Theriogenology 102 (2017) 162-173

Contents lists available at ScienceDirect

Theriogenology

journal homepage: www.theriojournal.com

Vitamin D receptor expression and potential role of vitamin D on cell proliferation and steroidogenesis in goat ovarian granulosa cells

THERIOGENOLOGY

Xiaolei Yao, Guomin Zhang, Yixuan Guo, Mohamed El-Samahy, Shuting Wang, Yongjie Wan, Le Han, Zifei Liu, Feng Wang, Yanli Zhang^{*}

Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China

ARTICLE INFO

Article history: Received 24 May 2017 Received in revised form 1 August 2017 Accepted 1 August 2017 Available online 3 August 2017

Keywords: Vitamin D receptor 1α ,25-(OH)₂VD₃ Granulosa cells Goat

ABSTRACT

This study aimed to investigate the expression of the vitamin D receptor (VDR) in goat follicles and to determine the effects of Vit D₃ supplementation on goat granulosa cells (GCs) function linked to follicular development. The results demonstrated that VDR was prominently localized in GCs, with expression increasing with follicle diameter. Addition of Vit D_3 (1 α ,25-(OH)₂VD₃; 10 nM) to GCs caused an increase in VDR and in steroidogenic acute regulator (StAR) and 3β -hydroxysteroid dehydrogenase (3β -HSD) mRNA expression. Additionally, Vit D₃ increased the cyclic adenosine monophosphate (cAMP), estradiol (E_2) , and progesterone (P_4) levels, while it decreased anti-müllerian hormone receptor (AMHR) and follicle-stimulating hormone receptor (FSHR) mRNA expression (P < 0.05). Addition of FSH remarkably increased E_2 , P_4 , and cAMP levels (P < 0.05), and Vit D_3 further enhanced the E_2 and cAMP levels in the presence of FSH (P < 0.05). Vit D₃ significantly induced the mRNA expression of CDK4 and CyclinD1, and downregulated P21 gene expression (P < 0.05). In addition, Vit D₃ significantly decreased reactive oxygen species (ROS) production and increased the mRNA and protein expression of superoxide dismutase 2 (SOD2) and catalase (CAT) (P < 0.05). In conclusion, VDR is expressed in GCs of the goat ovaries and Vit D₃ might play an important role in GCs proliferation by regulating cellular oxidative stress and cell cyclerelated genes. Meanwhile, Vit D_3 enhances the E_2 and P_4 output of GCs by regulating the expression of 3β -HSD and StAR and the level of cAMP, which regulate steroidogenesis, supporting a potential role for Vit D₃ in follicular development.

© 2017 Published by Elsevier Inc.

1. Introduction

The active form of Vit D₃ $(1\alpha,25-(OH)_2VD_3)$ is a lipid-soluble secosteroid hormone that has been established to play pleiotropic roles in a wide spectrum of biological functions [1]. Vit D₃ activity is mediated via the vitamin D receptor (VDR), which is a member of the nuclear steroid hormone receptor superfamily [2] and is expressed in multiple tissues. VDR is expressed in female reproductive organs, including the placenta [3,4], uterus [5,6], and ovary [3,5,7], in humans and rodents. VDR has been also detected in testes [8], epididymis [8], and spermatids [9]. VDR null-mutant male mice display gonadal insufficiency; however, estradiol (E₂) supplementation restores normal function in the testes [10]. These findings suggest that Vit D₃ plays an important role in reproductive organs [11]. To date, most of the research on VDR in follicular development

has focused on humans and rodents, while its expression pattern in goat follicular development has never been reported.

Many studies have demonstrated that Vit D_3 has related to reproductive physiological mechanisms [12]. Vit D_3 deficiency in humans and rodents has been associated with various disorders, such as infertility [13] and ovulatory dysfunction [14]. Our previous studies demonstrated that VDR is expressed in Leydig cells [8] and that Vit D_3 could increase testosterone secretion and mitochondrial dehydrogenase activity in Leydig cells *in vitro* [15]. The presence of VDR in ovarian granulosa cells (GCs) [16,17] suggests that Vit D_3 may be associated with steroid hormone synthesis and secretion. Reports by Merhi et al. [17] and Smolikova et al. [18] supported that Vit D_3 is related to steroidogenesis in human and porcine GCs; however, the mechanism is still not well understood. Moreover, to our knowledge, direct effects of Vit D_3 on basal and folliclestimulating hormone (FSH)-induced GCs steroid hormone synthesis and secretion have not been reported.

Most follicles undergo atresia, which is attributed to the

^{*} Corresponding author. *E-mail address: zhangyanli@njau.edu.cn* (Y. Zhang).

apoptosis of GCs [19,20]. Hence, inhibition of GCs apoptosis is important for promoting follicular development. Accumulating evidence indicates that Vit D₃ can modulate cell proliferation (e.g., of skeletal muscle cells, glomerular mesangial cells, and cancer cells) and/or apoptosis through regulating the expression of cell cycle- and apoptosis-related genes [21,22]. In addition, Vit D₃ can reduce tissue and DNA damage by inhibiting apoptosis through modulating antioxidant enzyme activities and scavenging reactive oxygen species (ROS) [23–25]. While these studies demonstrated the important roles of Vit D₃ in regulating the fates of various cells, little is known about the effects of Vit D₃ on the physiological process of GCs and how it influences their characteristics.

The present study aimed to detect the VDR expression pattern throughout goat follicular development and to investigate the role of Vit D_3 in GCs proliferation and steroidogenesis. Elucidation of the effect of Vit D_3 on GCs performance would contribute to our understanding of its function in follicular development. Particularly, the goat industry would benefit from this research.

2. Materials and methods

All experimental procedures were approved by the Institutional Animal Care and Use Committee of Nanjing Agricultural University (approval number: SYXK2011-0036) and were conducted in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals. Except for some specific reagents, all chemical and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and the media were obtained from Life Technologies (Carlsbad, CA, USA). All antibodies were obtained from commercial sources (Table 1). All experiments were carried out three times, separately.

