1 Title: LIFR increases the release of soluble endoglin via the up-regulation of MMP14 expression

2 in preeclampsia.

- $\label{eq:2.1} {\tt 3} \qquad {\tt Hua}\ {\tt Li}^{\rm l}, {\tt Juilei}\ {\tt Yao}^{\rm l}, {\tt Xinwen}\ {\tt Chang}^{\rm l}, {\tt Jinting}\ {\tt Wu}^{\rm l}, {\tt Tao}\ {\tt Duan}^{\rm l,\,2}, {\tt Kai}\ {\tt Wang}^{\rm l}$
- 4 ¹Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji
- 5 University School of Medicine, Shanghai, P.R. China;
- 6 ²Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of
- 7 Medicine, Shanghai, P.R. China;
- 8 Correspondence should be addressed to Tao Duan; Email: tduan@yahoo.com, or to Kai Wang; Email:
- 9 kaiwangen@yahoo.com.
- 10 Short title: LIFR increases sEng release via up-regulation of MMP14 expression in PE
- 11
- 12
- 13
- 14
- 15

16

- 17
- 18
- 19
- 20
- 21

22 ABSTRACT

23	Preeclampsia (PE) is a pregnancy-specific disorder that is the main cause of maternal and perinatal
24	morbidity and mortality worldwide. Inadequate trophoblastic invasion and endothelial dysfunction in
25	the placenta are considered the foundation of the pathogenesis of preeclampsia in which soluble
26	endoglin (sEng) plays an antiangiogenic role in the development of PE. The leukemia inhibitory factor
27	receptor (LIFR) has been widely studied and is highly involved in arterial injury in vivo and in the
28	migration of cancer cells in vitro. Here, we tested the hypothesis that LIFR may be correlated with
29	preeclampsia through its regulation of the release of sEng. Our data showed that LIFR protein, the
30	expression of which significantly decreased with the progression of pregnancy, was located in the
31	syncytiotrophoblast and cytotrophoblast. The LIFR protein level was increased in pregnancies with
32	preeclampsia compared with normotensive full-term pregnancies. After the overexpression of LIFR in
33	HTR8/SVneo cells, the release of sEng as well as the migration and invasion were significantly
34	enhanced. Moreover, we also observed that LIFR induced the expression of matrix metalloproteinase14
35	(MMP14) and that the knockdown or inhibition of MMP14 decreased the release of sEng, as well as
36	increased the LIFR-induced migration and invasion of HTR8/SVneo cells. These studies demonstrated
37	that LIFR promoted the release of sEng through MMP14 in vitro, which indicates that LIFR may be
38	involved in the development of preeclampsia.

39 INTRODUCTION

Preeclampsia, which is characterized by hypertension and proteinuria after 20 weeks of gestation,
affects 5 to 8% pregnancies and results in substantial maternal and neonatal complications and death,
especially in low-income and middle-income countries(Anne R. Hansen 2010, Lena Ho 2017, Mol, et

43	al. 2016, Sargent 2005, Souza, et al. 2013). However, its pathogenesis and pathophysiology are poorly
44	understood. It is well known that excessive levels of placenta-derived antiangiogenic factors in the
45	circulation such as soluble endoglin (sEng) (Richard J. Levine and Kai F. Yu 2006, Shivalingappa
46	Venkateshal 2006), and soluble fms-like tyrosine kinase 1 (sFlt1) (McGinnis, et al. 2017, Zeisler, et al.
47	2016) may cause endothelial dysfunction in preeclampsia. The concentration of sEng in the maternal
48	circulation in cases of preeclampsia was significantly increased and was positively correlated with the
49	severity of preeclampsia (Jeyabalan, et al. 2008, Shivalingappa Venkatesha1 2006). Furthermore, the
50	release of sEng has been shown to be regulated by matrix metalloproteinase-14 (MMP-14, also known
51	as MT1-MMP) in cases of vascular injury and tumor(Gallardo-Vara, et al. 2016, Hawinkels, et al.
52	2010), but little is known about the regulation of sEng release in PE.
53	The leukemia inhibitory factor receptor (LIFR), whose ligand LIF belongs to the IL-6 family of
54	cytokines, is important in the pregnancy process. The deletion of the LIFR gene in animals is so severe
55	that LIFR-/- animals do not reach reproductive age; moreover, LIFR-/- fetuses experience placental,
56	skeletal, neural, and metabolic defects and die during the perinatal period (Carol B. Ware 1995). A
57	previous study has demonstrated that LIF is correlated with the pathogenesis of preeclampsia as it
58	promotes trophoblast invasion via urokinase-type plasminogen activator receptor (uPAR) (Zheng, et al.
59	2016), which suggests that the LIF/LIFR system may play an important role in PE. However, the role
60	of LIFR in preeclampsia remains to be revealed.
61	In this study, we hypothesize that LIFR is potentially involved in the development of preeclampsia
62	as a result of its interference with the release of sEng. Therefore, we aim to determine LIFR expression
63	during normal pregnancy and in patients with PE, as well as its effects on the release of sEng, and on

