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 2 

Abstract 25 

 26 

 Streptococcus mutans is the primary causative agent of dental caries and 27 

contributes to the multispecies biofilm known as dental plaque.  An adenylate kinase-28 

based assay was optimized for S. mutans to detect cell lysis when exposed to the 29 

Selleck library of 853 FDA-approved drugs, in, to our knowledge, the first high-30 

throughput drug screen in S. mutans.  We found 126 drugs with activity against S. 31 

mutans planktonic cultures and they were classified into six categories: antibacterials 32 

(61), antineoplastics (23), ion channel effectors (9), other antimicrobials (7), antifungals 33 

(6), and other (20).  These drugs were also tested for activity against S. mutans biofilm 34 

cultures, and 24 compounds were found to inhibit biofilm formation, 6 killed pre-existing 35 

biofilms, 84 exhibited biofilm inhibition and killing activity, and 12 had no activity against 36 

biofilms.  The activity of 9 selected compounds that exhibited antimicrobial activity were 37 

further characterized for their activity against S. mutans planktonic and biofilm cultures.  38 

Together, our results suggest that S. mutans exhibits a susceptibility profile to a diverse 39 

array of established and novel antibacterials.  40 

  41 
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 3 

Introduction 42 

Streptococcus mutans is the primary causative agent of dental caries, a disease 43 

that affects individuals of all ages, especially those with limited healthcare accessibility 44 

and poor socio-economic circumstances.  S. mutans is amongst the early colonizers of 45 

the tooth surface that promotes binding of other oral bacteria to form a biofilm, known as 46 

dental plaque.  Plaque is a complex biofilm that can consist of over 100 bacterial 47 

species in any individual, although, over 700 types of bacteria have been isolated from 48 

healthy individuals (1).  Dental caries is associated with a decrease in microbial diversity 49 

and a predominance of S. mutans (2).  Even in healthy individuals, the oral microbiome 50 

can consist of closely-related commensals, making targeted therapies a challenge.  51 

While the most efficient anti-caries therapy is regular preventative treatments consisting 52 

of physical removal of plaque, other therapies also exist, such as chemical treatment, 53 

including chlorhexidine and fluoride, reduction of dietary sugars, and antibiotics (3).  As 54 

one of the early colonizers of the plaque biofilm, S. mutans is a rational target for anti-55 

caries prophylaxis. 56 

Previous work in targeting S. mutans has focused on characterizing the activity of 57 

individual drugs, including toothpaste components (4-7), natural products (8-11), or 58 

antibiotics (12-15).  Large-scale screens for activity of antimicrobial peptides against S. 59 

mutans have also been reported (16, 17).  However, large-scale drug susceptibility 60 

assessment of oral microbiome constituents, including mutans streptococci, remains 61 

relatively understudied compared to other Gram-positive pathogens, such as 62 

Staphylococcus aureus ((18-21), for example). 63 
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 4 

The adenylate kinase (AK) assay was originally adapted as a high-throughput 64 

method to detect lysis of fungal cells (22).  Since then, it has been optimized for use 65 

with bacteria in high-throughput screens of the ESKAPE pathogens, as well as M. 66 

tuberculosis (18, 23).  Screening for compounds using the AK assay offers numerous 67 

advantages: specific detection of bactericidal drugs; increased sensitivity over standard 68 

growth-based or Alamar blue assays; detection of bioactive molecules below the 69 

minimum inhibitory concentration (MIC) (22); and, importantly, the ability to detect anti-70 

biofilm activity of drugs (18).   71 

The Selleck library has been used with other organisms to discover new uses for 72 

proven, FDA-approved drugs in an effort to repurpose these compounds for “off-label” 73 

uses.  Drug repurposing, also known as repositioning, has gained momentum mostly 74 

due to its advantages over de novo drug discovery (24), including reduced risk to 75 

patients due to previously documented clinical trials, lower drug development costs, and 76 

faster benchtop-to-clinic transition.  Large drug and compound libraries exist and can be 77 

screened for new activities and alternate uses, which can aid in rapid identification of 78 

new therapies (19, 23, 25).  In addition to assigning new activities to previously 79 

characterized compounds, compound libraries are also an ideal source of adjuvants, 80 

molecules that have little-to-no antibiotic activity alone, but can be used in combination 81 

with other drugs to enhance antimicrobial activity and, in some cases, circumvent 82 

resistance mechanisms (26-28).  For example, we found that the Vitamin D derivative, 83 

doxercalciferol, acts synergistically with bacitracin through a mechanism involving the S. 84 

mutans bacitracin resistance transporter, MBR (29).  85 
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 5 

