV concentrations in the CVL and RF exceed the EC₅₀ 137 138 values for all of the NNRTI-resistant variants listed in Table 1, suggesting that RPV may prevent

Antimicrobial Agents and Chemotherapy

AAC

Antimicrobial Agents and Chemotherapy

140	studies have shown that the vaginal fluid concentration on day 28 of DPV ring use ranged from
141	14.9 – 65 μ g/mL (45-198 μ M) (22, 23). These concentrations far exceed the reported EC ₅₀
142	values for the WT and mutant HIV-1 in Tables 1 and 2, suggesting that the ring would
143	effectively inhibit replication of all the resistant viruses tested. (Note, exact EC ₅₀ values for DPV
144	for the K101P and Y181I/V HIV-1 viruses could not be determined as they exceeded the highest
145	concentration of drug used in the assay.) In contrast, pharmacokinetic studies of PC-1005 (MIV-
146	150 and zinc acetate in a carrageenan gel) yielded concentrations of MIV-150 in cervicovaginal
147	lavages ranging from \sim 100–170 nM (5). In this regard, it is questionable whether these
148	concentrations will effectively block the mutant viruses which exhibited high-level MIV-150
149	resistance (K101P, K103N/S, Y181C/I/V, F227C, M230L, K101E/K103N, K101E/Y181C and
150	K103N/Y181C) and for which EC ₅₀ values range from 10->100 nM. Importantly, both K103N
151	and Y181C, which are frequently associated with transmitted NNRTI resistance, fall into this
152	category.

infection from transmitted NNRTI-resistant viruses. With regard to DPV, pharmacokinetic

153

139

154 Acknowledgements

155 None

156

157 Conflict of Interest

158 None to declare

159

160 Funding Information

161	This work was supported by a National Institutes of Health award (R01AI081571 and
162	R01GM068406) to N.SC.
163	
164	
165	
166	
167	
168	References
169	1. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. 1992. Crystal structure at
170	3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science
171	256 :1783-1790.
172	2. Sluis-Cremer N. 2014. The emerging profile of cross-resistance among the
173	nonnucleoside HIV-1 reverse transcriptase inhibitors. Viruses 6:2960-2973.
174	3. Baeten JM, Palanee-Phillips T, Brown ER, Schwartz K, Soto-Torres LE, Govender
175	V, Mgodi NM, Matovu Kiweewa F, Nair G, Mhlanga F, Siva S, Bekker LG,
176	Jeenarain N, Gaffoor Z, Martinson F, Makanani B, Pather A, Naidoo L, Husnik M,
177	Richardson BA, Parikh UM, Mellors JW, Marzinke MA, Hendrix CW, van der
178	Straten A, Ramjee G, Chirenje ZM, Nakabiito C, Taha TE, Jones J, Mayo A,
179	Scheckter R, Berthiaume J, Livant E, Jacobson C, Ndase P, White R, Patterson K,
180	Germuga D, Galaska B, Bunge K, Singh D, Szydlo DW, Montgomery ET, Mensch
181	BS, Torjesen K, Grossman CI, Chakhtoura N, Nel A, Rosenberg Z, McGowan I,

Antimicrobial Agents and Chemotherapy

AAC

Antimicrobial Agents and Chemotherapy

AAC

182

183		Dapivirine for HIV-1 Prevention in Women. N Engl J Med. 375:2121-2132.
184	4.	Nel A, van Niekerk N, Kapiga S, Bekker LG, Gama C, Gill K, Kamali A, Kotze P,
185		Louw C, Mabude Z, Miti N, Kusemererwa S, Tempelman H, Carstens H, Devlin B,
186		Isaacs M, Malherbe M, Mans W, Nuttall J, Russell M, Ntshele S, Smit M, Solai L,
187		Spence P, Steytler J, Windle K, Borremans M, Resseler S, Van Roey J, Parys W,
188		Vangeneugden T, Van Baelen B, Rosenberg Z; Ring Study Team. 2016. Safety and
189		Efficacy of a Dapivirine Vaginal Ring for HIV Prevention in Women. N Engl J Med.
190		375 :2133-2143.
191	5.	Friedland BA, Hoesley CJ, Plagianos M, Hoskin E, Zhang S, Teleshova N, Alami M,
192		Novak L, Kleinbeck KR, Katzen LL, Zydowsky TM, Fernández-Romero JA, Creasy
193		GW. 2016. First-in-Human Trial of MIV-150 and Zinc Acetate Coformulated in a
194		Carrageenan Gel: Safety, Pharmacokinetics, Acceptability, Adherence, and
195		Pharmacodynamics. J Acquir Immune Defic Syndr. 73:489-496.
196	6.	van 't Klooster G, Hoeben E, Borghys H, Looszova A, Bouche MP, van Velsen F,
197		Baert L. 2010. Pharmacokinetics and disposition of rilpivirine (TMC278)
198		nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents
199		Chemother. 54 :2042-50.
200	7.	Spreen WR, Margolis DA, Pottage JC Jr. 2013. Long-acting injectable antiretrovirals
201		for HIV treatment and prevention. Curr Opin HIV AIDS. 8:565-571.
202	8.	Frentz D, Boucher CA, van de Vijver DA. 2012. Temporal changes in the
203		epidemiology of transmission of drug-resistant HIV-1 across the world. AIDS Rev.
204		14 :17-27.