the migration and invasion of trophoblast cells (HTR8/SVneo). In addition, we also investigate the
relationship between MMP14 and LIFR to further explore the possible mechanisms that are responsible
for the altered LIFR expression in preeclampsia.

67 MATERIALS AND METHODS

68 Patients and sample collection

69 Maternal blood samples from patients in different trimesters of pregnancy and from patients 70 diagnosed with PE were collected in vacutainer tubes with EDTA for plasma separation. The samples 71 were centrifuged at 4°C with a relative centrifugal force of 1500×g for 15 min. The supernatant 72 (plasma) samples were transferred to clean 1.5-ml Eppendorf tubes and stored at -80°C for ELISA 73 (enzyme-linked immunosorbent assay) analysis. Preeclampsia was defined according to the guidelines 74 of the US National Institutes of Health (US National High Blood Pressure Education Program 2000) 75 (Goldenberg, et al. 2008). Placental tissues were obtained from both normal term control and PE 76 patients. Samples were collected immediately (<30 min) after caesarean section, cut near the center 77 zone of the fetal part of the placenta after the decidua and amniotic membranes were removed and were 78 then washed with sterile PBS to remove maternal blood. The chorionic villi samples of the first 79 trimester (n=7) were collected immediately after vacuum aspiration and were rinsed with sterile PBS. 80 All samples were frozen and stored in liquid nitrogen for western blot. Additional placental tissues 81 were embedded in paraffin for immunohistochemistry (IHC).

82 This study was approved by the Scientific and Ethical Committee of Shanghai First Maternity and
83 Infant Hospital of Tongji University. Human samples were used according to the guidelines of the
84 Scientific and Ethical Committee of Shanghai First Maternity and Infant Hospital of Tongji University.

85 These samples were obtained with a written informed consent provided by the participants.

86 Cell culture

87	The human trophoblast cell line HTR-8/SVneo and the human choriocarcinoma cell line JAR
88	were initially obtained from Dr. Charles H. Graham (Queen's University, Ontario, Canada) as
89	previously described (Dai, et al. 2011, Wang, et al. 2008). HTR-8/SVneo and JAR cells were cultured
90	in DMEM/F12 supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin and were
91	incubated at 37°C in a humidified atmosphere containing 5% CO2. For proliferation assays, cells were
92	incubated with different concentrations of recombinant LIF (0 ng/ml, 10 ng/ml, 25 ng/ml, 50 ng/ml;
93	R&D Systems: 7734-LF) for 48 h. For migration and invasion assays, cells were cultured with different
94	concentrations of recombinant human LIF (same concentrations as those used in the proliferation
95	assay), a STAT3 inhibitor (5 µm; Selleck: S7501), or an MMP14 inhibitor (50 µm; NSC405020,
96	Selleck: S8072) for 24 h. For the western Blot analysis, cells were incubated with rhLIF (10 ng/ml), a
97	STAT3 inhibitor (5 μ m), or an MMP14 inhibitor (50 μ m) for 15 min.