2.1. Animals and sample collection

Ovaries of sexually mature ewes (Yangtze River Delta White Goat) were collected from a local abattoir (Taizhou, Jiangsu; 32° 00' N, 119° 57' E) during the breeding season (October to March). Ovaries were immediately immersed in Dulbecco's PBS (DPBS; Ca^{2+} - and Mg^{2+} -free; $30-35 \,^{\circ}$ C) supplemented with 100 IU/ml penicillin and 50 mg/ml streptomycin, and transported to the laboratory within 2 h. Connective tissues and attached oviducts were removed after washing five times with DPBS. Six ovaries were randomly selected and fix in 4% formaldehyde for 24 h, then embedded in paraffin for immunohistochemistry. All visible antral follicles were dissected from remaining ovaries, measured with a caliper, and classified into 3 size classes ($\leq 2 \text{ mm}$, 2-5 mm, and $\geq 5 \text{ mm}$). GCs were harvested from follicles of different size for analysis of VDR mRNA and protein expression. GCs from the remaining 2–5 mm follicles were harvested for *in vitro* culture.

2.2. Experimental design for in vitro culture of GCs

In the first experiment, the effects of Vit D_3 and FSH on GCs proliferation and steroidogenesis were evaluated. GCs were cultured as previously described [26], with minor modifications.

Briefly, GCs (5×10^5 cells/well) were plated in 6-well plates in basic culture medium (BCM: DMEM/F12 medium containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 IU/ml penicillin, and 100 μ g/ml streptomycin) for 24 h. The medium was replaced with fresh BCM with different concentrations of Vit D₃ (Selleck, Houston, TX, USA) and FSH (Invitrogen, Carlsbad, CA, USA), and the cells were further incubated at 37 °C in a humidified atmosphere with 5% CO₂ for 48 h. This study was performed based on a 2×2 factorial arrangements of Vit D₃ (0 and 10 nM) and FSH (0 and 10 ng/ml). After 48 h, the conditioned medium from each well was collected, and concentrations of E2 and P4 were measured using an ELISA kit (Blue Gene, Shanghai, china). The sensitivity of the assay was 1.4 pg/ml. The intra-assay coefficient of variation (CV) was 6.6%, and the interassay CV was 9.8%. Attached GCs were harvested using 0.25% EDTA-trypsin at 37 °C for 3 min followed by centrifugation at 2000 rpm for 5 min. The GCs were used for measuring cAMP with an ELISA kit (Blue Gene, Shanghai, China) following the manufacturer's protocol, and for a cell-cycle distribution assay.

The second experiment was aimed at investigating the precise signaling mechanism by which Vit D_3 influences GCs proliferation and steroidogenesis. *In vitro* culture was conducted similar to that in the first experiment, but with (or without) Vit D_3 (10 nM) treatment alone. After 48 h, attached GCs were collected for ROS assay and the remaining GCs were stored at -80 °C and for qRT-PCR and western blot analyses for mRNA and protein expression levels, respectively.

2.3. RNA isolation and cDNA synthesis

Total RNA was extracted from GCs using Trizol reagent (Invitrogen) following the manufacturer's protocol. RNA concentration was determined on an ND-2000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Five micrograms of RNA in a final volume of 100 μ l was transcribed into cDNA using a reverse transcription reagent kit (Takara, Dalian, China). The cDNA was stored at -20 °C until use.

2.4. Cloning of goat VDR cDNA

To investigate VDR expression in the GCs from 2–5-mm follicles and to obtain the coding sequence, two pairs of goat VDR-specific primers were designed using Primer 5.0 software (Table 2). The gene was amplified from cDNA using the following thermal program: 98 °C for 5 min, 35 cycles of 98 °C for 10 s, 60 °C for 30 s, and 72 °C for 90 s, and 72 °C for 7 min. Amplification products were separated on a 1.2% agarose gel. Purified PCR products of the expected size were cloned into the pMD19-T vector (Takara, Dalian, China) and transformed into *Escherichia coli* DH5a cells. Positive clones were randomly selected and sequenced by Tsingke Biological Technology (Beijing, China).

2.5. qRT-PCR analysis

qRT-PCR was carried out on an ABI 7500 Real-Time PCR System (Applied BioSystems, Carlsbad, CA, USA). Reactions were carried

Table 1
Information on the antibodies used in the study.

Antibodies	Cat no.	Company	Source	Specificity	Dilution of IHC	Dilution of WB
VDR	14526-1-AP	ProteinTech, Chicago, USA	Rabbit	Human, mouse, rat	1:200	1:500
FSHR	22665-1-AP	ProteinTech, Chicago, USA	Rabbit	Human, mouse	1:100	1:500
SOD2	NB100-1992	Novus Biologicals, Littleton, USA	Rabbit	Sheep and others	_	1:2000
CAT	21260-1-AP	ProteinTech, Chicago, USA	Rabbit	Sheep and others	-	1:1000
β-actin	bs-0061R	Bioss, Beijing, China	Rabbit	Sheep and others	-	1:2000

Table 2

Primer sequences used for this study.