Hillier S; MTN-020-ASPIRE Study Team. 2016. Use of a Vaginal Ring Containing

205	9. Gupta RK, Jordan MR, Sultan BJ, Hill A, Davis DH, Gregson J, Sawyer AW,
206	Hamers RL, Ndembi N, Pillay D, Bertagnolio S. 2012. Global trends in antiretroviral
207	resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment
208	in resource-limited settings: a global collaborative study and meta-regression analysis.
209	Lancet 380 :1250-1258.
210	10. Rhee SY, Blanco JL, Jordan MR, Taylor J, Lemey P, Varghese V, Hamers RL,
211	Bertagnolio S, Rinke de Wit TF, Aghokeng AF, Albert J, Avi R, Avila-Rios S,
212	Bessong PO, Brooks JI, Boucher CA, Brumme ZL, Busch MP, Bussmann H, Chaix
213	ML, Chin BS, D'Aquin TT, De Gascun CF, Derache A, Descamps D, Deshpande
214	AK, Djoko CF, Eshleman SH, Fleury H, Frange P, Fujisaki S, Harrigan PR, Hattori
215	J, Holguin A, Hunt GM, Ichimura H, Kaleebu P, Katzenstein D, Kiertiburanakul S,
216	Kim JH, Kim SS, Li Y, Lutsar I, Morris L, Ndembi N, Ng KP, Paranjape RS,
217	Peeters M, Poljak M, Price MA, Ragonnet-Cronin ML, Reyes-Terán G, Rolland M,
218	Sirivichayakul S, Smith DM, Soares MA, Soriano VV, Ssemwanga D, Stanojevic M,
219	Stefani MA, Sugiura W, Sungkanuparph S, Tanuri A, Tee KK, Truong HM, van de
220	Vijver DA, Vidal N, Yang C, Yang R, Yebra G, Ioannidis JP, Vandamme AM,
221	Shafer RW. 2015. Geographic and temporal trends in the molecular epidemiology and
222	genetic mechanisms of transmitted HIV-1 drug resistance: an individual-patient- and
223	sequence-level meta-analysis. PLoS Med. 12:e1001810.
224	11. Sluis-Cremer N, Jordan MR, Huber K, Wallis CL, Bertagnolio S, Mellors JW,
225	Parkin NT, Harrigan PR. 2014. E138A in HIV-1 reverse transcriptase is more common
226	in subtype C than B: implications for rilpivirine use in resource-limited settings. Antiviral
227	Res. 107 :31-34.

228	12. Brehm JH, Koontz DL, Wallis CL, Shutt KA, Sanne I, Wood R, McIntyre JA,
229	Stevens WS, Sluis-Cremer N, Mellors JW; CIPRA-SA Project 1 Study Team. 2012.
230	Frequent emergence of N348I in HIV-1 subtype C reverse transcriptase with failure of
231	initial therapy reduces susceptibility to reverse-transcriptase inhibitors. Clin Infect Dis.
232	55 :737-745.
233	13. Azijn H, Tirry I, Vingerhoets J, de Béthune MP, Kraus G, Boven K, Jochmans D,
234	Van Craenenbroeck E, Picchio G, Rimsky LT. 2010. TMC278, a next-generation
235	nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and
236	NNRTI-resistant HIV-1. Antimicrob Agents Chemother. 54:718-727.
237	14. Basson AE, Rhee SY, Parry CM, El-Khatib Z, Charalambous S, De Oliveira T,
238	Pillay D, Hoffmann C, Katzenstein D, Shafer RW, Morris L. 2015. Impact of drug
239	resistance-associated amino acid changes in HIV-1 subtype C on susceptibility to newer
240	nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother. 59:960-
241	971.
242	15. Schader SM, Oliveira M, Ibanescu RI, Moisi D, Colby-Germinario SP, Wainberg
243	MA. 2012. In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine.
244	Antimicrob Agents Chemother. 56:751-756.
245	16. Selhorst P, Vazquez AC, Terrazas-Aranda K, Michiels J, Vereecken K, Heyndrickx
246	L, Weber J, Quiñones-Mateu ME, Ariën KK, Vanham G. 2011. Human
247	immunodeficiency virus type 1 resistance or cross-resistance to nonnucleoside reverse
248	transcriptase inhibitors currently under development as microbicides. Antimicrob Agents
249	Chemother. 55 :1403-1413.