98 Western Blot analysis

Total placental tissue lysates were prepared by homogenization as previously described(Jin-Young
Chung 2004, Yi-zhou Jiang Kai Wang 2010). Cells grown in a monolayer were washed with PBS and
harvested for protein in RIPA buffer supplemented with a protease and phosphatase inhibitor (Roche,
Mannheim, Germany). The protein concentration was determined by BCA Protein Assay Kit (Thermo
Scientific, Waltham, USA). Placental lysates (30 µg) and cell lysates (20 µg) were separated on 10%
SDS-PAGE gels with wet transfer to polyvinylidene difluoride membranes (Millipore, Billerica, USA).
After blocking (7% milk in TBST, 0.1% Tween-20) at room temperature for 2 h on a vertical shaker,

106 PVDF membranes were probed with antibodies against LIF (Santa Cruz Biotechnology: sc-1336, 107 1:200), LIFR (Santa Cruz Biotechnology: sc-659, 1:200), pSTAT3 Tyr705 (Cell Signaling: 108 9131,1:1,000), STAT3 (Cell Signaling: 9139, 1:1000), MMP14 (Abcam: ab51074, 1:2500), and β-actin 109 (Proteintech: 1:2000, USA). Membranes were visualized using enhanced chemiluminescence reagents 110 (Millipore, Billerica, USA), and all western blots were quantified for adjusted relative density using 111 ImageJ (NIH, Bethesda, MD, USA). Data were normalized to β-actin. 112 Immunohistochemistry (IHC) 113 To determine tissue localization of LIFR and LIF, immunohistochemistry was performed as 114 previously described(Yi-zhou Jiang Kai Wang 2010).Paraffin-embedded sections of placental tissues 115 were deparaffinized and rehydrated. The endogenous peroxidase activity of the tissues was quenched 116 by immersing the tissue sections in 3% H₂O₂ in methanol for 10 min; nonspecific epitopes were then 117 blocked by incubating the slides in 1% horse serum albumin for 20 min. The tissue sections were 118 probed with a goat anti-LIF antibody (Santa Cruz: sc-1336, 1:50) and a rabbit anti-LIFR antibody 119 (Santa Cruz: sc-659, 1:50). 120 Quantitative real-time PCR 121 Total RNA was isolated from cells using TRIzol (Invitrogen, Carlsbad, USA). The concentration

of RNA was measured by a spectrophotometer (ND 2000, Nanodrop Inc, Wilmington, DE, USA). A
total of 1 µg of RNA was reverse-transcribed using the SuperScript First Strand cDNA System (Takara,
Tokyo, Japan). The resulting cDNA was used as a template for quantitative real-time PCR (qRT-PCR),
which was performed using SYBR Green Premix Ex Taq (Tiangen, Beijing, China) in an ABI Prism
7000 Sequence Detection System. The D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was

127	used as an endogenous control for gene expression analysis. The primer sequences for qRT-PCR		
128	analysis were shown in table 1.		
129	Cell proliferation		
130	For the cell proliferation assay, cells seeded in 96-well plates (3000 cells/well) were cultured in		
131	DMEM/F12 media for 48 h. The number of cells was measured by MTT assay (Promega, G3580, WI,		
132	USA). Wells containing known cell numbers (0, 1000, 2000, 5000, 10,000, 20,000 or 40,000 cells/well;		
133	6 wells/cell density) were treated in a similar manner to establish standard curves.		
134	Cell migration and invasion		
135	Cell migration and invasion were evaluated using a 24-Multiwell BD Falcon FluoroBlok Insert		
136	System (8.0-µm pores; BD Biosciences, San Jose, CA, USA). For the cell invasion assay, the upper		
137	chambers of the inserts were pre-coated with 100 μL of a 1:20 dilution of Matrigel in DMEM/F12		
138	medium with 10% FBS for 60 min at 37°C. JAR (5×10 ⁴ cells/well) and HTR8/SVneo cells (8×10 ⁴		
139	cells/well) in DMEM/F12 medium with 10% FBS were seeded onto the upper side of the Transwell		
140	inserts. The bottom wells of the chamber were filled with DMEM/F12 medium with 10% FBS prior to		
141	cell seeding. After incubation at 37°C with 5% CO2 and 95% air for 24 h, cells that had migrated to		
142	and invaded the bottom of the inserts were stained with calcein AM (0.2 μ g/ml; Invitrogen, No.		
143	C3100MP) for 30 min, examined and counted by fluorescence analysis (Nikon, Tokyo, Japan).		
144	Lentivirus production and stable cell lines		
145	To establish cell lines that stably overexpress LIFR, lentiviral packaging was performed by		
146	co-transfection of HEK 293T cells with pWPXL and pWPXL-LIFR (Addgene) using Lipofectamine		
147	2000 (Invitrogen, CA, USA) as previously described(Qin Luo1 2014). Viruses were harvested 48 h		

