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The emergence of large-scale genomic, chemical and pharmacological data provides new

opportunities for drug discovery and repositioning. In this work, we develop a computational

pipeline, called DTINet, to predict novel drug–target interactions from a constructed

heterogeneous network, which integrates diverse drug-related information. DTINet focuses

on learning a low-dimensional vector representation of features, which accurately explains

the topological properties of individual nodes in the heterogeneous network, and then makes

prediction based on these representations via a vector space projection scheme. DTINet

achieves substantial performance improvement over other state-of-the-art methods

for drug–target interaction prediction. Moreover, we experimentally validate the novel

interactions between three drugs and the cyclooxygenase proteins predicted by DTINet, and

demonstrate the new potential applications of these identified cyclooxygenase inhibitors

in preventing inflammatory diseases. These results indicate that DTINet can provide a

practically useful tool for integrating heterogeneous information to predict new drug–target

interactions and repurpose existing drugs.
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Computational prediction of drug–target interactions
(DTIs) has become an important step in the drug
discovery or repositioning process, aiming to identify

putative new drugs or novel targets for existing drugs. Compared
to in vivo or biochemical experimental methods for identifying
new DTIs, which can be extremely costly and time-consuming1,
in silico or computational approaches can efficiently identify
potential DTI candidates for guiding in vivo validation, and thus
significantly reduce the time and cost required for drug discovery
or repositioning. Traditional computational methods mainly
depend on two strategies, including the molecular docking-based
approaches2, 3 and the ligand-based approaches4. However,
the performance of molecular docking is limited when the
3D structures of target proteins are not available, while the
ligand-based approaches often lead to poor prediction results
when a target has only a small number of known binding ligands.

In the past decade, much effort has been devoted to developing
the machine learning-based approaches for computational DTI
prediction. A key idea behind these methods is the “guilt-by-
association” assumption, that is, similar drugs may share similar
targets and vice versa. Based on this intuition, DTI prediction is
often formulated as a binary classification task, which aims to
predict whether a DTI is present or not. A straightforward
classification-based approach is to consider known DTIs as labels
and incorporate chemical structures of drugs and primary
sequences of targets as input features (or kernels). Most existing
prediction methods mainly focus on exploiting information from
homogeneous networks. For example, Bleakley and Yamanishi5

applied a support vector machine framework to predict DTIs
based on a bipartite local model (BLM). Mei et al.6 extended
this framework by combining BLM with a neighbor-based
interaction-profile inferring (NII) procedure (called BLMNII),

which is able to learn the DTI features from neighbors and
predict interactions for new drug or target candidates. Xia et al.7

proposed a semi-supervised learning method for DTI prediction,
called NetLapRLS, which applies Laplacian regularized least
square (RLS) and incorporates both similarity and interaction
kernels into the prediction framework. van Laarhoven et al.8, 9

introduced a Gaussian interaction profile (GIP) kernel-based
approach coupled with RLS for DTI prediction.

In addition to chemical and genomic data10, previous
works have incorporated pharmacological or phenotypic infor-
mation, such as side-effects11, 12, transcriptional response data13,
drug–disease associations14, public gene expression data15 and
functional data16 for DTI prediction. Heterogeneous data sources
provide diverse information and a multi-view perspective for
predicting novel DTIs. For instance, the therapeutic effects of
drugs on diseases can generally reflect their binding activities to
the targets (proteins) that are related to these diseases and thus
can also contribute to DTI prediction. Therefore, incorporating
heterogeneous data sources, e.g., drug–disease associations, can
potentially boost the accuracy of DTI prediction and provide new
insights into drug repositioning. Despite the current availability of
heterogeneous data, most existing methods for DTI prediction
are limited to only homogeneous networks or bipartite DTI
models, and cannot be directly extended to take into account
heterogeneous nodes or topological information and complex
relations among different data sources.

Recently, several computational strategies have been intro-
duced to integrate heterogeneous data sources to predict DTIs.
A network-based approach for this purpose is to fuse hetero-
geneous information through a network diffusion process, and
directly use the obtained diffusion distributions to derive the
prediction scores of DTIs14, 17. A meta-path based approach has
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Fig. 1 The flowchart of the DTINet pipeline. DTINet first integrates a variety of drug-related information sources to construct a heterogeneous network and
applies a compact feature learning algorithm to obtain a low-dimensional vector representation of the features describing the topological properties for
each node. With the learned compact features X and Y for drugs and proteins (i.e., each row in X and Y represents the feature vector of a drug and a
protein, respectively), DTINet then finds the best projection from drug space onto protein space, such that the projected feature vectors of drugs are
geometrically close to the feature vectors of their known interacting proteins. The projection matrix Z is learned to minimize the difference between the
known interaction matrix P and XZYT (see Supplementary Note 1 for more details). After that, DTINet infers new interactions for a drug by sorting its target
candidates based on their geometric proximity to the projected feature vector of this drug in the projected space. The predicted new drug–target
interactions can be further analyzed and experimentally validated
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also been proposed to extract the semantic features of DTIs from
heterogeneous networks18. A collaborative matrix factorization
method has been developed to project the heterogeneous net-
works into a common feature space, which enables one to use the
aforementioned homogeneous network-based methods to predict
new DTIs from the resulting single integrated network19. How-
ever, these approaches generally fail to provide satisfactory inte-
gration paradigms. First, directly using the diffusion states as the
features or prediction scores may easily suffer from the bias
induced by the noise and high-dimensionality of biological data
and thus possibly lead to inaccurate DTI predictions. In addition,
the hand-engineered features, such as meta-paths, often require
expert knowledge and intensive effort in feature engineering,
and hence prevent the prediction methods from being scaled to
large-scale data sets. Moreover, collapsing multiple individual
networks into a single network may cause substantial loss of
network-specific information, since edges from multiple data
sources are mixed without distinction in such an integrated
network.