Genes	Primer sequence $(5'-3')$	Genebank No	Species	Size (bp)	Target
		VAL 0100 45050 1			
VDR-CDNA		XM_018047873.1	Capra hircus	/55	VDR gene full-length
		VM 019047972 1	Canra hiraya	040	CDNA ampinication
		XIVI_018047873.1	Cupru nircus	040	
VDR	Γ. ΤΛΟΤΤΟΓΑΓΑΓΑΔΟΓΟΙΟΙΟΛΑΑ	XM 018047873 1	Capra hircus	01	aPT_PCP
VDK	R: ACAGGTCCAGGGTCACAGAA	XW_018047875.1	Cupru nircus	51	qRI-I CR
АМН	F' GTGGTGCTGCTGCTAAAGATG	XM 0180507661	Capra hircus	104	aRT-PCR
	R: TCGGACAGGCTGATGAGGAG	101000010011	cupra nineuo	101	qui ren
AMHR	F: GTGCTTCTCCCAGGTCATAC	XM_005679901.2	Capra hircus	163	gRT-PCR
	R: AATGTGGTCATGCTGTAGGC	_	1		
FSHR	F: CAAAGATCCTCCTGGTCCTGTTC	NM_001285636.1	Capra hircus	77	qRT-PCR
	R: GTTCCTGGTGAAGATGGCGTAG				
CYP19A1	F: TCGTCCTGGTCACCCTTCTG	XM_013967046.2	Capra hircus	115	qRT-PCR
	R: CGGTCTCTGGTCTCGTCTGG				
STAR	F: ACACCATGTGGAATGTCAGGCT	XM_013975437.2	Capra hircus	258	qRT-PCR
	R: CACACCTTTCAACAAGCAACCC				
3β-HSD	F: CTATGTTGGCAATGTGGC	XM_013962473.2	Capra hircus	340	qRT-PCR
201	R: ATCTCGCTGAGCTTTCTTAT		a 11		
P21	F: CTAAGTGGGCAAATATGGGTCTGG	XM_018039118.1	Capra hircus	107	qRT-PCR
D 7 7		XM 005 C9091C 2	Comma himour	100	
P27		XIM_005680816.3	Capra nircus	100	qR1-PCR
CDV1		NM 174016	Pos taurus	105	APT DCP
CDKI	Ρ. CTACAATTATCTCCTCTTCAC	NW_174010	bos tuurus	195	qKI-FCK
CDK4	F COTTOCTOTATCTTTCC	NM 001037594.2	Ros taurus	256	aRT-PCR
CDRT	R' GATTCGCTTGTGTGGGTT	1111_001037331.2	bos tuurus	250	quiriren
CvclinB1	F: GAGCCATCCTCATTGACTGGC	NM 001045872.1	Bos taurus	120	aRT-PCR
5	R: CTTAGATGCTCTCCGAAGG				1
CyclinD1	F: CCGTCCATGCGGAAGATC	XM_018043271.1	Capra hircus	108	qRT-PCR
-	R: CAGGAAGCGGTCCAGGTAG		-		-
SOD2	F: GTGAACAACCTCAACGTCGC	XM_018053428.1	Capra hircus	300	qRT-PCR
	R: GCGTCCCTGCTCCTTATTGA				
GPx	F: ACATTGAAACCCTGCTGTCC	XM_005695962.2	Capra hircus	216	qRT-PCR
	R: TCATGAGGAGCTGTGGTCTG				
CAT	F: CACTCAGGTGCGGGATTTCT	GQ204786.1	Capra hircus	159	qRT-PCR
	R: ATGCGGGAGCCATATTCAGG				
GAPDH	F: CGACTTCAACAGCGACACTCAC	NM_001034034.1	Bos taurus	119	qRT-PCR
	R: CCCTGTTGCTGTAGCCGAATTC				

out using FastStart SYBR Green Master mix (Roche, Mannheim, Germany), according to the manufacturer's protocol. qRT-PCR primers were designed using Primer 5.0 software (Table 2). Glyceraldehyde 3 phosphate dehydrogenase (*GAPDH*) was used for normalization [17]. R² values for all standard curves generated ranged between 0.997 and 0.999, and the efficiencies of PCR were 90–110%. The relative mRNA levels of the target genes were expressed as $2^{-\Delta\Delta CT}$, and $\triangle CT$ was calculated by subtracting CT(*GAPDH*) from CT (target gene).

2.6. Immunohistochemistry and immunocytochemistry

Immunohistochemistry was performed using our previously described method [27]. Rabbit anti-VDR was used as a primary antibody, and goat anti-rabbit IgG was used as a secondary antibody (#AP132P; Millipore, Billerica, MA, USA).

Immunocytochemistry was performed according to previously described method [28]. GCs (1×10^4 cells/well) were seeded onto cover slips of 24-well plates and were cultured at 37 °C in a humidified atmosphere with 5% for 48 h. The primary antibodies used were rabbit anti-FSHR and rabbit anti-VDR, while goat anti-rabbit IgG was used as a secondary antibody (#AP132P; Millipore). Negative controls were treated with Tris-buffered saline (TBS) instead of primary antibody. Sections were stained with DAB. Cells from each group were counted in 5 randomly selected fields using the Image-Pro Plus software (version 6.0 for Windows) under a light microscope (Nikon, Japan), at a magnification of 200 × . The number of positive cells was averaged for statistical analysis.

2.7. MTT analysis

Cell proliferation was determined using an MTT assay kit (Boster Co. Ltd., Wuhan, China) according to the manufacturer's instructions. Briefly, 3×10^3 cells/well were seeded in 100 µl of fresh BCM in 96-well plates for 24 h. *In vitro* culture was conducted as described under section 2.2. After 48-h culture, 100 µl of the supernatant of each well was added to 10 µl of MTT reagent and incubated in a humidified atmosphere of 5% CO₂ at 37 °C for 4 h. The medium was removed and 100 µl of formazan solution was added to dissolve the formazan crystals, which are the chromogenic products of the reduction of MTT. The absorbance at 570 nm was measured using an ELISA reader (BD Biosciences, Franklin Lakes, NJ, USA). Cell proliferation was expressed as the fraction of surviving cells relative to untreated groups.

2.8. Flow-cytometric analysis of cell cycle and ROS production

Cell cycle and ROS production of GCs were analyzed by flow cytometry using propidium iodide (Invitrogen) and a ROS assay kit (Beyotime, Shanghai, China), respectively. For cell-cycle analysis, GCs were fixed with cold 70% ethanol overnight at -20 °C, washed with cold DPBS three times, incubated with 100 µl of RNaseA (10 ng/ml) for 30 min at 37 °C, and stained with 1 ml propidium iodide for 30 min. Cells at different stages of the cell cycle were identified flow cytometry (BD Biosciences). ROS levels of GCs were detected using a previously described method [29], with some modifications. Briefly, GCs were digested in the presence of Vit D₃

with or without FSH for 48 h, washed, and resuspended in DPBS. The harvested GCs were incubated with 1 ml (10 $\mu m/l$) 2',7'-dichlorodihydrofluorescein diacetate at 37 °C for 20 min and washed twice in DPBS. Then, the cells were subjected to flow cytometry using wavelengths of 488 nm/525 nm (excitation/emission). Data were collected from at least 1 \times 10⁴ cells for each sample.