Herein, we report that the AK assay is an effective method of high-throughput 86 

drug screening and detection of S. mutans lysis.  Our results demonstrate that S. 87 

mutans exhibits a distinct susceptibility profile to established and novel antibacterials 88 

and offers possibilities for new effective anti-caries approaches.  89 

 90 

  91 
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 6 

Materials and Methods 92 

 93 

Strains and growth conditions  94 

Streptococcus mutans strain UA159 (30), was maintained on Brain-Heart 95 

Infusion agar medium (BD/Difco, Franklin Lakes, NJ).  Cultures were grown at 37°C in a 96 

5% (v/v) CO2/95% air atmosphere in either BHI or TY medium (3% tryptone, 0.1% yeast 97 

extract, 0.5% KOH, 1 mM H3PO4) + 1% (w/v) glucose (TYG).  For biofilm analyses, cells 98 

were grown in TY medium + 1% (w/v) sucrose (TYS).  99 

 100 

Chemicals and compound library 101 

We utilized the Selleck library (Selleck Chemical, Houston, TX), a compilation of 102 

853 FDA approved, off-patent compounds that have diverse functions, structures, and 103 

cellular targets.  The chemicals in the library were at a concentration of 10 mM (stock) in 104 

DMSO.    105 

 106 

Adenylate kinase assay 107 

Adenylate kinase assays were performed as previously described (18), with 108 

minor modifications.  Briefly, overnight cultures of S. mutans UA159 were diluted 1:50 109 

into 50 mL fresh TYG medium and grown to exponential phase (OD600 ~ 0.5).  In a 96-110 

well opaque plate (Corning, Corning, NY), 106 cells/well were combined with test 111 

molecule (solubilized in DMSO; final concentration of DMSO <0.5%) in a final volume of 112 

100 µL (50 µM final concentration of drug).  Plates were incubated at 37°C in a 5% (v/v) 113 

CO2/95% air atmosphere for 3h then equilibrated to room temperature for 1h.  114 
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 7 

Reconstituted adenylate kinase (AK) detection reagent (ToxiLight Non-destructive 115 

Cytotoxicity BioAssay Kit, 100 µL; Lonza, Walkersville, MD) was added to each well and 116 

the plate was incubated in the dark for 1h at room temperature.  Luminescence was 117 

measured with an integration time of 1000 ms per well on a SpectraMax M5 plate 118 

reader (Molecular Devices, Sunnyvale, CA).  Ciprofloxacin (positive control) and DMSO 119 

(negative control) were included on all plates.  A “hit” was defined as a compound that 120 

elicited a 2-fold increase in AK signal when compared to the vehicle (DMSO)-treated 121 

cells in two independent screens.  Background luminescence was similar across 122 

different plates and days.  For biofilm cultures, logarithmic phase cells were seeded in 123 

flat-bottomed 96-well plates (Corning Inc., Corning, NY) and grown in TYS at 37°C in a 124 

5% (v/v) CO2/95% air atmosphere for ~18h.  Plates were washed 3 times with sterile 125 

PBS to remove planktonic cells.  Drug (50 µM final concentration) and fresh medium 126 

(TYS) were added to wells, and the cultures were incubated for an additional 18h.  After 127 

1h equilibration at RT, 50 µl from each well was transferred to opaque 96-well plates 128 

with equal volume AK reagent and the reaction was allowed to proceed for 1h, followed 129 

by measurement of luminescence, as described above.  130 

 131 

Z’ score determination 132 

The Z’ score for the AK assay was assessed to determine the signal-to-noise 133 

ratio, as well as the intra-plate variability (31).  A value between 0.5 and 1 indicates that 134 

the assay is suitable for high-throughput screening. 135 

S. mutans UA159 was grown to exponential phase (OD600 ~ 0.5) in TYG medium.  136 

To each well of a 96-well opaque plate, 106 CFU were added in fresh media and DMSO 137 
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 8 

or ciprofloxacin (final drug concentration 20 µg/mL; 10X MIC; Sigma Aldrich, St. Louis, 138 

MO) were treated in alternating columns.  Total well volume was 100 µL.  Plates were 139 

treated with the AK assay reagent and luminescence was measured as described 140 

above.  Z’ score was assessed as described previously (31).  141 

 142 

MIC testing 143 

To determine the MIC of test compounds against S. mutans UA159, a two-fold 144 

dilution series of test compounds (biapenem, cefdinir, conivaptan, disulfiram, felodipine, 145 

ponatinib, tretinoin, zinc pyrithione (Selleck Chemical, Houston, TX) and simvastatin 146 