In this paper, we present DTINet, a novel network integration
pipeline for DTI prediction. DTINet not only integrates diverse
information from heterogeneous data sources (e.g., drugs,
proteins, diseases and side-effects) but also copes with the
noisy, incomplete and high-dimensional nature of large-scale
biological data by learning low-dimensional but informative
vector representations of features for both drugs and proteins.
The low-dimensional feature vectors learned by DTINet capture
the context information of individual networks, as well as the
topological properties of nodes (e.g., drugs or proteins) across
multiple networks. Based on these low-dimensional feature
vectors, DTINet then finds an optimal projection from drug
space onto target space, which enables the prediction of new DTIs
according to the geometric proximity of the mapped vectors in a
unified space. We have demonstrated the integration capacity of
DTINet by unifying multiple networks related to drugs and
proteins, and shown that incorporating additional network

information can significantly improve the prediction accuracy. In
addition, through comprehensive tests, we have demonstrated
that DTINet can achieve substantial performance improvement
over other state-of-the-art prediction methods. Furthermore, we
have experimentally validated the new interactions predicted by
DTINet between three drugs and the cyclooxygenase (COX)
proteins that have not been reported in the literature (to the
best of our knowledge), and demonstrated the potential novel
applications of these drugs in preventing inflammatory diseases.
All these results demonstrate that DTINet can offer a practically
useful tool to predict unknown DTIs from complex hetero-
geneous networks, which may provide new insights into drug
discovery or repositioning and the understanding of mechanisms
of drug action.

Results
Overview of DTINet. We develop a new computational pipeline,
called DTINet, to predict novel DTIs and thus identify new
indications of old drugs from a heterogeneous network (Supple-
mentary Fig. 1). As an overview (Fig. 1), DTINet integrates
diverse information from heterogeneous network by first
combining the network diffusion algorithm (random walk
with restart, RWR20) with a dimensionality reduction scheme
(diffusion component analysis, DCA21–23), to obtain informative,
but low-dimensional vector representations of nodes in the
network (Fig. 2). Such a process is also called compact
feature learning. Intuitively, the low-dimensional feature vector
obtained from this process encodes the relational properties
(e.g., similarity), association information and topological context
of each drug (or protein) node in the heterogeneous network.
Next, DTINet finds the best projection from drug space onto
protein space, such that the mapped feature vectors of drugs are
geometrically close to their known interacting targets. After that,
DTINet infers new interactions for a drug by ranking its target
candidates according to their proximity to the projected feature
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vector of this drug (Fig. 1). A key insight of our approach is that
the drugs (or proteins) with similar topological properties in
the heterogeneous network are more likely to be functionally
correlated. For example, those drugs that are close in the
directions of their feature vectors are more likely to act on the
same targets, and vice versa. This intuition allows us to predict
unknown DTIs by fully exploiting our previous knowledge about
known DTIs. More details of the DTINet pipeline can be found in
Methods and Supplementary Note 1.

DTINet yields accurate DTI prediction. We first evaluated
the prediction performance of DTINet using a ten-fold cross-
validation procedure, in which a randomly chosen subset of 10%
of the known interacting drug–target pairs and a matching
number of randomly sampled non-interacting pairs were held out
as the test set, and the remaining 90% known interactions and a
matching number of randomly sampled non-interacting pairs
were used to train the model. We compared DTINet with four
state-of-the-art methods for DTI prediction, including BLMNII6,
NetLapRLS7, HNM14 and CMF19 (Supplementary Note 1).

Our comparative results showed that DTINet consistently
outperformed other existing methods, with 5.9% higher AUROC
and 5.7% higher AUPR than the second best method (Fig. 3a).
Compared to HNM, which predicts DTIs based on a modified
version of random walk in a complete heterogeneous network,
DTINet achieved 6.9% higher AUROC and 5.9% higher AUPR,
presumably because HNM only uses the original diffusion states
for prediction, which is not entirely accurate, while DTINet
applies a novel dimensionality reduction on the diffusion states
and thus is able to capture the underlying structural properties of
the heterogeneous network.

To mimic a practical situation in which a DTI matrix is often
sparsely labeled with only a few known DTIs, we also performed
two additional cross-validation tests, in which the negative set in
the test data contained either the negative samples nine times
more than the positive ones or all the remaining non-interacting
drug–target pairs that were not in the training data (Supplemen-
tary Fig. 2). In these two settings with imbalanced data sets, the
known DTIs (i.e., positive samples) composed only 10% and
0.18% of the whole data set, respectively. In these two tests,
although the AUPR scores of all methods dropped when
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Fig. 3 DTINet outperforms other state-of-the-art methods for DTI prediction. We performed a ten-fold cross-validation procedure to compare the
prediction performance of DTINet to that of four state-of-the-art DTI prediction methods, i.e., HNM, CMF, and the extended versions of BLMNII and
NetLapRLS (see Supplementary Note 1). Performance of each method was assessed by both the area under ROC curve (AUROC) and the area under
precision-recall curve (AUPRC). a All methods were trained and tested on the original collected data set (see the main text), without removing any
homologous protein. b All methods are trained and tested on a modified data set, in which homologous proteins were excluded. A pair of two proteins are
said to be homologous if their sequence identity score is above 40%. All results were summarized over 10 trials and expressed as mean ± SD
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Fig. 4 Network visualization of the drug–target interactions predicted by DTINet. a Visualization of the overall drug–target interaction network involving
the top 150 predictions (also see Supplementary Data 1). Target and drugs are shown in purple circles and yellow boxes, respectively. b Network
visualization of several examples of novel DTI predictions which can be supported by known experimental or clinical evidence in the literature.
The drugs are shown in yellow boxes, white different families of their interacting targets are shown in circles with different colors. In both a, b,
known drug–target interactions are marked by grey edges, while the new predicted interactions are shown by red edges
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compared to the previous test (Fig. 3a), we observed that
DTINet still achieved much higher AUPR than other methods
(Supplementary Fig. 2). As studied in previous works8, 24,
AUROC is likely to be an overoptimistic metric to evaluate the
performance of a prediction algorithm, especially on highly
skewed data, while AUPR can provide a better assessment in this
scenario. Thus, the noticeable performance improvement of
DTINet in terms of AUPR over other prediction methods
demonstrated its superior ability in predicting new DTIs in the
sparsely labeled networks.