2.9. Western blot analysis

Total protein (of GCs of different-sized follicles and of GCs treatment with/without Vit D₃) was extracted with Cell Protein Extraction Reagent (Beyotime Biotechnology, Haimen, China) containing phenylmethanesulfonyl fluoride. Protein concentrations were determined with a BCA protein assay kit (Beyotime, Shanghai, China), and 40-60 µg of protein was separated on a 12% SDSpolyacrylamide gel and then transferred onto a polyvinylidene fluoride membrane (Millipore). Subsequently, membranes were blocked with 5% (w/v) fat-free milk for 2 h at room temperature, and then incubated at 4 °C overnight with primary antibodies against VDR, FSHR, SOD2, CAT and β-actin. After washing with TBS containing 0.05% Tween-20, the membranes were incubated with peroxidase-conjugated secondary antibody at room temperature for 1 h. The proteins were visualized with an enhanced chemiluminescence detection system (Fujifilm, Tokyo, Japan), and the chemiluminescence intensity of each protein band was quantified using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.10. Statistical analysis

All experiments were performed in triplicate, and data are expressed as the mean \pm standard error of the mean (SEM). The distribution of all data was first confirmed for their agreement with normal distribution using the Kolmogorov-Smirnov goodness-of-fit test. Group means were compared using ANOVA followed by Tukey's test. All analyses were done with SPSS statistics (version 19.0 for windows). *P*-values < 0.05 were considered statistically significant.

3. Results

3.1. Goat VDR cloning and sequence analysis

A 1484-bp VDR cDNA fragment was obtained by splicing the two fragments from the GCs of goat (Fig. 1 and Fig. S1). The sequence has been submitted to GenBank (accession number KY307887.1). The full-length coding sequence is 1278 bp long and encodes 425 amino-acid residues (Fig. S1). To understand the evolutionary relationship with other species, a neighbor-joining tree was constructed using MEGA3.1 (Fig. 1B). The goat VDR is positioned with that of sheep in one clade, indicating that these are closest homologs.

3.2. VDR is expressed in the GCs of goat ovaries

As shown in Fig. 2, VDR was prominently localized to the GCs of follicles of all sizes analyzed (Fig. 2A–H). VDR signal was detected in oocytes from follicles of the primordial stage onward (Fig. 2A and B) and in the oocyte cytoplasm and GCs of primary (Fig. 2C) and secondary follicles (Fig. 2D). In antral stages, VDR was present in GCs and theca cells (Fig. 2E). VDR was not detected when sections were incubated with normal rabbit serum (Fig. 2F).

The mRNA and protein expression levels of VDR in goat GCs from follicles of different sizes are shown in Fig. 2. VDR protein expression significantly increased with increasing follicle diameter (P < 0.05, Fig. 2H and I). A similar trend was observed for mRNA expression (Fig. 2G); however, there was no significant difference between follicles of 2–5 mm and those \geq 5 mm (P > 0.05).

3.3. Vit D_3 and FSH enhance cell proliferation of goat GCs cultured in vitro

After treatment of GCs with each of Vit D₃ and FSH or the combination thereof, the expression of FSHR (Fig. 3A–D) and VDR (Fig. 3E–H) was determined in all groups. In the groups treated with Vit D₃ and FSH alone, protein expression of FSHR and VDR were significantly increased as compared to that in the control group (Fig. 3J and K; P < 0.05). Moreover, Vit D₃ significantly

Fig. 1. Primers used for the isolation of the goat VDR gene. (A) Two pairs of specific primers designed for amplifying the open reading frame of VDR. (B) Phylogenetic tree generated from the amino-acid alignment of VDR sequences of 13 different species.

enhanced the positive effect of FSH on the protein expression of FSHR and VDR (P < 0.05).

To assess the effects of Vit D₃ and FSH on GCs proliferation, MTT assays were conducted (Fig. 4A). Vit D₃ and FSH alone progressively stimulated the proliferation of GCs from 2 to 5 mm follicles (P < 0.05). However, Vit D₃ did not exert a stimulatory effect on GCs proliferation in the presence of FSH (P > 0.05).

3.4. Effects of Vit D_3 and FSH on the cell cycle of goat GCs cultured in vitro

The cell cycle progressions were shown the accompanying proliferation effects, which the percentage of G0/G1 fraction was decreased and S fraction increased by treatment GCs with Vit D₃ or FSH alone respectively, when compared with control (Fig. 4B and C; P < 0.05). Vit D₃ did not exert positive effect on G2/M phase neither alone nor stimulating with FSH (P > 0.05).

To investigate the effect of Vit D_3 on GCs proliferation further, the expression of cell cycle-related genes (*P21, P27, CDK1, CyclinB1, CDK4* and *CyclinD1*) was analyzed by qRT-PCR (Fig. 5). Treatment with Vit D_3 alone significantly increased *CDK4* and *CyclinD1* mRNA expression, but it caused a significant decrease in *P21* mRNA expression (P < 0.05). No effects on *P27, CDK1* and *CyclinB1* mRNA expression were observed (P > 0.05).

3.5. Vit D_3 lowers ROS and induces certain antioxidant-related genes in goat GCs cultured in vitro

As shown in Fig. 6, treatment with Vit D₃ alone significantly decreased the ROS content as compared to the control group (Fig. 6A; P < 0.05). Meanwhile, both mRNA and protein expression of SOD2 and CAT were significantly increased in the 10 nM Vit D₃ group (Fig. 6B; P < 0.05). However, Vit D₃ had no significant effect on *GPx* mRNA expression (Fig. 6B; P > 0.05).

3.6. Vit D_3 and FSH improve steroidogenesis and enhance the cAMP pool

To examine whether Vit D₃ or FSH affects steroidogenesis in GCs, E₂ and P₄ concentrations were examined (Fig. 7A and B). Either Vit D₃ or FSH alone significantly stimulated E₂ and P₄ production by GCs after 48 h (P < 0.05). Vit D₃ further potentiated the stimulatory effect of FSH on E₂ (Fig. 7A, P < 0.05), but not P₄ (Fig. 7B; P > 0.05) production. In addition, the involvement of cAMP as a second messenger system was examined by determining cAMP levels (Fig. 7C). A trend similar to that of E₂ was observed for cAMP; Vit D₃

Fig. 2. VDR is expressed in the GCs of goat follicles. Immunohistochemical localization of VDR in goat ovaries (A–F). qRT-PCR (G) and western blot (H and I) analyses were performed to detect VDR expression in GCs from follicles of different sizes ($\leq 2 \text{ mm}$, 2-5 mm, and $\geq 5 \text{ mm}$). Data for each group were obtained from three animals with three technical replicates per animal, and are expressed as the mean \pm SEM. Different superscript letters (a–c) indicate statistically significant differences (P < 0.05). en: egg nest; pm: primordial follicle; pr: primary follicle; sc: secondary follicle; tr: tertiary follicle; GCs: granulosa cells; TCs: theca cells. A–D (400 ×); E, F (200 ×). Scale bars correspond to 50 µm.

