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A B S T R A C T

Curcumin is a natural compound isolated from the rhizome of Curcuma longa. It possesses anti-tumor activity
through arresting cell cycles and promoting cell apoptosis. However, the effect of curcumin on DNA damage is
not well defined. In this study, we investigated the effect of curcumin on inducing DNA damage and on sensi-
tizing lymphoma cells to anti-tumoral DNA damage drugs. Western blot showed curcumin induced γ-H2AX foci
in CH12F3 lymphoma cells, which suggests curcumin induces DNA breaks. In addition, curcumin decreased the
expression of Rad51, which suggests curcumin induces DNA damage through regulating Rad51-dependant
homologous recombination. Rad51-dependant homologous recombination is a vital DNA repair pathway for
cancer cells to resist anti-tumoral DNA damage drugs, therefore, we studied the effect of curcumin on the
sensitizing lymphoma cells to various chemotherapeutic drugs. We found low level of curcumin (5 μM) sensi-
tized lymphoma cells to anti-tumoral DNA damage agents including cisplatin, methyl methanesulfonate, hy-
droxyurea and camptothecin. We also found curcumin sensitized CH12F3 lymphoma cells to DNA-PK and PARP
inhibitors. Flow cytometry analysis showed curcumin promoted apoptosis and western blot analysis confirmed
curcumin activated caspase3-dependent apoptosis. Taken together, these results demonstrate that curcumin
induces DNA damage through regulating Rad51-dependant homologous recombination and triggers caspase3-
dependent apoptosis, more importantly, curcumin sensitizes lymphoma cells to various DNA damage drugs.
Consequently, curcumin would be a potent agent for sensitizing lymphoma cells to anti-tumoral chemother-
apeutic agents.

1. Introduction

Curcumin is a natural compound isolated from the rhizome of
Curcuma longa [1]. Curcumin possesses anti-tumor activity in different
types of cancers including lung cancer, colon cancer, breast cancer,
leukemia, ovarian cancer and liver cancer [2–5]. Curcumin reportedly
suppresses tumor cell proliferation and invasion, causes cell cycle ar-
rest, and induces cell apoptosis [4,6–8]. Curcumin also has other bio-
logical effects including anti-oxidant and anti-inflammatory activities
and acts as a dietary condiment [9–12]. However, the roles of curcumin
in DNA damage were not well defined, and the effects of curcumin in
sensitizing tumor cells to anti-tumoral drugs were not well known. Thus

it is important to study the actions of curcumin in DNA damage and its
effects to suppress tumor cells in combination with anti-tumoral agents.

During tumorigenesis, the mutations often occur in genes related to
DNA repair, which include TP53, BRCA1, BRCA2, XRCC1, PTEN and so
on [13–17]. Due to the deficient DNA repair system in tumor cells, DNA
damage agents are generally used as anti-tumoral drugs to suppress
tumor cell growth. Hydroxyurea is used to disrupt progression of the
replication fork, which involves in the formation of DSBs at newly re-
plicated DNA [18]. Camptothecin is an inhibitor of topoisomerase I,
which can generate DSBs at the sites of DNA replication [19–21]. Cis-
platin is widely used as an anti-tumoral drug which reacts with DNA to
form DNA interstrand crosslinks that leads to genomic instability
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[22,23]. There are two main pathways to repair double-strand breaks
(DSB) including homologous recombination (HR) and non-homologous
end-joining (NHEJ), in which HR reportedly contributes tumor cells to
resist the DNA damage agents [24,25]. Rad51 is a vital factor to search
homologous donor sequence in HR pathway. In this study, we analyzed
the role of curcumin in regulating Rad51-dependent HR pathway and
the effects of curcumin on sensitizing lymphoma cells to various anti-
tumoral DNA damage agents.