(Sigma Aldrich, St. Louis, MO)) were added to fresh TYG medium in a 96-well plate 147 

(Corning, Inc., Corning, NY) at concentrations ranging from 0-64 µg/mL.  An overnight 148 

culture of UA159 grown in BHI medium was diluted 1:50 in fresh TYG medium, grown to 149 

early exponential phase (OD600 ~0.3), and used to inoculate the plate containing fresh 150 

medium and drug (105 CFU/well).  The plate was incubated at 37°C in a 5% (v/v) 151 

CO2/95% air atmosphere for 24h.  The MIC was defined as the lowest compound 152 

concentration that inhibited ~90% bacterial growth, as measured by OD600. 153 

 154 

FIC testing 155 

Synergy was assessed by identifying the fractional inhibitory concentration (FIC), 156 

given by the equation:  𝐹𝐼𝐶 =
𝑀𝐼𝐶𝐴

𝑀𝐼𝐶𝐴𝐵
+

𝑀𝐼𝐶𝐵

𝑀𝐼𝐶𝐴𝐵
 , where A and B are the two drugs tested 157 

alone, or in combination (AB), and were measured using the standard checkerboard 158 

method (32).  FICs were interpreted according to standard definitions, where “synergy” 159 
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 9 

is defined as a FICI score ≤ 0.5, “antagonism” is defined as a FICI score > 4.0 and “no 160 

interaction” is a score of 0.5 ≤ FICI ≤ 4.0. 161 

 162 

Measurement of biofilm growth by crystal violet  163 

Biofilm formation was measured as previously described (33).  Briefly, cultures 164 

grown to logarithmic phase (OD600 ~0.5) in TYS were added to 96-well plates and 165 

incubated at 37°C in a 5% (v/v) CO2/95% air atmosphere for ~18h in the presence or 166 

absence of drug.  Planktonic cells were removed by washing wells 3 times with distilled 167 

water.  Plates were dried overnight at 70°C.  Biofilms were stained with 100 µL crystal 168 

violet (0.1%) for 15min then washed 5 times with distilled water.  Adherent crystal violet 169 

was reconstituted with acetic acid (500 mM) and plates were read with a BioRad 170 

BenchMark Plus Spectrophotometer at 575nm (BioRad, Hercules, CA).  The minimum 171 

biofilm inhibitory concentration (MBIC) was defined as the minimum drug concentration 172 

that reduced crystal violet staining by 90%.   173 
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 10 

Results  174 

 175 

Optimization of the AK assay for detection of drugs with anti-Streptococcus mutans 176 

activity 177 

The adenylate kinase (AK) assay has been described as a method to screen 178 

bacteria for sensitivity to antimicrobials, or other bioactive compounds, by measuring 179 

cell lysis (18, 22).  Here, we optimized the AK assay for detection of S. mutans 180 

adenylate kinase release, indicative of cell lysis.  A dilution series of cells was heat-181 

killed and compared to luminescence from live cells, revealing assay sensitivity as low 182 

as 104 cells (Figure 1A).  In order to ensure that the AK assay was suitable for high-183 

throughput screening of S. mutans, a Z’ score was calculated by comparing 184 

ciprofloxacin-treated cells (at 10X MIC) to background signal from DMSO.  The Z’ score 185 

has been described as a method for determining quality and reproducibility of an assay, 186 

such that an assay with a Z’ score between 0.5 and 1 is suitable for use in high-187 

throughput screening (31).  The Z’ score measured in our study, using ciprofloxacin as a 188 

positive control, was 0.73 (Figure 1B). 189 

 190 

Drugs with anti-Streptococcus mutans activity are diverse 191 

Using the optimized AK assay parameters, we were then able to screen the 192 

Selleck library of 853 off-patent drugs to detect compounds with activity against S. 193 

mutans grown in planktonic cultures.  Drugs that resulted in a greater than 2-fold signal 194 

above the negative control (DMSO alone) in two identical, independent screens were 195 

considered a “hit” (Figure 2).  Of the drugs in the Selleck library, 126 resulted in a signal 196 
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 11 

that was 2-fold above background luminescence in two independent screens, resulting 197 

in an overall hit rate of approx. 15% (Table S1).  198 

 Although S. mutans is found in saliva, the primary niche is a multi-species biofilm 199 

on the tooth surface where it serves as an early colonizer or biofilm initiator (34). 200 