- 148 after transfection, after which viral titers were determined. HTR8/SV-neo cells were infected with 1 ×
- 149 10^6 recombinant lentivirus-transducing units in the presence of 6 μ g/ml polybrene.
- 150 SiRNA knockdown of LIFR and MMP14
- 151 HTR8/SVneo cells were transfected with LIFR siRNA or scrambled siRNA with SuperFect
- 152 Reagent (Qiagen, Crawley, UK).HTR8/SVneo cells overexpressing LIFR were transfected with
- 153 MMP14 siRNA or scrambled siRNA in the same way. Treatments were applied for 48 h after which the
- 154 cell media were collected for sEng ELISA and cells were harvested for mRNA and protein extraction.
- 155 ELISA analysis
- Concentrations of human LIF in placental tissue lysates were determined by Quantikine Human
 LIF (R&D Systems: DLF00). Concentrations of human sEng and human sFlt-1 in plasma samples of
 maternal blood and cell supernatants transfected with overexpression vectors were determined by
 Quantikine Human Endoglin/CD105 (R&D Systems: DNDG00) and Quantikine Human sFlt-1 (R&D
 Systems: DVR100B) assays, respectively. All immunoassays were measured in a Varioskan Flash
 spectral scanning multimode reader at 450 nm/570 nm (Thermo Scientific, Waltham, USA).
- 162 Statistics analysis
- Data are expressed as the mean \pm the standard error of the mean (SEM) or the mean \pm standard deviation (SD) and were analyzed using SPSS 23.0 statistical analysis software (SPSS Inc, Chicago, IL, USA). The differences between groups were analyzed by Student's two tailed *t*-test when two groups were analyzed or by ANOVA if more than two groups were analyzed. A p-value ≤ 0.05 was considered statistically significant.
- 168 Results

169 **1.** Characteristics of patients with preeclampsia and normal controls.

- 170 The patient characteristics were outlined in Table 2. No statistically significant differences were 171 observed in the maternal age and gestational age of patients with PE and normal full-term pregnancies 172 (P>0.05). The diastolic blood pressure (DBP) and systolic blood pressure (SBP) of patients with PE 173 were substantially higher than those of patients with normal pregnancies (P<0.01). In contrast, patients 174 with PE had lower fetal weights (P<0.01) compared with normal controls. The proteinuria in patients 175 with PE was 2(+), while normal pregnant women exhibited no proteinuria. 176 2. LIFR was up-regulated in the placentas of patients with PE. 177 We first investigated placental LIFR protein expression and/or distribution in the first trimester, in 178 full-term pregnancies and in patients with PE by western blot, and found that the LIFR protein level 179 was significantly decreased from the first to the third trimester of pregnancy; importantly, the level was 180 higher in pregnant women with PE than in women with normal pregnancies (Fig. 1A, B, D and F). 181 However, no significant differences were observed in the expression of LIF protein according to both 182 western blot and ELISA (Fig. 1A, B, C, E and G). These data indicated that LIFR expression played an 183 important role in pregnancy progression and that it might be correlated with the pathological 184 mechanism of preeclampsia. 185 IHC was performed to determine the localization of LIFR and LIF within the human placentas 186 (Fig. 1H). Positive brownish staining for LIFR was observed in the endothelium, syncytiotrophoblast 187 and cytotrophoblast in the first trimester. Meanwhile the syncytiotrophoblast and cytotrophoblast were 188 immunolabeled for LIF in the first trimester. In placentas derived from both normal full term controls
- and women with PE, LIFR and LIF were located in the syncytiotrophoblast.