Fig. 3. Vit D₃ and FSH stimulate goat GCs proliferation. Immunocytochemistry for FSHR (A–D) and VDR (E–H) in different treatment groups after 48-h culture. The different treatments include the control group (A, E), Vit D₃ group (B, F), FSH group (C, G), and Vit D₃ with FSH group (D, H). Average optical densities of FSHR (J) and VDR (K) expression in different treatment groups are shown. Negative control (I). A–H (\times 200), I (\times 400). GCs: granulosa cells. Scale bars correspond to 50 µm.

and FSH each had a significant positive effect on the cAMP concentration in the cells, which was enhanced when both were combined (P < 0.05).

3.7. Vit D_3 affects specific steroidogenic enzymes in goat GCs cultured in vitro

The result of qRT-PCR is shown in Fig. 8, treatment with 10 nM Vit D₃ in the absence of FSH had no effect on *AMH* and *CYP19A1* expression (P > 0.05), while it significantly decreased in the *AMHR* and *FSHR* mRNA levels (P < 0.05) and increased those of *VDR*, *StAR* and 3β -HSD (Fig. 8 A; P < 0.05). Protein expression of FSHR was significantly decreased upon treatment with Vit D₃ (Fig. 8 B; P < 0.05). Although the protein expression of VDR in the Vit D₃ group was slightly higher than that in the control group, the difference was not significant (Fig. 8 B; P > 0.05).

4. Discussion

Increasing evidences indicates that Vit D₃ might play an important role in reproduction in both males and females and exerts its effects through VDR [2]. In accordance herewith, in the current study, VDR expression was detected in GCs from goat follicles, which is supported by previous studies that reported the VDR expression in mouse [3,5] and rat [6] ovarian follicles. Furthermore, we found that VDR expression in the GCs increased with increasing follicle size, which is corroborated by similar findings in a previous study [30]. Together, these results suggest that Vit D₃ might play an important role during follicular development.

Previous research has indicated that an appropriate amount of Vit D_3 can affect follicle development indirectly by promoting GCs proliferation [30]. To understand how Vit D_3 influences follicle development, we investigated the effects of Vit D_3 with or without FSH on proliferation of goat GCs *in vitro*. Treatment with either

Fig. 4. Vit D₃ and FSH stimulate goat GCs cell-cycle progression. Effect of Vit D₃ and FSH on cell proliferation (A) and cell-cycle progression (B, C) in different treatment groups of GCs after 48 h of culture. (A) Absorbance of MTT at 570 nm was used to detect proliferation by ELISA. (B) Cell-cycle distribution was analyzed by flow cytometry. (C) Histograms represent the percentage of GCs in different phases of the cell cycle. Data for each group were from three animals with three technical replicates per animal, and expressed as the mean \pm SEM. Different superscript letters (a, b) indicate statistically significant differences (P < 0.05).

10 nM Vit D_3 or 10 ng/ml FSH alone or the combination thereof promoted GCs proliferation, which was corroborated by the results of immunocytochemistry. Previous reports have shown that 10 nM Vit D_3 has an inhibitory effect on cancer cell proliferation [22,31,32], which may be owing to cell-type-dependent differences in the requirement for Vit D_3 .

However, the mechanism of Vit D_3 in regulating GCs proliferation is still not fully understood. Cell proliferation and apoptosis are closely related to the cellular oxidative stress, whereas the overproduction of ROS can destroy the cellular structure and thus inhibit cell proliferation [33,34]. Our data showed that ROS production was dramatically (>40%) decreased upon addition of 10 nM Vit D_3 alone. At low concentrations, ROS serve as a key signal molecules in proliferation [35]. Therefore, our data suggest that Vit D_3 can induce GCs proliferation through a mechanism that is initiated by decreasing the ROS level. When cells are exposed to oxidative stress, ample antioxidant enzymes will be produced to counter the damaging effects of ROS, and a linear relationship between oxidative stress and the mRNA expression of antioxidantrelated genes has been reported [26]. Accordingly, antioxidantrelated enzymes (SOD2 and CAT) were found to be upregulated in GCs treated with Vit D₃. We observed no effect of Vit D₃ on *GPx* mRNA expression, which indicates that Vit D₃ specifically affects SOD and CAT mRNA and protein expression. This result was consistent with previous studies [23,36]. Therefore, we speculate that Vit D₃ might decrease the ROS level by improving SOD2 and CAT activities.

Cell-cycle control represents a major regulatory mechanism of cell growth, which is regulated by several types of cyclin, cyclindependent kinase (CDK), and cyclin-dependent kinase inhibitor (CKI) [37]. In the present study, treatment of GCs with Vit D₃ or FSH alone induced cell cycle arrest from G0/G1 to S phase, which was accompanied by the upregulation of *CDK4* and *CyclinD1* and the downregulation of *P21* expression. CDK function is tightly regulated

Fig. 5. Vit D₃ alters the mRNA expression of cell cycle-related genes in GCs. The effects of Vit D₃ and FSH on cell-cycle-regulatory genes (*P21, P27, CDK1, CyclinB1, CyclinD1, and CDK4*) in different treatment groups of GCs were determined after 48 h of culture. Data for each group were from three animals with three replicates per animal, and are expressed as the mean \pm SEM. Different superscript letters (a, b) indicate statistically significant differences (*P* < 0.05).

by CKIs, such as *P21* and *P27* [37,38]. Activation of CyclinD1–CDK4 complexes is required for cells to pass the G1/S restriction point [39]. Our present findings are consistent with recent evidence suggesting that Vit D₃ induces G1/S phase arrest via the upregulation of *CDK4* and *CyclinD1* and inhibition of *P21* expression, thereby inducing the activation of pRb, which results in the release of E_2F transcription factors [40,41].