Poly(ADP-ribose) polymerase (PARP) is a protein family that
transfers mono(ADP-ribose) or poly(ADP-ribose) (PAR) group onto
their target proteins, in which PARP1 is an important family member
[26]. The zinc-figure domain of PARP1 protein recognizes DNA breaks
and initiates DNA repair [27]. Inhibition of PARP activity can cause
DNA damage, which can efficiently treat HR-deficient tumor cells,
while the BRCA1/2 wildtype cells resist to PARP inhibitors [28,29].
DNA-PK is a serine/threonine kinase that plays essential roles to cata-
lyze the downstream factors in NHEJ pathway [24]. We also analyzed
the effect of curcumin on growth of lymphoma cells in combination
with PARP and DNA-PK inhibitors.

2. Materials and methods

2.1. Cell lines and culture

Murine B Lymphoma CH12F3 was from T. Honjo (Kyoto University,
Kyoto, Japan). The cells were cultured in RPMI-1640 medium with 10%
fetal bovine serum (Hyclone, Massachusetts, USA), 100 U/ml penicillin
and streptocymin, and 50 nM beta-mercaptoethanol. Cells were in-
cubated with 5% CO2 at 37 °C.

2.2. Antibodies and reagents

Curcumin, cisplatin, hydroxyurea, camptothecin, DNA-PK inhibitors
(Ku-0060648, Nu-7441), PARP inhibitors (ME0328, Olaparib) were
from Selleck Chemicals (Houston, USA). Antibodies against p-H2AX
(Ser139) were from Cell Signaling Technologies (USA). Antibodies
against Caspase3, Caspase9, Rad51, PCNA, PARP1, β-Actin were ob-
tained from Proteintech (Chicago, USA).

2.3. Cell viability assay

Briefly, 5000 cells were seeded on each well of 96-well plate. After
incubation with drugs for appropriate times, MTT were added to each
well in a final concentration of 0.5 mg/ml. Subsequently, cells were
incubated for 4 h. Then, culture mediums were removed. 200 μl DMSO
was added to each well and plates were incubated for 15 min at 37 °C.
Finally, the absorbance values were detected at 589 nm using micro-
plate reader (Thermo, 354-90230, USA).

2.4. Apoptosis assay

Annexin V and propidium iodide (PI) were used to strain cells
treated with curcumin. After incubation for 15 min at room tempera-
ture, the apoptotic cells were detected using flow cytometry and the
results were analyzed by Flow Plus software.

2.5. Western blot

Nuclear proteins were extracted by nuclear protein extract kit
(Shenggong, Shanghai, China). Whole cell proteins were extracted by
RIPA buffer. Protein concentrations were quantified by Qubit 2.0
(Invitrogen, USA). Subsequently, 50 μg sample was separated by SDS-
PAGE (10% for normal samples, 15% for γH2AX). After transferred to
PVDF membranes, samples were detected using different antibodies.

2.6. Statistical analysis

Statistical analysis was detected by Student’s t-tests using SPSS
software. Data are presented as the mean ± standard deviations.

3. Results

3.1. Curcumin suppresses growth of lymphoma cells and sensitizes tumor
cells to DNA damage agents including hydroxyurea, camptothecin and
cisplatin

We analyzed the growth of CH12F3 cells under the stimulation of
curcumin. MTT assay showed curcumin suppressed CH2F3 cell growth
(Fig. 1A). We next analyzed the effect of curcumin on sensitizing