190	3. LIFR enhanced the release of sEng, as well as the migration and invasion of HTR8/SVneo cells.
191	Since LIFR was more highly expressed in pregnancies with PE, we investigated whether
192	up-regulated LIFR was involved in the release of sEng and sFlt-1 in PE. The efficiency of
193	overexpression of LIFR was determined by qRT-PCR and western blot (Fig. 2A, B, and C). Our data
194	showed that the concentration of sEng but not that of sFlt-1 in the cell supernatant, were increased
195	according to ELISA after the overexpression of LIFR in HTR8/SVneo cells (Fig. 2D and E). Moreover,
196	we also observed that the concentration of sEng was significantly higher in the maternal plasma of
197	patients with PE compared with normal controls (Fig. 2F). In addition, the overexpression of LIFR
198	significantly enhanced cell migration and invasion (Fig. 3A, B and C) but did not alter the proliferation
199	of HTR8/SVneo cells (Fig. 3D).
200	4. LIFR induced the expression of MMP14 in HTR8/SVneo cells.
200 201	4. LIFR induced the expression of MMP14 in HTR8/SVneo cells. It has been well demonstrated that MMP14 is correlated with the release of sEng and trophoblast
201	It has been well demonstrated that MMP14 is correlated with the release of sEng and trophoblast
201 202	It has been well demonstrated that MMP14 is correlated with the release of sEng and trophoblast invasion. To explore the involvement of MMP14 in the LIFR pathway, we first examined whether
201 202 203	It has been well demonstrated that MMP14 is correlated with the release of sEng and trophoblast invasion. To explore the involvement of MMP14 in the LIFR pathway, we first examined whether MMP14 expression could be regulated by LIFR. As shown in Fig. 4A, B and C, LIFR could increase
201 202 203 204	It has been well demonstrated that MMP14 is correlated with the release of sEng and trophoblast invasion. To explore the involvement of MMP14 in the LIFR pathway, we first examined whether MMP14 expression could be regulated by LIFR. As shown in Fig. 4A, B and C, LIFR could increase MMP14 expression at both the mRNA and protein levels in HTR-8/SVneo cells. We also found that
201 202 203 204 205	It has been well demonstrated that MMP14 is correlated with the release of sEng and trophoblast invasion. To explore the involvement of MMP14 in the LIFR pathway, we first examined whether MMP14 expression could be regulated by LIFR. As shown in Fig. 4A, B and C, LIFR could increase MMP14 expression at both the mRNA and protein levels in HTR-8/SVneo cells. We also found that MMP14 expression was increased in the placentas of women with preeclampsia (Fig. 4D and E). In
201 202 203 204 205 206	It has been well demonstrated that MMP14 is correlated with the release of sEng and trophoblast invasion. To explore the involvement of MMP14 in the LIFR pathway, we first examined whether MMP14 expression could be regulated by LIFR. As shown in Fig. 4A, B and C, LIFR could increase MMP14 expression at both the mRNA and protein levels in HTR-8/SVneo cells. We also found that MMP14 expression was increased in the placentas of women with preeclampsia (Fig. 4D and E). In addition, we investigated the effects of knockdown LIFR on MMP14 expression and sEng release in