The finding that VDR was present in goat GCs suggested that it may be related to steroid hormone synthesis and production. Indeed, either Vit D₃ or FSH alone significantly stimulated E₂ and P₄ production. Other studies have also demonstrated that Vit D₃ increases E₂ and P₄ release in human and porcine GCs [17,18,42]. Moreover, our data showed that Vit D₃ further potentiated the stimulatory effect of FSH on E₂ production. This is in contrast to findings of Smolikova et al. [18] and Merhi et al. [17], which indicated that Vit D₃ does not affect FSH-induced E₂ production in human and porcine. This discrepancy may be explained by the different animal species investigated and dose-response effects. P4 synthesis is a complex process modulated by aromatases including StAR and 3 β -HSD [43]. The higher mRNA expression of 3 β -HSD and StAR upon the addition of Vit D₃ observed in the current study suggests that Vit D₃ can enhance the expression of aromataserelated genes, consequently promoting P₄ synthesis by GCs. This is corroborated by previous reports [17,44] that Vit D₃ supplementation can improve P₄ concentration by enhancing 3 β -HSD activity in human and porcine GCs. Moreover, GCs exposed to high concentrations of FSH *in vitro* or *in vivo* are readily highly luteinized and ultimately form a corpus luteum that produces large amounts of P₄ [17]. Thus, our findings suggest that Vit D₃ may facilitate GCs luteinization by increasing their P₄ production, which improves the endometrial environment for pregnancy.

CYP19A1 aromatase is known to be critical for E_2 synthesis [45]. However, under our experimental conditions, cells treated with Vit D_3 but without FSH remarkably increased their E_2 production but not E_2 mRNA expression. This phenomenon could be the effect of Vit D_3 on aromatase activity, which has been shown to be dose-dependent and tissue-specific [17,46]. Some previous studies reported that cAMP/PKA act as mediators associated with Vit D_3 [47,48]. Based on these findings, we speculated that the addition of Vit D_3 would affect E_2 production via influencing the intracellular cAMP level. This hypothesis was verified by our observation that Vit D_3 alone as well as in combination with FSH increased the GCs cAMP content.

AMH, upon interacting with its highly specific receptor AMHR, inhibits primordial to primary follicle transition and decreases FSH sensitivity, which regulates follicle selection during the estrous

Fig. 6. Vit D₃ inhibits intracellular ROS levels and increases antioxidant-related gene expression. Intracellular ROS generation was quantified by flow cytometry (A). For each sample, 1×10^4 cells in the gated region were analyzed. mRNA and protein expression of antioxidant-related genes (*GPX, SOD2,* and *CAT*) in different groups (B). Data for each group were from three animals with three technical replicates per animal, and are expressed as the mean \pm SEM. Different superscript letters (a, b) indicate statistically significant differences (P < 0.05).

cycle [49,50]. We found that Vit D_3 significantly decreased *AMHR* and *FSHR* mRNA expression, which could explain how Vit D_3 inhibited the effect of AMH on GCs proliferation via impeding *AMHR* expression. Similar patterns of *AMHR*, *FSHR* and *AMH* expression in human follicles have been reported [17]. FSHR expression reportedly peaks in GCs from small immature follicles and gradually reduces during folliculogenesis [51,52]. In the present study, Vit D_3 repressed *FSHR* mRNA and protein expression, suggesting that the GCs were in a more mature follicular state, which is corroborated by their size (2–5 mm) on the basis of which they

were selected for analysis. Additionally, treatment with Vit D₃ alone increased VDR mRNA and protein expression. Which pathway is involved in the VDR increase by Vit D₃ remains unknown and requires further studies.

We used a luteinized GCs model to investigate the effect of Vit D_3 on goat GCs proliferation and steroidogenesis. Although this model may not be ideal for studying the physiological mechanism underlying proliferation and steroid hormone synthesis and secretion via Vit D_3 *in vivo*, our previous study [26] and others [17,18,53] have shown that *in vitro* culture of luteinized GCs can be

Fig. 7. Vit D_3 and FSH enhance steroidogenesis and cAMP content. Estradiol (A) and progesterone (B) production in the culture medium and cAMP level (C) in GCs of various treatment groups. Data for each group were from three animals with three technical replicates per animal, and are expressed as the mean \pm SEM. Different superscript letters (a–c) indicate statistically significant differences (P < 0.05).

used to study GCs functions related to apoptosis and steroid hormone production.

In conclusion, the present study demonstrated that VDR is expressed in goat GCs and suggests that Vit D_3 plays an important

role in the regulation of GCs proliferation during follicular development. Meanwhile, Vit D_3 can influence AMH signaling, steroidogenesis, and oxidative stress through regulating certain key factors during follicle selection (Fig. 9). However, there is evidence

Fig. 8. Vit D_3 alters the mRNA expression of *AMHR*, *VDR*, 3β -*HSD*, and *FSHR* in GCs. Data for each group were from three animals with three technical replicates per animal, and are expressed as the mean \pm SEM. Different superscript letters (a, b) indicate statistically significant differences (P < 0.05).

Fig. 9. Vit D₃ and FSH promote P₄ and E₂ production by increasing 3β-HSD mRNA and cAMP levels. Vit D₃ induces G1/S phase arrest via the upregulation of *CDK*4 and *CyclinD1* and inhibition of *P21* expression. Vit D₃ decreases the ROS level by promoting *SOD* and *CAT* mRNA expression. Additionally, Vit D₃ downregulates *FSHR* and *AMHR* mRNA levels.

indicating that steroid hormone production can be mediated by different pathways, such as cAMP/PKA, PI3K, WNT, and MAPK signaling pathways [54–57]. Therefore, further studies are needed to determine which pathways (direct or indirect) Vit D_3 employs to influence goat GCs functions.

Conflict of interest

None.

Acknowledgements

This study was financially supported by the earmarked fund for China Agriculture Research System (CARS-39), Research Program of Jiangsu Province (BE2015362), and the National Research Council of Science and Technology Support Program (2015BAD03B05-06). We sincerely thank all the members of the Wang laboratory for technical assistance throughout this study.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.theriogenology.2017.08.002.