250	17. Ariën KK, Venkatraj M, Michiels J, Joossens J, Vereecken K, Van der Veken P,
251	Heeres J, De Winter H, Heyndrickx L, Augustyns K, Vanham G. 2016. Resistance
252	and cross-resistance profile of the diaryltriazine NNRTI and candidate microbicide
253	UAMC01398. J Antimicrob Chemother. 71:1159-1168.
254	18. Penrose KJ, Wallis CL, Brumme CJ, Hamanishi KA, Gordon KC, Viana RV,
255	Harrigan PR, Mellors JW, Parikh UM. 2017. Frequent Cross-Resistance to Dapivirine
256	in HIV-1 Subtype C-Infected Individuals after First-Line Antiretroviral Therapy Failure
257	in South Africa. Antimicrob Agents Chemother. 61(2).
258	19. Hsu M, Keele BF, Aravantinou M, Krawczyk N, Seidor S, Abraham CJ, Zhang S,
259	Rodriguez A, Kizima L, Derby N, Jean-Pierre N, Mizenina O, Gettie A, Grasperge
260	B, Blanchard J, Piatak MJ Jr, Lifson JD, Fernández-Romero JA, Zydowsky TM,
261	Robbiani M. 2014. Exposure to MIV-150 from a high-dose intravaginal ring results in
262	limited emergence of drug resistance mutations in SHIV-RT infected rhesus macaques.
263	PLoS One. 9:e89300.
264	20. Jackson AG, Else LJ, Mesquita PM, Egan D, Back DJ, Karolia Z, Ringner-Nackter
265	L, Higgs CJ, Herold BC, Gazzard BG, Boffito M. 2014. A compartmental
266	pharmacokinetic evaluation of long-acting rilpivirine in HIV-negative volunteers for pre-
267	exposure prophylaxis. Clin Pharmacol Ther. 96:314-323.
268	21. McGowan I, Dezzutti CS, Siegel A, Engstrom J, Nikiforov A, Duffill K, Shetler C,
269	Richardson-Harman N, Abebe K, Back D, Else L, Egan D, Khoo S, Egan JE, Stall
270	R, Williams PE, Rehman KK, Adler A, Brand RM, Chen B, Achilles S, Cranston
271	RD. 2016. Long-acting rilpivirine as potential pre-exposure prophylaxis for HIV-1

AAC

272	prevention (the MWRI-01 study): an open-label, phase 1, compartmental,
273	pharmacokinetic and pharmacodynamic assessment. Lancet HIV. 3:e569-e578.
274	22. Nel A, Haazen W, Nuttall J, Romano J, Rosenberg Z, van Niekerk N. 2014. A safety
275	and pharmacokinetic trial assessing delivery of dapivirine from a vaginal ring in healthy
276	women. AIDS 28:1479-1487.
277	23. Chen BA, Panther L, Marzinke MA, Hendrix CW, Hoesley CJ, van der Straten A,
278	Husnik MJ, Soto-Torres L, Nel A, Johnson S, Richardson-Harman N, Rabe LK,
279	Dezzutti CS. 2015. Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics of
280	Dapivirine and Maraviroc Vaginal Rings: A Double-Blind Randomized Trial. J Acquir
281	Immune Defic Syndr. 70:242-249.
202	
282	
283	
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	

295 TABLE 1: Susceptibility of HIV-1 containing single or double NNRTI resistance mutations

296 to RPV, DPV and MIV-150.