Previous studies have shown that sucrose stimulates the production of 201 

glucosyltransferases that contribute to the formation of the biofilm matrix (34). 202 

Therefore, we used S. mutans grown in sucrose to screen the 126 hit compounds found 203 

using planktonic cultures, for activity against pre-formed biofilms and for their ability to 204 

inhibit biofilm formation.  205 

In order to measure the ability of compounds to lyse established biofilms, the AK 206 

assay was adapted, as described previously (18), and optimized for S. mutans.  Pre-207 

formed biofilms were incubated with compounds (50 µM final concentration) for 18h 208 

prior to detection using the AK reagent.  Similar to the primary screen, luminescent 209 

readouts from biofilms were normalized to DMSO (negative control) and compared to 210 

killing by ciprofloxacin (positive control); both DMSO and ciprofloxacin were present in 211 

all plates.  Of the 126 hits against planktonic cells, 90 compounds induced AK release 212 

when exposed to biofilm cultures of S. mutans, with a signal at least 2-fold above 213 

background, including the internal control, ciprofloxacin (Figure 3A and Table S1).   214 

We then tested the ability of the 126 hit compounds to prevent biofilm formation.  215 

Compounds (50 µM final) were incubated with exponential phase cultures (106 216 

cells/well) for 18h.  Biofilm mass was quantitated by crystal violet staining, relative to 217 

DMSO (negative control) and ciprofloxacin (positive control).  Drugs that resulted in a 218 

>2-fold decrease in signal after crystal violet staining, relative to the negative control 219 
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 12 

(DMSO alone), were considered “hits.”  We observed that a large subset of drugs (108 220 

of the 126 hits from the Selleck library) that were effective at inducing AK release when 221 

exposed to planktonic cells were also effective at decreasing biofilm mass in vitro 222 

(Figure 3A).   223 

A majority of the compounds identified in the primary screen (114/126) had some 224 

activity against S. mutans biofilms (Figure 3A and Table S1).  With the exception of 6 225 

drugs (atorvastatin, calcitriol, cephalexin, ivermectin, meclizine, and mitotane), most 226 

compounds that induced AK release when exposed to pre-formed biofilms (84) were 227 

also able to inhibit de novo biofilm formation in our assays.  These results confirm that 228 

the AK assay is an effective method for detecting compounds with anti-Streptococcus 229 

mutans activity.  Overall, the drugs that displayed activity against S. mutans were 230 

structurally distinct, were derived from various drug classes, and targeted a diverse 231 

array of molecular targets, as well as their original intended uses (Table 1 and S1).  232 

Because of the diverse nature of our hits, we chose to confirm one or more drugs from 233 

each class (Figure 3B) to validate the AK assay results and to serve as a building block 234 

for future work.  235 

 236 

Classes and Characterization of hit drugs 237 

Antibacterials 238 

A majority of the 126 hit compounds from the AK screen are classified as 239 

antibacterials (approx. 48%), many of which have not been specifically characterized for 240 

activity against streptococci.  This category also contains a significant portion of 241 

common antibiotics, such as ciprofloxacin, ampicillin, and amoxicillin, which served as 242 
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 13 

internal positive controls for the AK assay.  Hit drugs with antibacterial activity were 243 

further divided into subclasses: penams, quinolones, tetracycline-derivatives, 244 

macrolides, carbapenems, antimycobacterial, cephalosporins, and glycopeptide-245 

derivatives (Figure 3B).  Drugs classified as miscellaneous had only one represented 246 

drug in the class and included: bacitracin, chloroxine, crystal violet, daptomycin, 247 

novobiocin, dequalinium chloride, linezolid, retapamulin, thiamphenicol, and tigecycline.  248 

 Carbapenem-class antibiotics are a broad-spectrum class of β-lactam derivatives 249 

that have been shown to have potent activity against a range of Gram-negative and 250 

Gram-positive bacteria, including anaerobes.  We identified 4 carbapenem-class 251 

antibiotics as hits in our screen, including biapenem, doripenem, meropenem, and 252 

tebipenem.  These drugs displayed MICs between 0.5-2 µg/mL, were able to inhibit 253 

biofilm formation (Table 1 and Table S1), and also had activity against pre-formed 254 

biofilms (Table S1).  Follow up assays revealed that biapenem had potent activity 255 

against planktonic cultures of Streptococcus mutans (MIC = 0.0625 µg/mL), as well as 256 

biofilm cultures (MBIC = 0.0625 µg/mL) (Table 1).   257 

Cephalosporins have been shown to have activity in anaerobic conditions as well 258 

as enhanced activity in mixed infections (35).  Moreover, certain cephalosporins have 259 

been found to have variable in vitro activity in the presence of glucose or sucrose (36).  260 