Fig. 1. Curcumin (Cur) sensitizes B lymphoma cells to DNA damage
agents including hydroxyurea (HU), camptothecin (CAMP) and cis-
platin. (A) The growth curves of CH12F3 cells after curcumin treat-
ment for 36 h were measured through MTT assay. MTT assay was used
to test the growth curves of CH12F3 cells treated by 5 μM curcumin in
combination with different concentrations of DNA damage drugs for
24 h, (B) HU, (C) cisplatin, (D) CAMP. *P < 0.05 versus control
group. **P < 0.01 versus control group. ***P < 0.001 versus con-
trol group.
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CH12F3 cells to anti-tumoral DNA damage agents. Using low dose of
curcumin (5 μM), we analyzed the growth curve of CH12F3 cells to
curcumin in combination with anti-tumoral drugs, including hydro-
xyurea (HU), camptothecin (CAMP) and cisplatin. The viability of
CH12F3 cells treated with 50 μM HU was 85%, while in combination
with 5 μM curcumin, the same dose of HU suppressed cell viability to
43% (Fig. 1B). 5 μM curcumin also sensitized CH12F3 cells to cisplatin
and CAMP (Fig. 1C, D). Therefore, these results demonstrate that cur-
cumin sensitizes lymphoma cells to anti-tumoral chemotherapeutic
drugs.

3.2. Curcumin induces caspase3-dependent apoptosis

We next analyzed the effects of curcumin on cell apoptosis.
Annexin/PI staining assay showed that curcumin induced celllular
apoptosis in a dose-dependent manner (Fig. 2A, B). Western blot ana-
lysis showed that caspase3, and caspase9 levels in CH12F3 cells were
increased after the treatment of curcumin, revealing curcumin induces
apoptosis through casepase3 and casepase9-dependent apoptosis
pathway (Fig. 2C).

3.3. Curcumin induces DNA breaks and down-regulates Rad51 expression

We next investigated the DNA breaks induced by curcumin in
CH12F3 cells. After treating with curcumin (0, 10, 20, 30, 40, 50 μM)
for 4 h, the nuclear proteins of CH12F3 cells were extracted. The levels
of γH2AX, PARP1, PCNA, and Rad51 were detected by western blot
(Fig. 3A). The expression of nuclear γH2AX was up-regulated in a dose-
dependent manner, which suggests high dose of curcumin induces DSB.

Nuclear PARP1 and PCNA were up-regulated by curcumin (Fig. 3A).
PARP1 is an important PARP family member to PARylate the target
proteins, which is essential for SSB repair. PCNA is a DNA sliding clamp
functioning in DNA replication. We also found curcumin down-regu-
lated Rad51 expression, which demonstrates curcumin impairs Rad51-
dependent HR.

3.4. Curcumin sensitizes lymphoma cells to DNA-PK and PARP inhibitors

We found curcumin impaired Rad51-dependent HR repair, thus the
combination of curcumin and DNA-PK inhibitors could attenuate both
HR and NHEJ repair, subsequently caused more unrepaired DSB and
cell lethality. Therefore, we analyzed the sensitization of CH12F3 cells
to curcumin in combination with DNA-PK and PARP inhibitors. MTT
assay showed curcumin (5 μM) sensitized lymphoma cells to DNA-PK
inhibitors (NU7441 and KU0060648) (Fig. 4A, B). PARP inhibitors have
recently been clinically used to treat HR-deficient ovarian and breast
cancer cells, however, the efficacy of PARP inhibitors in treating HR-
proficient cancer cells is not promising. We found curcumin down-
regulates Rad51-dependant HR without apparent toxic to cells. Thus,
we analyzed the effect of curcumin on sensitizing lymphoma cells to
PARP inhibitors. We found curcumin (5 μM) significantly enhanced the
sensitivity of CH12F3 cells to PARP1 inhibitors (ME0328 and olaparib)
(Fig. 4C, D), which suggests curcumin could function as a potent ad-
juvant for sensitizing cancer cells to PARP inhibitors.