	RPV		DPV	DPV		MIV-150	
Virus	EC_{50}	Fold-R ²	EC_{50}	Fold-R ²	EC_{50}	Fold-R ²	
WT	0.33 ± 0.13	(p-value)	0.64 ± 0.13	(p-value)	0.68 ± 0.09	(p-value)	
V90I	0.59 ± 0.13	1.8	1.09 ± 0.47	1.7	0.98 ± 0.14	1.4	
L100I	0.36 ± 0.13	1.1	9.36 ± 1.37	14.7	5.03 ± 1.35	7.4 (<0.01)	
L100V	0.27 ± 0.13	0.8	6.15 ± 1.79	9.6	5.06 ± 2.42	7.5	
K101E	1.12 ± 0.24	3.5 (<0.01)	2.29 ± 0.68	3.6 (<0.01)	3.25 ± 0.75	4.8 (<0.01)	
K101P	13.10 ± 1.70	40.1 (<0.01)	≥ 62.5	≥ 100 (<0.01)	≥ 62.5	≥ 100 (<0.01)	
K103N	0.53 ± 0.11	1.6	3.03 ± 0.47	4.8 (<0.01)	23.40 ± 2.81	34.6 (<0.01)	
K103S	0.49 ± 0.11	1.5	4.61 ± 0.43	7.2 (<0.01)	15.30 ± 2.03	22.7 (<0.01)	
V106I	0.48 ± 0.12	1.5	0.94 ± 0.14	1.5	0.78 ± 0.11	1.20	
V108I	0.38 ± 0.01	1.2	0.96 ± 0.20	1.5	0.89 ± 0.15	1.3	
E138A	0.80 ± 0.41	2.5 (0.06)	1.29 ± 0.33	2.0 (0.02)	1.32 ± 0.23	2.0 (0.01)	
E138K	0.96 ± 0.18	2.9 (<0.01)	2.79 ± 0.70	4.4 (<0.01)	1.89 ± 0.17	2.8 (<0.01)	
V179D	0.39 ± 0.15	1.2	0.81 ± 0.33	1.3	0.73 ± 0.35	1.1	
V179F	0.003 ± 0.002	0.01 (>0.05)	0.20 ± 0.01	0.3 (<0.01)	0.03 ± 0.01	0.1	
G190A	0.42 ± 0.03	1.3	0.77 ± 0.15	1.2	0.40 ± 0.09	0.6	
G190S	0.25 ± 0.17	0.8	0.84 ± 0.01	1.3	0.09 ± 0.01	0.1	
Y181C	0.60 ± 0.25	1.8	5.06 ± 1.50	7.9 (<0.01)	10.20 ± 1.60	15.1 (<0.01)	
Y181I	7.68 ± 0.78	23.5 (<0.01)	≥ 62.5	≥ 100 (<0.01)	≥ 62.5	≥ 100 (<0.01)	
Y181V	7.36 ± 1.20	22.6 (<0.01)	≥ 62.5	≥ 100 (<0.01)	39.60 ± 4.10	58.6 (<0.01)	
Y188C	0.08 ± 0.04	0.3 (>0.05)	0.39 ± 0.20	0.6	0.21 ± 0.05	0.3 (>0.05)	
Y188H	0.11 ± 0.04	0.3 (>0.05)	0.69 ± 0.33	1.1	1.16 ± 0.48	1.7	
Y188L	1.69 ± 0.23	5.2 (<0.01)	55.30 ± 6.53	86.7 (<0.01)	≥ 62.5	≥ 100 (<0.01)	
H221Y	0.45 ± 0.20	1.37	0.85 ± 0.20	1.3	0.91 ± 0.19	1.3	
P225H	0.29 ± 0.17	0.9	0.69 ± 0.25	1.1	0.76 ± 0.32	1.1	
F227C	1.11 ± 0.27	3.40 (0.01)	4.37 ± 0.78	6.9 (<0.01)	10.01 ± 3.16	14.8 (<0.01)	
F227L	0.28 ± 0.26	0.9	0.61 ± 0.19	1.0	0.88 ± 0.31	1.3	
M230L	2.58 ± 1.13	7.9 (0.01)	10.10 ± 0.38	15.8 (<0.01)	15.30 ± 2.87	22.6 (<0.01)	
P236L	0.55 ± 0.10	1.7	1.00 ± 0.18	1.6	0.63 ± 0.07	0.9	
N348I	0.50 ± 0.13	1.5	1.07 ± 0.47	1.7	0.99 ± 0.34	1.5	
K101E/G190A	1.42±0.22	4.4 (<0.01)	4.22±0.31	6.6 (<0.01)	1.45±0.21	2.2 (<0.01)	