The originally collected data sets (Methods) may contain
homologous proteins or similar drugs, which raised a potential
concern that the good performance of prediction methods might
result from easy predictions. To investigate this issue, we
performed the following additional tests (Fig. 3b and Supple-
mentary Fig. 3a–d): (1) the removal of the DTIs involving
homologous proteins (sequence identity scores >40%); (2) the
removal of the DTIs with similar drugs (Tanimoto coefficients
>60%); (3) the removal of the DTIs with the drugs sharing similar
side-effects (Jaccard similarity scores >60%); (4) the removal of
the DTIs with the drugs or proteins associated with similar
diseases (Jaccard similarity scores >60%); and (5) the removal of
the DTIs with either similar drugs (Tanimoto coefficients >60%)
or homologous proteins (sequence identity scores >40%). In the
above tests, the removal operations can further reduce the
potential redundancy in the DTIs that may cause the inflated
evaluation performance in cross-validation. The test results under
the above settings showed that DTINet was robust against the
removal of homologous proteins or similar drugs in training data
and still consistently outperformed other methods (Fig. 3b and
Supplementary Fig. 3). We also removed the DTIs with
homologous proteins in a skewed data set in which the known
DTIs composed only 10% of the whole data set, and observed
similar results (Supplementary Fig. 3e). Other threshold values
for drug similarity scores and protein identity scores were also
evaluated, and similar trends were observed (results not shown).

Taken together, these results demonstrated that DTINet can still
achieve decent performance and outperform other prediction
methods even without the presence of similar drugs or targets.

The random split of training and test data in the conventional
cross-validation procedure may raise another concern due
to “popular” drugs25. Since the drugs that are well-connected
(i.e., with large degrees) to proteins in the DTI network tend to be
predicted more easily and thus may result in the inflated high
recall rates, it is important to seek a proper evaluation procedure
and metric to assess the performance of prediction methods
under more realistic drug repositioning scenarios. To this end, we
first hid all the DTIs in which the related drugs have new
mechanism of actions discovered within the 5 years as of the time
that the DrugBank database Version 3.0 (which was used to
construct our heterogeneous network) was released. According to
this criterion, we held out 255 DTIs related to 79 drugs as the test
set. As in the previous works25, 26, we used “recall @ top-k” as the
evaluation metric, which is defined as the fraction of true
interacting targets that were retrieved in the list of top-k
predictions for a drug. The motivation of using this metric was
that a method that can accurately recover the true interacting
targets in the list of top-k predictions is generally desired and
useful for the downstream experimental validation. We found
that DTINet achieved much better performance than other
methods in recovering more true interacting targets for a given
drug at different values of rank k (Supplementary Fig. 4a). In the
second setting, we evaluated the prediction performance of
different methods on those singleton drugs, which have only one
interacting known target in our data set. Such a setting can be
considered as a difficult case in computational drug repositioning,
in that all these singleton drugs have no known interacting targets
available in the training data. This setting can be used to assess
the performance of prediction methods on those DTIs that are
relatively less well studied and characterized. We observed that
DTINet retrieved ~50% of true DTIs for a singleton drug in
the list of top 150 predictions, in contrast to a fraction less than
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28% for other methods (Supplementary Fig. 4b). Overall, the test
results under the above two settings demonstrated the superior
ability of DTINet in integrating heterogeneous information into
the prediction of new DTIs in real drug repositioning scenarios
and serving as a practically useful tool for computational drug
repositioning and drug discovery.

DTINet copes with the noise and incompleteness in the high-
dimensional data by learning the compact representations that
capture the most explanatory features. To directly evaluate the
robustness of DTINet under this setting, we randomly perturbed
the topological structures in the network data. In particular, 10%
randomly sampled edges in the heterogeneous network were
perturbed, by adding new edges or deleting existing interaction
(or association) edges. Compared to NetLapRLS, DTINet
achieved more robust performance against the incompleteness
or noise in the network data (Supplementary Fig. 5). This result
demonstrated the robustness of DTINet in extracting the relevant
latent topological patterns even under the setting of noisy
network data.

Our further comparative study showed that integrating multiple
networks derived from the feature vectors of drugs or proteins by
DTINet can greatly improve the prediction performance over
individual single networks (Supplementary Fig. 6). Our comparison
demonstrated that, even without multiple networks integration,
DITNet still outperformed the state-of-the-art single network-based
method NetLapRLS on individual similarity networks. This result
emphasized DTINet’s ability to fully exploit useful topological
information from high-dimensional and noisy network data via a
compact learning procedure, even only given a single network as
input. In addition, we observed that DTINet achieved much better
prediction performance than the extended version of NetLapRLS,
when integrating multiple networks into a heterogeneous one.