References

- Zhang CJ, Zhao D, Yin X, Zhang H, Ma L, Chen JP, et al. Effects of 1,25(OH)₂D₃ on proliferation and apoptosis of human glomerular mesangial cells. Am J Transl Res 2016;8:2659–66.
- [2] Somjen D, Grafi-Cohen M, Posner GH, Sharon O, Kraiem Z, Stern N. Vitamin D less-calcemic analog modulates the expression of estrogen receptors, vitamin D receptor and 1alpha-hydroxylase 25-hydroxy vitamin D in human thyroid cancer cell lines. J Steroid Biochem 2013;136:80–2.
- [3] Shahbazi M, Jeddi-Tehrani M, Zareie M, Salek-Moghaddam A, Akhondi MM, Bahmanpoor M, et al. Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice. Placenta 2011;32:657–64.
- [4] Heaney RP. Vitamin D in health and disease. Clin J Am Soc Nephrol 2008;3: 1535–41.
- [5] Zarnani AH, Shahbazi M, Salek-Moghaddam A, Zareie M, Tavakoli M, Ghasemi J, et al. Vitamin D₃ receptor is expressed in the endometrium of cycling mice throughout the estrous cycle. Fertil Steril 2010;93:2738–43.

- [6] Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem Cell Biol 1996;105:7–15.
- [7] El-Shal AS, Shalaby SM, Aly NM, Rashad NM, Abdelaziz AM. Genetic variation in the vitamin D receptor gene and vitamin D serum levels in Egyptian women with polycystic ovary syndrome. Mol Biol Rep 2013;40:6063–73.
- [8] Jin H, Huang Y, Jin G, Xue YR, Qin XW, Yao XL, et al. The vitamin D receptor localization and mRNA expression in ram testis and epididymis. Anim Reprod Sci 2015;153:29–38.
- [9] Jensen MB, Nielsen JE, Jorgensen A, Meyts ERD, Kristensen DM, Jorgensen N, et al. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum Reprod 2010;25:1303–11.
- [10] Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000;141:1317–24.
- [11] Keane KN, Cruzat VF, Calton EK, Hart PH, Soares MJ, Newsholme P, et al. Molecular actions of vitamin D in reproductive cell biology. Reproduction 2017;153:R29–42.
- [12] Shahrokhi SZ, Ghaffari F, Kazerouni F. Role of vitamin D in female reproduction. Clin Chim Acta 2016;455:33–8.
- [13] Sun WW, Xie H, Ji J, Zhou XJ, Goltzman D, Miao DS. Defective female reproductive function in 1,25(OH)(2)D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus. Am J Physiol-Endoc M 2010;299:E928–35.
- [14] Merhi Z, Fadiel A, Buyuk E, Naftolin F, Cipolla M. Vitamin D attenuates the adverse effect of advanced glycation end products on human granulosa cells: implications for women with PCOS. Fertil Steril 2015;104. e106.
- [15] Huang Y, Jin H, Chen J, Jiang X, Li P, Ren Y, et al. Effect of Vitamin D on basal and Luteinizing Hormone (LH) induced testosterone production and mitochondrial dehydrogenase activity in cultured Leydig cells from immature and mature rams. Anim Reprod Sci 2015;158:109–14.
- [16] Smolikova K, Mlynarcikova A, Scsukova S. Effect of 1alpha,25dihydroxyvitamin D3 on progesterone secretion by porcine ovarian granulosa cells. Endocr Regul 2013;47:123–31.
- [17] Merhi Z, Doswell A, Krebs K, Cipolla M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. Horm-Int J Endocrino 2014;99:E1137–45.
- [18] Smolikova K, Mlynarcikova A, Scsukova S. Effect of 1a,25-dihydroxyvitamin D3 on progesterone secretion by porcine ovarian granulosa cells. Endocr Regula 2013;47:123–31.
- [19] Ortega-Camarillo C, Gonzalez-Gonzalez A, Vergara-Onofre M, Gonzalez-Padilla E, Avalos-Rodriguez A, Gutierrez-Rodriguez ME, et al. Changes in the glucose-6-phosphate dehydrogenase activity in granulosa cells during follicular atresia in ewes. Reproduction 2009;137:979–86.
- [20] Sai T, Goto Y, Yoshioka R, Maeda A, Matsuda F, Sugimoto M, et al. Bid and Bax are involved in granulosa cell apoptosis during follicular atresia in porcine ovaries. J Reprod Dev 2011;57:421–7.
- [21] Olsson K, Saini A, Stromberg A, Alam S, Lilja M, Rullman E, et al. Evidence for vitamin D receptor expression and direct effects of 1alpha,25(OH)2D3 in

human skeletal muscle precursor cells. Endocrinology 2016;157:98-111.