K101E/K103N	0.50±0.07	1.5	12.60±1.84	19.7 (<0.01)	38.10±7.38	56.3 (<0.01)
K101E/Y181C	3.12±0.48	9.5 (<0.01)	40.70±9.86	63.8 (<0.01)	35.50±13.80	52.5 (<0.01)
K103N/G190A	0.02±0.01	0.06 (<0.01)	0.98±0.17	1.5	1.07±0.25	1.6
K103N/Y181C	1.87±0.34	5.7 (<0.01)	56.20±3.06	88.0 (<0.01)	182.00±51.20	≥ 250 (<0.01)
Y181C/G190A	0.70±0.10	2.1 (<0.01)	7.22±2.27	11.3 (<0.01)	1.26±0.39	1.9
¹ The concentrations of drug required to inhibit viral replication by 50% (EC ₅₀) from 3						

	(<0.01)
297	¹ The concentrations of drug required to inhibit viral replication by 50% (EC ₅₀) from 3
298	independent experiments. Data reported as a mean \pm standard deviation from at least 3
299	independent experiments.
300	2 Mean fold change in EC_{50} of mutant versus WT virus. EC_{50} values were compared for
301	statistically significant differences (p-value < 0.05) using a non-paired, 2 sample equal variance
302	(homoscedastic) test.
303	
304	
305	
306	
307	
308	
309	
310	
311	
312	

Accepted Manuscript Posted Online

317 TABLE 2: Susceptibility of recombinant viruses containing full-length patient-derived WT

318 subtype C RT sequences with and without E138A to RPV, DPV and MIV-150.

319

	E138A Present	RPV		DPV	7	MIV-150		
Virus ¹		EC_{50} $(\mu M)^2$	Fold-R ³ (p-value)	EC_{50} $(\mu M)^1$	Fold-R ² (p-value)	EC_{50} $(\mu M)^1$	Fold-R ² (p-value)	
AF361879	No	0.30 ± 0.03	-	0.68 ± 0.10 -		0.56 ± 0.10		
AY043176	No	0.24 ± 0.04	-	0.49 ± 0.02 -		0.36 ± 0.05		
Avg ⁴	No	0.27 ± 0.04	-	0.58 ± 0.13	-	0.46 ± 0.13		
DQ351238	Yes	0.40 ± 0.12	1.5	1.20 ± 0.33	2.1 (<0.01)	1.40 ± 0.59	3.1 (<0.01)	
AY901981	Yes	0.64 ± 0.14	2.4 (<0.01)	1.80 ± 0.51	3.0 (<0.01)	1.50 ± 0.23	3.2 (<0.01)	
AF443097	Yes	0.41 ± 0.12	1.5	1.30 ± 0.50	2.3 (<0.01)	0.86 ± 0.16	1.9 (<0.01)	
AY253303	Yes	0.23 ± 0.04	0.9	0.83 ± 0.13	1.4	0.60 ± 0.05	1.3	
AY734559	Yes	0.36 ± 0.14	1.3	0.77 ± 0.26	1.3	0.63 ± 0.15	1.4	
FJ199637	Yes	0.54 ± 0.07	2.0 (<0.01)	2.70 ± 0.19	4.7 (<0.01)	1.60 ± 0.31	3.4 (<0.01)	

320

¹ The GenBank sequence identifier for the full-length subtype C RT gene

Downloaded from http://aac.asm.org/ on May 20, 2017 by UNIV OF CALIF SAN DIEGO

322 mean \pm standard deviation from at least 3 independent experiments.

 3 Mean fold change in EC₅₀ of WT-E138A vs WT virus. EC₅₀ values from 3 independent

spectrum experiments were compared for statistically significant differences (p-value < 0.05) using a non-

325 paired, 2 sample equal variance (homoscedastic) test.

 4 The median EC₅₀ value for the 2 viruses (AF361897 and AY043176) that did not harbor E138A

327 was used as the WT reference for determination of Fold-R.

328

329

- 330
- 331
- 332
- 333

Antimicrobial Agents and Chemotherapy

² The concentrations of drug required to inhibit viral replication by 50% (EC₅₀) are reported as a

334 Figures Legends

335

336	Figure 1: NNRTI (cross-resistance	profiles for	RPV,	DPV a	and MIV-150.	Low-
-----	-------------------	------------------	--------------	------	-------	--------------	------

- intermediate- and high-level resistance was defined as $2 \rightarrow 8$, $8 \rightarrow 20$, and ≥ 20 -fold changes in
- 338 drug susceptibility compared to the WT virus. Arrows indicate the four most commonly
- transmitted drug resistance mutations, G190A, K101E, Y181C, and K103N.

340

AAC