These results indicated that integrating multiple networks into DTI
prediction is not a trivial task, while the network integration
procedure of DTINet can simultaneously and effectively capture the
underlying topological structures of multiple networks, leading to
the improved accuracy of DTI prediction. Moreover, in terms of
time complexity, DTINet runs fast and only takes roughly cubic
time (see Supplementary Note 1).

DTINet identifies novel DTIs. We also predicted the novel
DTIs using the whole heterogeneous network (in which
drug and targets have at least one known interacting pair) as
training data and outputted the list of top predictions (Supple-
mentary Datas 1, 2). We excluded those easy predictions in which
the targets have the sequence identity scores above 40% from
the homologous proteins in training data. Among the list of top
150 predictions (Fig. 4a and Supplementary Data 1), we found
that many of them can also be supported by the previously known
experimental or clinical evidence in the literature (Fig. 4b and
Supplementary Data 3). For example, new predictions
showed that clozapine can act on the gamma-aminobutyric acid
(GABA) receptors, an essential family of channel proteins that
modulate the cognitive functions (Fig. 4b). This new prediction
can be supported by the previous studies which showed that
clozapine can have a direct interaction with the GABA B-subtype
(GABA-B) receptors27 and antagonize the GABA A-subtype
(GABA-A) receptors in the cortex28. More examples of such
novel predictions that can be supported from the previous studies
in the literature can be found in Supplementary Data 3.

Next, we focused on those novel DTIs among the list of top
150 predictions from DTINet, for which we rarely found known
experimental support in the literature. Among the list of these top
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Fig. 6 Inhibitory effects of telmisartan, alendronate and chlorpropamide on COX activity measured by COX inhibition assays. a–c The inhibition rates
of telmisartan, alendronate and chlorpropamide measured by the COX fluorescent activity assays on the mouse kidney lysates. d, e The relative
COX activity inhibition rates of telmisartan, chlorpropamide and alendronate on COX-1 and COX-2, measured by the COX fluorescent activity assays on
the tissue extracts from both kidney d and macrophage e lysates. f The results on the competitive binding of [3H] celecoxib for different COX-2 inhibitors
measured by the radioligand-based binding assays. Control: the radioactivity of the sample with [3H] celecoxib only. *: P< 0.05, **: P< 0.01, ***: P< 0.001,
Newman–Keuls multiple comparison test. Here, data show the mean with the standard deviation of three independent experiments, each of which was
performed with triplicates
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150 predictions, most of the new predicted DTIs were relevant
(i.e., connected) to the previously known interactions except
the interactions between three drugs, including telmisartan,
chlorpropamide and alendronate, and the prostaglandin-
endoperoxide synthase proteins, which are also called COX
proteins (Fig. 4a). COX is a family of enzymes responsible for
prostaglandin biosynthesis29, and mainly includes COX-1 and

COX-2 in human, both of which can be inhibited by nonsteroidal
anti-inflammatory drugs (NSAIDs)30. Apparently, it was difficult
to use the correlations between nodes within the DTI network
to explain the predicted interactions between these three
drugs and the COX proteins. On the other hand, these new
DTIs had relatively high prediction scores in the list of the top
150 predictions (Supplementary Data 1). In addition, the COX
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Fig. 7 The real-time PCR (RT-PCR) analyses of the proinflammatory factors on the LPS-stimulated macrophages. a–f The RT-PCR analysis of mRNA
expressions of TNFα, IL-6, IL-1β, IL-12p35, CXCL-1 and iNOS normalized relative to that of GAPDH, respectively. Control, macrophages without LPS
treatment. *: P< 0.05; **: P< 0.01; ***:P< 0.001, compared to the samples without LPS treatment. ##: P< 0.01; ###:P< 0.001, compared to the samples
treated with LPS. n= 3. Newman–Keuls multiple comparison test was used. Here, data show the mean with the standard deviation of three independent
experiments, each of which was performed with triplicates. The concentrations of the COX inhibitors were determined according to the indications of the
assay kits and the previous binding studies in the literature (see Methods)
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proteins provide a class of important targets in a wide range of
inflammatory diseases31. Despite the existence of numerous
known NSAIDs used as COX inhibitors, many of them are
associated with the cardiovascular side-effects32, 33. Thus, it is
always important to identify alternative COX inhibitors from
existing drugs with fewer side-effects. Given these facts, it would
be interesting to see whether the predicted interactions between
these three drugs and the COX proteins can be further validated.

Among the aforementioned three drugs, telmisartan has been
known as an angiotensin II receptor antagonist that can be used
to treat hypertension34, chlorpropamide has been known as a
sulfonylurea drug that acts by increasing insulin to treat type 2
diabetes mellitus35, and alendronate has been known as a
bisphosphonate drug mainly used for treating bone disease, such
as osteoporosis and osteogenesis imperfect36, 37. Despite our
current understanding about the functions of COX-1 and COX-2
proteins and the known indications of telmisartan, chlorpropa-
mide and alendronate, it still remains largely unknown whether
these three drugs can also interact with the COX proteins.
According to the top 150 predictions by DTINet (Fig. 4a and
Supplementary Data 1), these three drugs can act on the
COX proteins. We will further present our validation results
on the predicted interactions between these three drugs and
COX proteins in the next sections.