210 HTR8 cell line was too low.

211

212

213 To further confirm whether MMP14 is involved in the release of sEng and the invasiveness of 214 HTR-8/SVneo cells, we inhibited MMP14 using either a specific inhibitor (NSC405020) or a specific 215 siRNA. The efficacy of MMP14 knockdown by siRNA was demonstrated by western blot and 216 qRT-PCR (Fig. 4F and G). The knockdown of MMP14 in HTR8/SVneo-LIFR cells significantly 217 reduced sEng release compared with the negative control, as determined by ELISA (Fig. 218 4H).Meanwhile, NSC405020 robustly suppressed the LIFR-induced migration and invasion of 219 HTR8/SVneo cells (Fig. 5). 220 These data confirmed that LIFR induced the release of sEng via an increase in MMP14 expression. 221 In addition, an increase in MMP14 might contribute to the enhanced migration and invasion of 222 HTR8/SVneo-LIFR cells. 223 7. LIF, but not LIFR, increased cell migration and invasion through the activated STAT3 224 pathway. 225 It is well known that LIF is involved in various processes, including cell proliferation, 226 differentiation and migration, through activation of the STAT3 pathway. In this study, we also found 227 that different concentrations (10ng/ml-50ng/ml) of LIF significantly enhanced the migration and 228 invasion of HTR8/SVneo and JAR cells (Fig. 6A, B, C and D), but their proliferation was not 229 significantly affected (Fig. 6E); we also found that the enhanced cell migration and invasion was

5. Increased expression of MMP14 was involved in the release of sEng as well as in the

LIFR-enhanced cell migration and invasion in vitro.

231 cell migration induced by LIF (Fig.7). However, although LIFR overexpression enhanced cell

mediated by activation of the STAT3 pathway (Fig. 6F and G) and the STAT3 inhibitor could decrease

11

232

233

migration and invasion, we did not observe that the overexpression of LIFR could stimulate the phosphorylation of STAT3 (Fig. 8).

234

235 DISCUSSION

236 Preeclampsia (PE) is a gestational hypertensive syndrome and is a major cause of maternal 237 mortality and morbidities, perinatal deaths, preterm births, and intrauterine growth restriction(Sibai, et 238 al. 2005). Although much evidence has accumulated on the pathophysiology of preeclampsia, the 239 accurate mechanism of this disorder remains to be determined. Previous studies have reported that 240 LIFR expression was up-regulated in vivo models of arterial injury and acute ocular hypertension 241 (CAMERON J. WORLD 2001, Hu, et al. 2015), which provided evidence that LIFR might be 242 associated with the occurrence of PE. In this study, we found that LIFR was up-regulated in the 243 placentas of women with PE and enhanced the release of sEng as well as the migration and invasion of 244 HTR8/SVneo cells. We also demonstrated that MMP14 expression was increased by LIFR in 245 HTR8/SVneo cells and was involved in the LIFR-enhanced release of sEng as well as cell migration 246 and invasion.

In the current study, we first demonstrated that the expression of LIFR, but not that of LIF, was highly increased in the placentas of women with PE in comparison with the placentas of women with normal pregnancies. Carol B et al. reported that LIFR was correlated with abnormal placental vasculature (Carol B. Ware 1995).These data suggested that such increase might be involved in the onset of preeclampsia. Importantly, our results also indicated that LIFR promoted sEng release as well as the migration and invasion of HTR8/SVneo cells. A previous study showed that high LIFR

253	expression stimulated melanoma cell migration and was correlated with an unfavorable prognosis in
254	melanoma.(Hongwei Guo 2015). However, Luo Q et al. reported that LIFR acted as a suppressor of
255	metastasis in hepatocellular carcinoma (Luo, et al. 2015). The functions of LIFR in trophoblast cells
256	need to be further investigated. The soluble endoglin (sEng), which has been generally identified as a
257	critical antiangiogenic factor, interacted with components of the TGF-β/eNOS and/or BMP-9 signaling
258	pathways. This might result in endothelial dysfunction, which results from proteolytic shedding from
259	membrane-bound endoglin in the circulation of women with preeclampsia (Jana Rathouska 2015, Li C
260	2001, Shivalingappa Venkatesha1 2006). In a murine model, the overexpression of human soluble
261	endoglin resulted in a higher systolic blood pressure in those mice compared with their wild type
262	littermates (Valbuena-Diez, et al. 2012). Moreover, in our study, the increased sEng in the circulation of
263	pregnant women with PE was consistent with a previous observation (Richard J. Levine and Kai F. Yu
264	2006). More importantly, we found that after overexpression of LIFR in HTR8/SVneo cells, the release
265	of sEng in the cell supernatant was significantly up-regulated. These data provided evidence that LIFR
266	was probably involved in the development of PE through the up-regulation of sEng release, which
267	directly resulted in endothelial cell dysfunction.
268	Another important finding of this study was that MMP14 expression was significantly increased
269	by LIFR in HTR8/SVneo cells. It is well known that MMP14 plays an important role in cell migration
270	and invasion. Recent studies indicated that MMP14 targeted membrane-bound endoglin to
271	proteolytically release sEng (Hawinkels, et al. 2010, Noel, et al. 2008) and that MMP14 could directly