4. Discussion

Curcumin reportedly has anti-inflammatory, anti-oxidant, anti-

Fig. 2. Curcumin activates caspase3-dependent cell apoptosis. (A) CH12F3 cells were exposed to 3 and 9 μM curcumin for 24 h. PI and AnnexinV double-staining was used to test the
apoptosis of cells. (B) Apoptosis rates were quantified in the diagrams. Data are presented as the mean ± SD from three independent experiments. *P < 0.05 versus control group.
**P < 0.01 versus control group. ***P < 0.001 versus control group. (C) CH12F3 cells were treated with 3, 6, and 9 μM curcumin for 24 h. Caspase3, caspase9 and PARP1 expressions
were detected through western blot. ***P < 0.001 versus control. **P < 0.01 versus control. ns, not significantly different.
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infectious biological activities, thus it has been used to treat various
diseases such as asthma, diabetes, hepatic and heart diseases [9,11,30].
Curcumin also has anti-cancer activity through the regulation of in-
flammatory cytokines, reactive oxygen species and induction of apop-
tosis [2,3,7]. However, the effect of curcumin on DNA damage is not
well defined. Because cancer cells often possess DNA repair deficiency,
DNA damage agents have been widely used to treat different types of
cancer cells, in which cisplatin is the most widely used anti-tumoral
genotoxic drug, however, the recovered cellular DNA repair system
often helps cancer cells to resist these DNA damage drugs [22,23]. The
resistance of cancer cells to chemotherapeutic drugs severely counter-
acts the employment of these DNA damage drugs in clinic. We found
curcumin regulated Rad51-dependent HR, thus we analyzed the effect
of curcumin in combination with different DNA damage drugs on the
growth of lymphoma cells. Curcumin effectively sensitized lymphoma
cells to cisplain, HU, and CAMP. Consequently, curcumin could be a
potent drug to sensitize cancer cells to anti-tumoral genotoxic drugs. In
addition, curcumin is a dietary additive that is frequently absorbed by
people with food, thus it would be a relative safe phytochemical agent
in combination with the DNA damage drugs to treat lymphoma cells.

The PARP inhibitors are recently promising anti-tumoral drugs,
which can effectively treat BRCA1 and BRCA2 deficient cancer cells

[28]. However, the resistance of cancer cells to PARP inhibitors still
appears, in which the HR pathway was indicated to help cells to repair
the DNA damage induced by PARP inhibitors. We analyzed the effect of
curcumin on cellular DNA repair and found curcumin decreased Rad51-
dependent HR pathway. Further studies showed curcumin sensitized
lymphoma cells to PARP inhibitors, suggesting curcumin increases the
effect of PARP inhibitors through regulating Rad51-dependent HR
pathway. We also found curcumin sensitizes lymphoma cells to DNA-PK
inhibitors. DNA-PK is a vital factor in NHEJ pathway. As curcumin
decreases Rad51-dependent HR pathway, attenuation of NHEJ pathway
through DNA-PK inhibitors could cause synthetic lethality to tumor
cells.

In summary, we analyzed the DNA damage induced by curcumin
and the effect of curcumin to the cellular DNA repair system. Curcumin
regulates Rad51-dependent HR pathway, induces DSB and activates
caspase3-dependent apoptosis. More importantly, curcumin sensitizes
lymphoma cells to cisplatin, HU, CAMP, DNA-PK inhibitors and PARP1
inhibitors. Consequently, curcumin could be a potent anti-tumoral
agent that can be combined with different chemotherapeutic drugs to
treat lymphoma cells.

Fig. 3. Curcumin induces DNA breaks and decreases Rad51 expression. (A) Western blot was used to test the expressions of nuclear γH2AX, PARP1, PCNA, Rad51 and histone 3 (H3) in
CH12F3 cells treated with different doses of curcumin. (B) The quantification of western blot was analyzed. ***P < 0.001 versus control.

Fig. 4. Curcumin (Cur) sensitizes CH12F3 cells to DNA-PK and PARP
inhibitors. MTT assay was used to test the growth curves of CH12F3
cells treated by 5 μM curcumin in combination with different con-
centrations of DNA-PK inhibitors including Nu7441 (A) and
KU0060648 (B), PARP1 inhibitors including ME0328 (C) and olaparib
(D) for 24 h.
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