Computational docking suggests binding modes. Our docking
studies (Methods) showed that the three drugs (i.e., telmisartan,
alendronate and chlorpropamide) were able to dock to the
structures of both COX-1 (PDB ID: 3kk6) and COX-2 (PDB ID:
3qmo), and displayed different binding patterns (Fig. 5). In
particular, all three drugs were fitted into the active sites of both
COX-1 and COX-2. More specifically, chlorpropamide displayed
similar configurations when binding to COX-1 and COX-2
(Fig. 5a, b), by forming hydrogen bonds with both residues R120
and Y355, which created a conserved pocket as in those for
common NSAIDs38, 39. On the other hand, the substitution of
V119 in COX-1 by S119 in COX-2 allowed the formation of
a different hydrogen bond network in the binding pocket.
Moreover, telmisartan and alendronate interacted with residue
S530 in addition to residues R120 and Y355 when docked to
COX-1 (Fig. 5c, e), while they were both able to bind to residue
S119 when docked to COX-2 (Fig. 5d, f). Thus, a subtle difference
between the binding pockets of those two enzymes may result in
different binding modes even for the same drug. These docking
results may provide important hints for understanding the
structural basis of the predicted DTIs and thus help reveal the
underlying molecular mechanisms of drug action.

Experimental validation of the top-ranked predictions. We
further sought to experimentally validate the bioactivities of the
COX inhibitors predicted by DTINet (Methods). First, we tested
their inhibitory potencies on the mouse kidney lysates using the
COX fluorescent activity assays. Similar dose-dependent repres-
sion of COX activity was observed for the three drugs (Fig. 6a–c).
The IC50 values of telmisartan, alendronate and chlorpropamide
for COX activity were measured at 56.14, 160.2 and 289.5 μM,
respectively. The measured IC50 values of the three drugs espe-
cially telmisartan were comparable to those of many common
NSAIDs, such as celecoxib (COX-1: 82 μM; COX-2: 6.8 μM),
ibuprofen (COX-1: 12 μM, COX-2: 80 μM) and rofecoxib
(COX-1: >100 μM; COX-2: 25 μM)40, 41. Probably alendronate
and chlorpropamide were relatively weak inhibitors of COX. It is
worth noting that the order of the experimentally measured IC50

values of these three drugs was consistent with the ranking of
prediction scores in DTINet (Supplementary Data 1).

Next, the tissue extracts from the mouse kidney and the
peritoneal macrophages were used for COX selective inhibition
assays. Relative inhibition of COX-1 and COX-2 activities were
distinguished using SC-560, a potent and selective COX-1
inhibitor, and Dup-697, a potent and time-dependent of COX-2
inhibitor, respectively. Overall, the assays on the tissue extracts
from mouse kidney showed that telmisartan and alendronate had
slightly higher inhibition rates on COX-1 (68 and 64%,
respectively) than COX-2 (32 and 36%, respectively), while
chlorpropamide had a slightly higher inhibition rate on COX-2
(54%) than on COX-1 (46%) (Fig. 6d). Similar patterns of COX
inhibition selectivity with these drugs were also observed in the
peritoneal macrophages (Fig. 6e). To further evaluate the
selectivity of these predicted drugs on COX-1 and COX-2, we
also used the human recombinant enzyme assays to measure the
levels of PGE 2 under COX-1 and COX-2 catalyzes, respectively.
The assay results showed that telmisartan, alendronate and
chlorpropamide had IC50 values of 41.97, 90.73 and 223.5 μM for
COX-1, respectively, and 91.75, 184.1 and 151.9 μM for COX-2,
respectively (Supplementary Fig. 7). Such results were also
consistent with the IC50 values measured by the previous selective
inhibition assays (Fig. 6d, e). These validation results were also in
line with the observation that the predicted scores of these novel
DTIs output by DTINet were actually not that far away
(Supplementary Data 1). Overall, the above inhibition assays
showed that these three drugs identified by DTINet had a certain
level of inhibition affinity and may act as non-selective COX
inhibitors on the family of COX proteins.

To further validate the predicted DTIs, we also applied the
radioactive isotope labeled with the COX-2 selective inhibitor
[3H] celecoxib for the competitive binding assays. As shown in
Fig. 6f, telmisartan, alendronate, chlorpropamide and DuP-697
(a standard COX-2 inhibitor) inhibited the binding of [3H]
celecoxib to COX-2 by about 48.33, 40.67, 14.00 and 61.33% at
their IC50 concentrations, respectively. These assay results
provided another piece of evidence to confirm that these drugs
may have direct interactions with the COX proteins.

The COX inhibitors have been extensively used as NSAIDs,
thus we further tested the effects of the above three drugs on
inflammatory responses and thus examined their potential
applications in treating inflammatory diseases. Lipopolysacchar-
ide (LPS) was used to stimulate the cultured peritoneal
macrophages for the cellular inflammation model. In addition
to those three drugs (i.e., telmisartan, chlorpropamide and
alendronate) predicted by DTINet, we also considered the potent
COX-2 inhibitor Dup-697 and the well-known NSAID ibuprofen
for comparison.