Cefdinir, one of 6 cephalosporin-class drugs identified in our screen, is a third-261 

generation cephalosporin that has broad-spectrum activity against Gram-positive and 262 

Gram-negative bacteria, and is commonly prescribed by dentists, though it has not 263 

specifically been shown to have activity against S. mutans.  As expected, 264 

cephalosporin-class drugs had relatively high activity against S. mutans (cefdinir 265 
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MIC/MBIC: 0.25 µg/mL); however, in contrast to previous reports, we did not observe 266 

any significant differences in susceptibility to cefdinir when S. mutans was grown in 267 

presence of either carbon source. 268 

The retinoid-class drug, tretinoin, is a vitamin A-derivative often used topically to 269 

treat skin infection or specific types of leukemia.  In combination with erythromycin, 270 

tretinoin is used in the treatment of Propionibacterium acnes as an alternative to 271 

systemic therapies (37).  Both tretinoin and its isomer isotretinoin were detected as 272 

compounds that significantly induced AK release from S. mutans in our screen.  273 

However, all concentrations of tretinoin tested were unable to prevent either planktonic 274 

(Table 1) or biofilm growth (Figure 4). 275 

 276 

Ion channel effectors 277 

One of the acid-tolerance mechanisms used by S. mutans is the expulsion of 278 

protons from the cell via a membrane-bound F-ATPase, resulting in a more acidic 279 

external environment.  This decrease in local pH then contributes to the organism’s 280 

virulence, as other commensal organisms are unable to survive this acidic challenge 281 

(38).  As such, drugs that target ion channels may be rational, effective drug targets 282 

against S. mutans.  We identified 10 drugs that are known to have activity associated 283 

with ion channels, including effectors of calcium channels (6 compounds), potassium 284 

channels (1), proton pumps (1), chloride channels (1), and sodium channels (1).  285 

Felodipine is a calcium channel blocker that has been shown, along with 286 

analogs, to have weak activity against Gram-positive bacteria and fungi (39).  Addition 287 

of felodipine to planktonic cultures of S. mutans inhibited growth at 32 µg/mL, while 288 
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concentrations at 0.5X MIC led to a reduction in biofilm formation, relative to the DMSO 289 

control (Figure 4).  290 

Zinc pyrithione is an anti-seborrheic, often used in topical formulations that has 291 

previously been shown to have bacteriostatic properties against streptococci and 292 

staphylococci, as well as broad-spectrum antimicrobial activity against other Gram-293 

positive bacteria, Gram-negative bacteria, and fungi (40, 41).  The use of zinc pyrithione 294 

has been gaining momentum as evidenced by recent reports of its activity against 295 

biofilms (42), aminoglycoside resistance (43), and clearance of bacteria from wound 296 

sites (40).  Mechanistic studies revealed that membrane permeability is increased in 297 

zinc pyrithione-treated cells and may also mediate the influx of damaging metal ions into 298 

the cell (41, 44).  In fungi, pyrithione inhibits membrane transport and specifically targets 299 

proton pumps in a pH-dependent manner (45).  Its antimicrobial activity has been 300 

attributed to its ability to chelate metals and transport them across membranes (41).  In 301 

S. mutans, zinc pyrithione inhibited growth at 1 µg/mL and was bactericidal at 2 µg/mL, 302 

while biofilm formation was inhibited at concentrations as low as 0.5 µg/mL (MBIC, 303 

Figure 4).  304 

Conivaptan is a vasopressin inhibitor that was detected in the AK assay as a 305 

compound that induced AK release from S. mutans.  In humans, vasopressin receptor 306 

antagonists, like conivaptan, disrupt water and electrolyte balances by selectively 307 

binding to two out of three vasopressin receptors (46).  To our knowledge, antimicrobial 308 

activity has not been previously attributed to a vasopressin receptor antagonist.  309 

Secondary assays showed it did not inhibit growth at the highest concentration tested 310 