272 degrade extracellular matrix components to regulate the invasiveness of various cells (Swayampakula,

et al. 2017, Weiliang Chen 2016). In the present study, the knockdown of MMP-14 strongly inhibited

Page 14 of 31

14

276	the placentas of women with PE was significantly increased compared with placentas of women with
277	normal pregnancies. Together, our observations indicated that increased expression of LIFR in PE may
278	increase the release of sEng via the up-regulation of MMP14.
279	As it is known that the STAT3 pathway is closely related to the LIF/LIFR system, we also found
280	that LIF stimulated the phosphorylation of the STAT3 pathway. However, LIFR could not activate the
281	STAT3 pathway, which suggested that LIFR did not function through the STAT3 pathway in
282	HTR8/SVneo cells. LIFR is an important receptor of several members of interleukin-6 family , such as
283	leukemia inhibitory factor (LIF), oncostatin-M (OSM), cardiotrophin-1 (CT-1) and ciliary neurotrophic
284	factor (CNTF)(Hunt and White 2016, Plun-Favreau, et al. 2003).It mediates many signaling pathways
285	in different cells and tissues, including JAK/STAT3, MAPK/ERK1/2, MAPK/p-38 and PI3-K/AKT
286	(Godoy-Tundidor, et al. 2005, Magni, et al. 2007, Schiemann, et al. 1995). We cannot exclude the
287	possibility that these pathways may be involved in the process of LIFR regulating MMP14 expression
288	and sEng release. In addition, the expression level of ERK1/2 in HTR8/SVneo cells overexpressing
289	LIFR was simply investigated. While we found that LIFR overexpression in HTR8 cells significantly
290	activated the phosphorylation of ERK1/2(data not shown). We will continue to explore the mechanisms
291	of LIFR-induced MMP14 expression and sEng release in the future.
292	In conclusion, our studies demonstrated that the LIFR protein level was significantly higher in the
293	placentas of patients with PE compared with normotensive pregnancies. The overexpression of LIFR in

LIFR-induced sEng release in HTR-8 cells, whereas the inhibition of MMP14 suppressed the increased

migration and invasion induced by LIFR in HTR8/SVneo cells. Moreover, the expression of MMP14 in

HTR8/SVneo cells strongly increased MMP14 expression and the release of sEng, which is likely

274

295

296	Declaration of interest	
297	The authors declare that there is no conflict of interest that could be perceived as prejudicing the	
298	impartiality of the research reported.	
299	Funding	
300	This study was supported by Program for Outstanding Medical Academic Leader of Shanghai (to	
301	DT, No.77), the National Natural Science Foundation of China (No. 81471461 and No. 81771591),	
302	Program of Shanghai Subject Chief Scientist (No. 14XD1403200), and the Key Disciplines Group	
303	Construction Project of Pudong Health Bureau of Shanghai (No. PWZxq2014-02).	
304		
305	References	
306	Anne R. Hansen, M, MPH, Carmen M. Barne's, PhD, Judah Folkman, MD,* and Thomas F. McElrath,	

involved in the pathological mechanism of preeclampsia.