A large amount of proinflammatory factors can be generated
during the inflammation process42. We consequently tested
whether the three drugs can suppress the expression of various
inflammatory factors in response to LPS stimulation (Fig. 7).
For tumor necrosis factor-α (TNF-α) and interleukin (IL)-6,
telmisartan exhibited strong inhibitory effect on the LPS induced
expression (Fig. 7a, b). Meanwhile, the induction of the important
cytokine IL-1β was also attenuated by each of the three drugs in
the peritoneal macrophages (Fig. 7c). In particular, telmisartan
displayed the strongest suppression effect on IL-1β among all
COX inhibitors. For IL-12p35, although both alendronate
and telmisartan significantly inhibited its production induced
by LPS, telmisartan had much stronger suppression effect
than other COX inhibitors (Fig. 7d). The LPS-induced production
of the immunological defensive factors such as CXCL-1 and
inducible nitric oxide synthase were significantly restrained by
the treatment of any of these three drugs (Fig. 7e, f), which
was similar to the results of both Dup-697 and ibuprofen. In
summary, these results showed that telmisartan, chlorpropamide
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and alendronate can reduce the expressions of proinflammatory
factors in mouse peritoneal macrophages. The observed
anti-inflammation effects of these three drugs further extended
the above inhibition assay studies and demonstrated their
potential applications in preventing inflammatory disease.

Taken together, the above experimental assays validated the
novel interactions between the three drugs (i.e., telmisartan,
alendronate and chlorpropamide) and the COX proteins
predicted by DTINet, which further demonstrated the accuracy
of its prediction results and thus provided strong evidence
to support its excellent predictive power. In addition, the
experimentally validated interactions between these three drugs
and the COX proteins can provide great opportunities for
drug repositioning, i.e., finding the new functions (i.e., anti-
inflammatory effects) of these drugs, and offer new insights into
the understanding of their molecular mechanisms of drug action
or side-effects of these drugs.

Discussion
Recent advances in large-scale experimental approaches, e.g.,
mass spectrum-based methods43–46, have made great contribu-
tion to drug development and drug target identification with high
throughput and accuracy. Nevertheless, these methods can only
test one chemical at a time to determine the interacting proteins.
In addition, they are still costly even in a high-throughput
manner. Comparing to these proteomics-based methods,
computational approaches can allow high-throughput prediction
for both drugs and targets, learning their intrinsic features and
inferring the interactions between all potential drug–target pairs
simultaneously. Based on the computational methods, we can
identify a list of promising candidates and thus greatly reduce the
huge search space of drug–target pairs that need to be validated
by wet lab experiments.

Recently, Guney et al.47 showed that the network-based
proximity of known drug targets and disease-associated proteins
on the interactome can provide a good indicator for studying
drug–disease associations and drug efficacy. Cheng et al.48 also
developed a network-based pipeline to predict new indications of
existing drugs, which basically assumed that a drug can be applied
to specific cancer types if the significantly mutated genes are
enriched in those differentially expressed genes induced by the
drug. These two methods were mainly used to study the
drug–disease relationships, but did not directly provide the
information of new DTIs, which instead was the major goal of our
framework. Although the drug–disease relationships may provide
more direct indications of existing drugs, knowing the explicit
DTIs can shed light on the underlying pharmacological mechan-
isms, which are important for understanding both therapeutic and
adverse effects of the corresponding drugs. In addition, the
aforementioned two approaches simply focused on the distances
between the disease-related and drug-related proteins, which
would be sensitive to the incompleteness of known targets, disease
genes and underlying protein–protein interactions. On the other
hand, based on the systematic integration of heterogeneous
network information, in principle our approach can achieve
better and more robust prediction performance (e.g., with less
false-positive predictions) by considering diverse information
from various types of network features.

Among the three drugs whose interactions with the
COX proteins have been validated experimentally in our study,
telmisartan displays unique pleiotropic roles in addition to the
renin–angiotensin system -inhibition effects as an angiotensin II
AT1 receptor antagonist/blocker. It has been reported that
telmisartan acts as a selective modulator of the peroxisome
proliferator-activated receptors (PPAR-γ and -δ)49. Our findings

probably add novel insights into its anti-inflammatory effects as
a COX inhibitor. Several studies have indicated that telmisartan
ameliorates the neuronal, airways and coronary plaque inflam-
matory responses50, 51. Our findings provide direct evidence to
support its interaction on the COX proteins. Its inhibitory effects
on COX and inflammatory cytokine production may partially
explain its anti-inflammatory indications.

For chlorpropamide, a sulfonylurea to increase the secretion of
insulin to treat type 2 diabetes, there are few reports about its
anti-inflammatory effects. Our findings indicate that chlorpro-
pamide can also be a COX inhibitor though with weak binding
affinity (IC50 around 300 μM), which may have implication on its
adverse drug reactions on hematological changes, such as
thrombocytopenia and granulocytopenia as in the hematologic
syndromes induced by other cox inhibitors52, 53. Alendronate,
another drug that we have tested, is a bisphosphonate drug
and potent inhibitor of bone resorption used for the treatment
of metabolic bone diseases. Recent studies have shown that
alendronate can also suppress the production of inflammatory
cytokines and matrix metalloproteinases in alveolar macrophages
for its anti-inflammatory effects54. Our findings about its COX
inhibition suggest that it may interact with COX for its immu-
nological effects. Overall, we have combined the computational
analysis with experimental validation to discover novel DTIs. Our
findings are particularly helpful for understanding the unknown
pharmacological effects of existing drugs and identifying their
potential new applications.

A future direction of our work is to include more hetero-
geneous network data in our framework. While we used only four
domains (i.e., drugs, proteins, diseases and side-effects) of
information in this work, we highlight that DTINet is a scalable
framework in that more additional networks can be easily
incorporated into the current prediction pipeline. Other biologi-
cal entities of different types, such as gene expression, pathways,
symptoms and Gene Ontology (GO) annotations, can also be
integrated into the heterogeneous network for DTI prediction.
Although it was only applied to predict missing DTIs in this
work, DTINet is a versatile approach and definitely can also be
applied to various link prediction problems, e.g., predictions of
drug–side-effect associations, drug–drug interactions and
protein–disease associations.