(128 µg/mL), but reduced biofilm mass when tested at a concentration 64 µg/mL 311 
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(p<0.05; Figure 4).  While the genome of S. mutans does not possess significant 312 

homology to vasopressin receptors, it is possible that conivaptan disrupts osmotic 313 

balance through a distinct mechanism.  314 

 315 

Antineoplastic 316 

Several antineoplastic drugs that exhibited activity against S. mutans also 317 

possessed activity against other Gram-positive bacteria, including tamoxifen, 318 

doxorubicin, and ponatinib, further validating the AK assay (18, 47).  Ponatinib is a 319 

tyrosine kinase inhibitor that has a similar mechanism of action as the well-known, 320 

“rationally designed” drug Gleevec (imatinib), used in the treatment of chronic myeloid 321 

leukemia (48-50).  To date, no known antimicrobial activity of ponatinib has been 322 

reported, though Gleevec has been shown to accentuate the bactericidal activity of 323 

macrophages against Mycobacterium tuberculosis (51) and inhibit the phosphorylation 324 

of CagA, a Helicobacter pylori virulence factor (52).  While the genome of S. mutans 325 

does not encode tyrosine kinases or proteins with significant homology to the 326 

Helicobacter CagA, it does encode several ABC transporters with significant homology 327 

to the human target for leukemia (ABCG2).   Secondary assays revealed that ponatinib 328 

inhibited growth of S. mutans planktonic cultures (MIC = 8 µg/mL) (Table 1), was able to 329 

inhibit biofilm formation (MBIC = 4 µg/mL) (Figure 4), as well as induce AK release from 330 

pre-formed biofilms.   The antibacterial activity of ponatinib against S. mutans is a novel 331 

finding. 332 

 333 

Antifungal 334 
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The antibacterial activity of imidazole-derivatives has been previously 335 

documented, including evidence that certain azoles can be used to treat oral maladies 336 

such as caries and periodontitis (53-55).  Consistent with previous work, we detected 6 337 

azole-class drugs that had bactericidal activity against S. mutans, including 338 

butoconazole, clotrimazole, econazole, fentriconazole, miconazole, and ticonazole.  All 339 

azole hits displayed a relatively low MIC against S. mutans (approx. 8 µg/mL or lower; 340 

MIC of fentriconazole was 4 µg/mL).  In addition, all six antifungal drugs had the ability 341 

to inhibit S. mutans biofilm formation, as well as induce AK release when exposed to 342 

pre-formed biofilms (Table S1).  Interestingly, despite their efficacy and approval for use 343 

on mucosal surfaces, many of the azole drugs have not been documented for treatment 344 

of bacterial infections.   345 

 346 

Statins 347 

Interest in the cholesterol-lowering drugs called statins has been growing since 348 

their diverse antimicrobial activity has been elucidated (reviewed in (56)).  Statins target 349 

the HMG-CoA reductase enzyme in the sterol biosynthetic pathway, a pathway that is 350 

conserved in humans, fungi and bacteria.  The mevalonate pathway is conserved in 351 

Gram-positive bacteria, and has been shown to be essential for growth of S. 352 

pneumoniae (57).  We have previously demonstrated that in S. mutans, the loss of 353 

HMG-CoA synthase (SMU.943c), HMG-CoA reductase (SMU.942), mevalonate kinase 354 

(SMU.181), and mevalonate diphosphate decarboxylase (SMU.937) are lethal events 355 

(33).  However, interruption of phosphomevalonate kinase (SMU.938) resulted in a 356 

viable organism, but with a defect in biofilm formation (33).  357 

 on O
ctober 24, 2017 by F

U
D

A
N

 U
N

IV
E

R
S

IT
Y

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 18 

Three out of the seven statin-class drugs (lovastatin, simvastatin, and 358 

atorvastatin) in the Selleck library had detectable lytic activity against S. mutans, as 359 

measured by the AK assay (Figure 5A).   Secondary assays revealed that statins, 360 

including simvastatin, had a minor effect on growth inhibition (Figure 5B), but could 361 

significantly inhibit biofilms at concentrations below the MIC (as low as 25 µg/mL) 362 

(Figure 5C).  However, in the presence of 50 µg/mL simvastatin, biofilm formation was 363 

significantly reduced by ~90% relative to control (MBIC = 50 µg/mL) (Figure 5C).  364 

 365 

Disulfiram 366 

Disulfiram has previously been shown to have activity against bacteria, such as 367 

in the case of growth inhibition of Staphylococcus aureus (58) and, recently, acting 368 

synergistically with copper to kill Mycobacterium tuberculosis (MIC = 16 µg/mL) (59).  369 