- [22] Huang J, Yang GZ, Huang YZ, Kong WY, Zhang S. 1,25(OH)₂D₃ inhibits the progression of hepatocellular carcinoma via downregulating HDAC2 and upregulating P21(WAFI/CIP1). Mol Med Rep 2016;13:1373–80.
- [23] Mutlu M, Sariaydin M, Aslan Y, Kader S, Dereci S, Kart C, et al. Status of vitamin D, antioxidant enzymes, and antioxidant substances in neonates with neonatal hypoxic-ischemic encephalopathy. J Matern-Fetal Neo M 2016;29: 2259–63.
- [24] Ke CY, Yang FL, Wu WT, Chung CH, Lee RP, Yang WT, et al. Vitamin D₃ reduces tissue damage and oxidative stress caused by exhaustive exercise. Int J Med Sci 2016;13:147–53.
- [25] de Medeiros Cavalcante IG, Silva AS, Costa MJ, Persuhn DC, Issa CT, de Luna Freire TL, et al. Effect of vitamin D₃ supplementation and influence of Bsml polymorphism of the VDR gene of the inflammatory profile and oxidative stress in elderly women with vitamin D insufficiency: vitamin D3 megadose reduces inflammatory markers. Exp Gerontol 2015;66:10–6.
- [26] Zhang GM, Deng MT, Zhang YL, Fan YX, Wan YJ, Nie HT, et al. Effect of PGC-1alpha overexpression or silencing on mitochondrial apoptosis of goat luteinized granulosa cells. J Bioenerg Biomembr 2016;48:493–507.
- [27] Yao X, Yang H, Zhang Y, Ren C, Nie H, Fan Y, et al. Characterization of GALNTL5 gene sequence and expression in ovine testes and sperm. Theriogenology 2017;95:54–61.
- [28] Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Gen 2012;29:1029–38.
- [29] Wu W, Ye H, Wan L, Han X, Wang G, Hu J, et al. Millepachine, a novel chalcone, induces G2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo. Carcinogenesis 2013;34:1636–43.
- [30] Wojtusik J, Johnson PA. Vitamin D regulates anti-mullerian hormone expression in granulosa cells of the hen. Biol Reprod 2011;86:91.
- [31] Akutsu N, Lin R, Bastien Y, Bestawros A, Enepekides DJ, Black MJ, et al. Regulation of gene Expression by 1alpha,25-dihydroxyvitamin D3 and its analog EB1089 under growth-inhibitory conditions in squamous carcinoma Cells. Mol Endocrinol 2001;15:1127–39.
- [32] Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 2007;179:1634–47.
- [33] Terada LS. Specificity in reactive oxidant signaling: think globally, act locally. J Cell Biol 2006;174:615–23.
- [34] Guo YL, Chakraborty S, Rajan SS, Wang R, Huang F. Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and selfrenewal. Stem Cells Dev 2010;19:1321–31.
- [35] Rizzo A, Roscino MT, Binetti F, Sciorsci RL. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim 2012;47:344–52.
- [36] Banakar MC, Paramasivan SK, Chattopadhyay MB, Datta S, Chakraborty P, Chatterjee M, et al. 1alpha, 25-dihydroxyvitamin D3 prevents DNA damage and restores antioxidant enzymes in rat hepatocarcinogenesis induced by diethylnitrosamine and promoted by phenobarbital. World J Gastroentero 2004;10:1268–75.
- [37] Wang L, Wu J, Lu J, Ma R, Sun D, Tang J. Regulation of the cell cycle and PI3K/ Akt/mTOR signaling pathway by tanshinone I in human breast cancer cell lines. Mol Med Rep 2015;11:931–9.
- [38] Yan X, Shen H, Jiang H, Hu D, Wang J, Wu X. External Qi of Yan Xin Qigong inhibits activation of Akt, Erk1/2 and NF-kB and induces cell cycle arrest and apoptosis in colorectal cancer cells. Cell Physiol Biochem 2013;31:113–22.

- [39] Totty ML, Morrell BC, Spicer LJ. Fibroblast growth factor 9 (FGF9) regulation of cyclin D1 and cyclin-dependent kinase-4 in ovarian granulosa and theca cells of cattle. Mol Cell Endocrinol 2017;440:25–33.
- [40] Verlinden L, Verstuyf A, Convents R, Marcelis S, Van Camp M, Bouillon R. Action of 1,25(OH)2D3 on the cell cycle genes, cyclin D1, p21 and p27 in MCF-7 cells. Mol Cell Endocrinol 1998;142:57–65.
- [41] Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 2002;59:126–42.
- [42] Hong SH, Lee JE, An SM, Shin YY, Hwang DY, Yang SY, et al. Effect of vitamin D3 on biosynthesis of estrogen in porcine granulosa cells via modulation of steroidogenic enzymes. Toxicol Res 2017;33:49–54.
- [43] Singh P, Krishna A. Effects of GnRH agonist treatment on steroidogenesis and folliculogenesis in the ovary of cyclic mice. J Ovarian Res 2010:3.
- [44] Hong SH, Lee JE, Kim HS, Jung YJ, Hwang D, Lee JH, et al. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes. J Biomed Res 2016;30:203–8.
- [45] Samardzija D, Pogrmic-Majkic K, Fa S, Glisic B, Stanic B, Andric N. Atrazine blocks ovulation via suppression of Lhr and Cyp19a1 mRNA and estradiol secretion in immature gonadotropin-treated rats. Reprod Toxicol 2016;61: 10–8.
- [46] Lundqvist J, Norlin M, Wikvall K. 1alpha,25-Dihydroxyvitamin D3 exerts tissue-specific effects on estrogen and androgen metabolism. Bba-Biomembranes 2011;1811:263–70.
- [47] Avila E, Diaz L, Barrera D, Halhali A, Mendez I, Gonzalez L, et al. Regulation of Vitamin D hydroxylases gene expression by 1,25-dihydroxyvitamin D3 and cyclic AMP in cultured human syncytiotrophoblasts. J Steroid Biochem 2007;103:90–6.
- [48] Vazquez G, Boland R, de Boland AR. Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Bba-Biomembranes 1995;1269:91–7.
- [49] Visser JA, Themmen AP. Anti-Mullerian hormone and folliculogenesis. Mol Cell Endocrinol 2005;234:81–6.
- [50] Rocha RM, Lima LF, Carvalho AA, Chaves RN, Bernuci MP, Rosa-e-Silva AC, et al. Immunolocalization of the anti-mullerian hormone (AMH) in caprine follicles and the effects of AMH on in vitro culture of caprine pre-antral follicles enclosed in ovarian tissue. Reprod Domest Anim 2016;51:212–9.
- [51] Son WY, Das M, Shalom-Paz E, Holzer H. Mechanisms of follicle selection and development. Minerva Ginecol 2011;63:89–102.
- [52] Webb R, Nicholas B, Gong JG, Campbell BK, Gutierrez CG, Garverick HA, et al. Mechanisms regulating follicular development and selection of the dominant follicle. Reprod Suppl 2003;61:71–90.
- [53] Parikh G, Varadinova M, Suwandhi P, Araki T, Rosenwaks Z, Poretsky L, et al. Vitamin D regulates steroidogenesis and insulin-like growth factor binding Protein-1 (IGFBP-1) production in human ovarian cells. Horm Metab Res 2010;42:754–7.
- [54] Zaidi SK, Shen WJ, Bittner S, Bittner A, McLean MP, Han JH, et al. p38 MAPK regulates steroidogenesis through transcriptional repression of STAR gene. J Mol Endocrinol 2014;53:1–16.
- [55] Topfer D, Ebeling S, Meinecke B. Influence of MAPK activity on steroidogenesis in porcine cumulus cells. Reprod Domest Anim 2011;46. 43-.
- [56] Chen YJ, Hsiao PW, Lee MT, Mason JI, Ke FC, Hwang JJ. Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGF beta 1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. J Endocrinol 2007;192:405–19.
- [57] Gustin SE, Hogg K, Stringer JM, Rastetter RH, Pelosi E, Miles DC, et al. WNT/ beta-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Dev Biol 2016;412:250–60.