Methods
The DTINet pipeline. The heterogeneous network input to DTINet is constructed
based on the following known information: drug–protein interactions, drug–drug
interactions, drug–disease associations, drug–side-effect associations, drug–drug
similarities, protein–disease associations, protein–protein interactions, and
protein–protein similarities (see “Data sets” and “Construction of the hetero-
geneous network”). DTINet (Fig. 1) first performs a network diffusion algorithm
(e.g., random walk with restart, RWR20) on each network to obtain a distribution
(also called “diffusion state”) of each drug or protein node, which captures its
topological relations to all other nodes in the heterogeneous network (Supple-
mentary Note 1). Taking both local and global connectivity patterns into account,
this step characterizes the underlying topological context and inherent connection
profiles of each drug or protein node in the network. When the diffusion states of
two nodes are close to each other, it implies that they are in similar positions with
respect to other nodes in the network.

A key observation in the above network diffusion algorithm is that the
originally computed diffusion states are not entirely accurate, in part due to the
noisy, incomplete and high-dimensional nature of biological data. To cope with
this issue, DTINet further applies the DCA method21–23 to approximate the
obtained diffusion distribution by constructing a model parameterized by a
low-dimensional vector representation for each drug or protein node (Fig. 1).
These low-dimensional vector representations are obtained by minimizing the
difference between the diffusion distributions of individual networks and the
corresponding model distributions simultaneously (Fig. 2 and Supplementary
Note 1). Such a process is also called compact feature learning55 and the
resulting low-dimensional vector is also called the feature vector. Intuitively, the
low-dimensional feature vector obtained from compact feature learning encodes
the relational properties (e.g., similarity), association information and topological
context of each drug (or protein) in the heterogeneous network. Akin to principal
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component analysis, which seeks the intrinsic low-dimensional linear structure of
the data to best explain the variance, DCA learns a low-dimensional vector
representation for all nodes such that their connectivity patterns in the
heterogeneous network are best interpreted.

After obtaining the low-dimensional feature vectors of both drugs and proteins,
DTINet computes the best projection from drug space onto protein space via a
matrix completion method, such that the projected low-dimensional feature
vectors of drugs are geometrically as close to the corresponding feature vectors of
their known interacting targets as possible (Fig. 1). After that, the new interacting
targets of a drug are derived based on their geometric closeness to the projected
feature vector of this drug. More details about this operation can be found in
Supplementary Note 1.

Data sets. A total of four types of nodes and six types of edges, representing
diverse drug-related information, were collected from the public databases and
used to construct the heterogeneous network for our DTI prediction task.

We extracted the drug nodes from the DrugBank database (Version 3.0)56 and
the protein nodes from the HPRD database (Release 9)57. The disease nodes were
obtained from the Comparative Toxicogenomics Database58. The side-effect nodes
were collected from the SIDER database (Version 2)59. In addition, we excluded
those isolated nodes; in other words, we only considered those nodes which had at
least one edge (see below) in the network.

We imported the known DTIs as well as drug–drug interactions from DrugBank
(Version 3.0)56. The protein–protein interactions were downloaded from the HPRD
database (Release 9)57. The drug–disease and protein–disease associations were
extracted from the Comparative Toxicogenomics Database58. We also included the
drug–side-effect associations from the SIDER database (Version 2)59.

Construction of the heterogeneous network. Compiling various curated public
drug-related databases, we constructed a heterogeneous network, which includes
12,015 nodes and 1,895,445 edges in total, for predicting missing DTIs (Supple-
mentary Fig. 1 and Supplementary Tables 1, 2). The heterogeneous network
integrates four types of nodes (i.e., drugs, proteins, diseases and side-effects) and six
types of edges (i.e., drug–protein interactions, drug–drug interactions, drug–disease
associations, drug–side-effect associations, protein–disease associations and
protein–protein interactions). Based on chemical structures of drugs and primary
sequences of proteins, we also built up multiple similarity networks (Supplementary
Note 1) to further augment the network heterogeneity, providing our drug–target
prediction task with diverse information and from a multiple-views perspective.

Computational docking analyses. In our structure-based modeling studies, we
used the docking program Autodock3 to infer the possible binding modes of the
new predicted interactions between three drugs (i.e., telmisartan, chlorpropamide
and alendronate) and the COX proteins. The protein structures used in our
docking studies were downloaded from the Protein Data Bank60 (PDB IDs 3kk6
and 3qmo for COX-1 and COX-2, respectively). The three-dimensional structures
of the above three drugs were obtained from the ZINC database61.

Reagents. LPS (L-2360) and 4% sterile thioglycollate were purchased from Sigma-
Aldrich (St Louis, MO, USA). Interferon-γ (IFN-γ) (315-05) was purchased from
PeproTech (New York, NY, USA). Chlorpropamide (S4166), telmisartan (S1738),
alendronate (S1624) and ibuprofen (S1638) were purchased from Selleck Chemicals
(Houston, TX, USA). COX Fluorescent Activity Assay Kit (700,200), arachidonic
acid (90,010), indomethacin (70,270), human recombinant COX-1 and COX-2
enzymes (17,616 and 60,122) and prostaglandin E2 (PGE 2) ELISA kit (514,010)
were purchased from Cayman Chemical Company (Ann Arbor, MI, USA). COX 2
(ab62331) antibody was obtained from Abcam (Cambridge, MA, USA). [3H]
celecoxib was purchased from Hartmann Analytics (Braunschweig, Germany).