The purposed mechanism of action from that study was the initial breakage of the 370 

disulfide bond (Table 1), followed by coordination with copper, which shuttled ions 371 

across the membrane.  As a hit in the AK assay screen, disulfiram induced release of 372 

AK when exposed to planktonic cultures of S. mutans.  Therefore, we wanted to 373 

examine whether disulfiram had a similar mechanism in S. mutans by using copper in 374 

the standard fractional inhibition concentration (FIC) assay.  In the absence of copper, 375 

the MIC of disulfiram against planktonic cells was 16 µg/mL.  Combination of disulfiram 376 

and copper, resulted in a color change in the growth medium, indicative of breakage of 377 

the disulfide bond and coordination of copper, as reported by Dalecki et al. (59).  The 378 

combination of copper (0.625 mM, 106.6 µg/mL) and disulfiram (4 µg/mL) is synergistic 379 

with an FIC of 0.375 (Table 2).  When disulfiram was used in conjunction with copper 380 
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against biofilm cultures, the combination was also synergistic (FIC 0.313), as 0.625 mM 381 

(106.55 µg/mL) copper and 2 µg/mL disulfiram inhibited biofilm formation (MBIC, Table 382 

2).  Therefore, it is likely that disulfiram inhibits growth of S. mutans with a mechanism 383 

similar to the “Trojan horse” mechanism of copper chelation proposed in M. tuberculosis 384 

(59).  385 

 Our data shows that although chelation by copper may play a part, addition of 386 

copper did not have as large an impact on S. mutans as observed with M. tuberculosis 387 

(59).  Other reports have shown that decomposition products of disulfiram have also 388 

been shown to have activity against Pseudomonas aeruginosa, where they target 389 

PaBADH, an aldehyde dehydrogenase, involved in choline metabolism (60).  The 390 

genome of S. mutans does not encode a protein with significant homology to BADH.  391 

Therefore, it is unlikely that disulfiram is specifically targeting the aldehyde 392 

dehydrogenase of S. mutans (adhE) as the primary mechanism.  393 

 394 

Discussion 395 

As the primary etiologic agent of dental caries and one of the initiators of dental 396 

plaque, S. mutans is an ideal target for the prevention and treatment of caries.  Here, 397 

we describe the first application of the AK assay, as well as, to our knowledge, the first 398 

high-throughput drug screen in S. mutans.  Our data show that AK release from S. 399 

mutans, indicative of cell lysis, was detectable at approximately 104 cells, making the 400 

AK assay approximately 10-100X more sensitive than growth-based assays.  401 

 Use of the AK assay to screen the Selleck library, containing 853 FDA-402 

approved, off-patent drugs, against S. mutans resulted in 126 hits (a rate of ~15%), 90% 403 
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of which demonstrated activity against biofilm cultures.  Compared to similar screens 404 

with other organisms, the hit rate, or number of drugs that exhibited bactericidal activity 405 

against S. mutans, is relatively high, highlighting the need for bacterial species-specific 406 

drug screening and characterization.   407 

One of the goals of this project was to use a repositioning approach to drug 408 

discovery in S. mutans.  Therefore, we chose to further characterize a diverse set of 409 

drugs that had not been previously categorized as antibacterial.  Functional groups of 410 

repurposed drugs can be modified to enhance activity and specificity against an 411 

organism.  In the age of growing antibiotic resistance, repurposed drugs can also be 412 

used in combination therapy or as an adjuvant to boost activity of antibiotics.  As part of 413 

our secondary assays, we tested antimicrobial activity of all drugs in Table 1 in 414 

combination with fluoride, an accepted, preventative dental therapy and potentiator of S. 415 

mutans (61); though, none of the drugs tested here exhibited synergistic activity in 416 

combination with fluoride.  However, this does not preclude the possibility of fluoride, or 417 

another current oral medication, to synergistically affect the activity of another 418 

compound.   419 

Compound libraries have also been used to identify novel antibiotics targeting 420 

specific metabolic pathways, such as platensimycin that targets the fatty acid 421 

biosynthesis pathway (FASII) (62).  Discovering the mechanism of action for such drugs 422 

has helped to elucidate the activity of the targeted enzyme (in this case, ß-ketoacyl-423 

acyl-carrier-protein (ACP) synthase).  The hit compounds from our study could also be 424 

exploited as tools for the discovery of pathway mechanisms in bacteria.  Further 425 
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experiments are necessary to examine the hits from this study that, despite exhibiting 426 

low antibacterial activity (high MIC), resulted in detectable AK release. 427 
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Figure Legends  633 

Figure 1A: Optimization of the AK assay for detection of AK release from S. 634 

mutans UA159.  AK activity vs. CFU of Streptococcus mutans UA159.  Values for live 635 

cells and heat-killed cells were statistically significant for each pairwise comparison 636 

using Student’s t-Test (two-tailed); * p<0.001.  637 

 638 

Figure 1B: Z’ score determination for detection of S. mutans AK release.  Z’ score 639 

was calculated according to the equation:  𝑍′ = 1 − 3 (
𝜎++𝜎−

|𝜇+−𝜇−|
) , where σ and µ are the 640 

standard deviation and average, respectively, for the positive (+, ciprofloxacin 20 641 

µg/mL) and negative (-, DMSO 0.5%) controls.  642 

 643 

Figure 2: AK assay data from a representative plate. Graphical representation of 644 

relative luminescence units (RLU, y-axis) vs. plate position.  Dotted line shows the cut-645 

off value of 2-fold above background (DMSO).  Drugs contained in these wells were 646 

used for further analysis.  647 

 648 

Table 1: Select drugs identified in the AK assay screen of the Selleck library. 649 

 650 

Figure 3A: Drugs with activity against biofilm cultures of S. mutans.  Of the 126 651 

hits with activity against planktonic cells, 24 exclusively inhibited in vitro biofilm 652 

formation (“inhibits”), 6 exclusively induced AK release in pre-formed biofilms (“kills”), 653 

and 84 hits displayed both biofilm inhibition as well as activity against pre-formed 654 

biofilms. 12 compounds had no effect on biofilms.  655 
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 656 

Figure 3B:  Classes of hit compounds from the Selleck library with activity 657 

against planktonic cultures of S. mutans UA159. 658 

 659 

Figure 4: Biofilm inhibition in the presence of select hit drugs from the AK assay.  660 

Select hit drugs from each class identified from the Selleck screen were assayed at 661 

0.25X, 0.5X, and 1X MIC for their ability to prevent biofilm formation in vitro.  Data were 662 

normalized to DMSO control. * p<0.05 (Student’s t-Test; two-tailed).   663 

 664 

Figure 5A: Select statin-class drugs lysed S. mutans in AK assay screen of 665 

Selleck library.  Statins were identified in the screening of the Selleck library against 666 

planktonic cultures of S. mutans UA159.  Data are representative of 2 independent 667 

screens.  668 

 669 

Figure 5B: Simvastatin inhibits growth of S. mutans. Growth of log-phase S. mutans 670 

UA159 was measured via OD600 in the presence of varying amounts of simvastatin.  671 

(n=5) 672 

 673 

Figure 5C: Simvastatin inhibits biofilm formation of S. mutans.  Simvastatin was 674 

tested at 0.5X and 1X MIC for the ability to prevent in vitro biofilm formation of cells 675 

grown in TY + 1% (w/v) glucose or TY + 1% (w/v) sucrose, as detected by crystal violet 676 

staining (OD575).  Data were normalized to DMSO control. * p<0.05 (Student’s t-Test; 677 

two-tailed).   678 
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 679 

Table 2: Disulfiram and copper are synergistic against planktonic and biofilm 680 

cells.  Disulfiram (0-64 µg/mL) and copper (0-10 mM) were arrayed in a checkerboard 681 

format in a 96-well plate as described in Materials and Methods.  MICs were defined as 682 

the lowest concentration that resulted in >90% growth inhibition relative to no drug, as 683 

measured by OD600 for planktonic cells and crystal violet staining (OD575) for biofilms. # 684 

indicates different units used for copper (mM) as compared to disulfiram (µg/mL).  685 
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Figure 3A   

Figure 3B 
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Drug Structure
[HTS] 

(µg/mL) 
MIC (µg/ml)

Planktonic Biofilm

Biapenem 17.52 0.0625 0.0625

Cefdinir 19.77 0.25 0.25

Conivaptan 26.75 >128 128

Disulfiram 14.83 16 32

Felodipine 19.21 16 16

Ponatinib 26.63 8 4

Zinc pyrithione 15.89 1 1

Simvastatin 20.93 64 50

Tretinoin 15.02 >128 >128

Table 1
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planktonic biofilm

MIC alone MICin combo MIC alone MICin combo

disulfiram 16 4 32 2

copper 5# 0.625# 2.5# 0.625#

FIC 0.375 0.3125

Table 2
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