Animals. C57BL/6J mice (10 weeks old) were obtained from Vital River (Beijing,
China) and were housed under controlled temperature (22 °C± 2 °C) and humidity
(40–60%) with a 12 h light/dark cycle. For each experiment, three mice were
randomly injected intraperitoneally with 1 ml of 4% sterile thioglycollate and
sacrificed 3 days later. All animal surgery was performed under anesthesia by
Avertin (250 mg/kg), and anesthetized animals were sacrificed by cervical
dislocation at the end of the experiments. All experiments were performed in
accordance with guidelines of the Institute for Laboratory Animal Research of
Tsinghua University. The experimental procedures were approved by the
Administrative Committee of Experimental Animal Care and Use of Tsinghua
University, licensed by the Science and Technology Commission of Beijing
Municipality (SYXK-2014-0024) and they conformed to the National Institute of
Health guidelines on the ethical use of animals.

Cell culture. Peritoneal macrophages were isolated from peritoneum by lavage
using 20 ml Dulbecco's modified Eagle’s medium (DMEM) and seeded into six-well
plates using one hundred million cells/well in DMEM of 10% fetal bovine serum
(FBS). Non-adherent cells were removed 6 h later, whereas adherent cells were
refed with DMEM of 10% FBS and allowed to recover overnight. Macrophages

were treated with chlorpropamide, telmisartan and alendronate for 24 h and then
pre-incubated with DMEM–10% FBS for 2 h before treatment of LPS (10 ng/ml).
Macrophages were pre-treated with DuP-697 and SC-560 for 12 h before
treatment with telmisartan, alendronate and chlorpropamide and then incubated
with IFN-γ (10 ng/ml) for 12 h following LPS stimulation (10 ng/ml) for 6 h.
The concentrations of telmisartan, alendronate and chlorpropamide treatment
were determined based on previous research62–64, while those of the chemical
probe Dub-697 and the known NSAID ibuprofen were determined according to
the indications of the assay kit and previous binding studies in the literature65–67,
respectively. Cells were harvested for subsequent analysis.

COX fluorescent activity. Following stimulation, kidneys were harvested from
mice, and macrophages from the above treatment were homogenized in 5 ml
of cold phosphate-buffered saline (PBS) containing protease inhibitors and
centrifuged at 10,000×g for 15 min at 4 °C. The supernatant was assayed by the
COX fluorescent activity assay kit according to the manufacturer’s instructions.

Human recombinant enzyme assays. The selectivity of inhibition in vitro for
telmisartan, alendronate and chlorpropamide was evaluated using the recombinant
human COX-1 and COX-2 enzyme assays as previously described in68. In
particular, the recombinant enzymes were pre-incubated with various concentra-
tions of telmisartan, alendronate and chlorpropamide for 10min at 25 °C. Then the
10 μM arachidonic acid was added to start the reaction and allowed the process to
proceed for 10min. The reaction was terminated by diluting the reaction into buffer
containing 25 μM indomethacin. The final levels of PGE 2 were measured by ELISA.

Radioligand-based binding assays. The binding assays of Hood et al.69 were used
to assess the direct binding activity to COX-2 by measuring the competitive
binding of the radiolabeled inhibitor [3H] celecoxib to the target enzyme. The
murine monoclonal COX-2-specific antibody was coated onto 96-well Immulon
2HB microtiter plates (Thermo Scientific, Waltham, USA) and incubated overnight
at 37 °C. The coated plates were washed with Dulbecco’s PBS (D-PBS) and blocked
by 10% skim milk to avoid nonspecific binding. The recombinant COX-2 enzyme
binding buffer was added to plates and incubated for 2 h at 37 °C and these
antibody-captured enzyme-coated plates were washed with D-PBS. To measure the
competitive binding activity with celecoxib, compounds at their IC50 concentra-
tions were incubated with [3H] celecoxib and allowed to compete for the binding to
COX-2 for 2 h. After that, the incubation was halted by aspiration and washed
twice with cold D-PBS. The 50 μl of 10% SDS was added into plates for 1 h at 37 °C.
At last, the COX-2 bound radioligand was transferred into the liquid scintillation
vial for quantitation using the liquid scintillation spectrometry.

Real-time PCR analysis. Total RNA was extracted from the whole-cell lysates
using the Trnzol-A+ reagent (Tiangen, Cat. no. DP421, China). Reverse tran-
scription was performed using TIANScript RT Kit (Tiangen, Cat. no. KR104-02,
China). All real-time PCR reactions were carried out on ABI ViiA 7 Real-Time
System (Life Technologies, USA) using TransStart Top Green qPCR SuperMix
(Transgen, Cat. no. AQ131-03, China). The formula 2−ΔΔCt was used to calculate
the relative expression. The expression of the housekeeping gene GAPDH was used
as an internal control.

Statistical analysis in experimental validation results. Statistical analyses were
performed using GraphPad Prism software (Version 6.0). Values were presented as
mean± SD. Every analysis was performed for three independent experiments, each
of which was performed with triplicates. Data were analyzed using a one-way
analysis of variance, followed by a Newman–Keuls multiple comparison test.
Statistical significances were calculated and indicated. *: P< 0.05, **: P< 0.01,
***: P< 0.001.

Code availability. The source code of DTINet can be downloaded from
https://github.com/luoyunan/DTINet.

Data availability. The input heterogeneous network data can be downloaded from
https://github.com/luoyunan/DTINet. All other data that support the results of this
study are available from the corresponding author upon request.
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