307 MD, PhD 2010 Maternal Preeclampsia Predicts the Development of 308 Bronchopulmonary Dysplasia. THE JOURNAL OF PEDIATRICS 156. 309 CAMERON J. WORLD, BER, AND JULIE H. CAMPBELL 2001 Regulation of LIF Receptor Expression in 310 Vascular Smooth Muscle. ANNALS NEW YORK ACADEMY OF SCIENCES 947 323-328. 311 Carol B. Ware, MCH, Blair R. Renshaw, Joan S. Hunt, Denny Liggitt, Simon A. Koblar, Brian C. Gliniak, 312 Hilary J. McKenn, Thalia Papayannopoulou, Bettina Thoma, Linzhao Cheng, Peter J. 313 Donovan7, Jacques J. Peschon, Perry F. Bartlett5, Cynthia R. Willis, Barbara D. 314 Wright, Melissa K. Carpenter, Barry L. Davison and David P. Gearing 1995 Targeted disruption 315 of the low-affinity leukemia inhibitory factor receptor. Development 121, 1283-1299. 316 Dai, CF, YZ Jiang, Y Li, K Wang, PS Liu, MS Patankar, and J Zheng 2011 Expression and roles of 317 Slit/Robo in human ovarian cancer. Histochem Cell Biol 135 475-485. 318 Gallardo-Vara, E, FJ Blanco, M Roque, SL Friedman, T Suzuki, LM Botella, and C Bernabeu 2016 319 Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis 19 155-171. 320 321 Godoy-Tundidor, S, I Cavarretta, D Fuchs, M Fiechtl, H Steiner, K Friedbichler, G Bartsch, A Hobisch, 322 and Z Culig 2005 Interleukin-6 and oncostatin M stimulation of proliferation of prostate 323 cancer 22Rv1 cells through the signaling pathways of p38 mitogen-activated protein kinase 324 and phosphatidylinositol 3-kinase. Prostate 64 209-216.

325 Goldenberg, RL, JF Culhane, JD Iams, and R Romero 2008 Epidemiology and causes of preterm birth.

326	The Lancet 371 75-84.
327	Hawinkels, LJ, P Kuiper, E Wiercinska, HW Verspaget, Z Liu, E Pardali, CF Sier, and P ten Dijke 2010
328	Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor
329	angiogenesis. Cancer Res 70 4141-4150.
330	Hongwei Guo, YC, Magdalena Martinka, Kevin McElwee1 2015 High LIFr expression stimulates
331	melanoma cell migration and is associated with unfavorable prognosis in melanoma.
332	Oncotarget. 6.
333	Hu, Q, C Huang, Y Wang, and R Wu 2015 Expression of leukemia inhibitory factor in the rat retina
334	following acute ocular hypertension. <i>Mol Med Rep</i> 12 6577-6583.
335	Hunt, L, and J White 2016 The Role of Leukemia Inhibitory Factor Receptor Signaling in Skeletal
336	Muscle Growth, Injury and Disease. Adv. Exp. Med. Biol. 900 45-59.
337	Jana Rathouska, KJ, Ivana Nemeckova, Petr Nachtigal 2015 Soluble endoglin, hypercholesterolemia
338	and endothelial dysfunction. Atherosclerosis 243 383-388.
339	Jeyabalan, A, S McGonigal, C Gilmour, CA Hubel, and A Rajakumar 2008 Circulating and placental
340	endoglin concentrations in pregnancies complicated by intrauterine growth restriction and
341	preeclampsia. <i>Placenta</i> 29 555-563.
342	Jin-Young Chung, YS, Yuping Wang, Ronald R. Magness, and Jing Zheng 2004 Differential Expression
343	of VEGF, EG-VEGF, and VEGF Receptors. J Clin Endocrinol Metab 89.
344	Lena Ho, MVD, Sam Tan Jian Chye, Daniel M. Messerschmidt, Serene C. Chng, Sheena Ong,Ling Ka Yi,
345	Souad Boussata, Grace Hui-Yi Goh,Gijs B. Afink, Chin Yan Lim, N. Ray Dunn, Davor
346	Solter,Barbara B. Knowles,Bruno Reversade 2017 ELABELA deficiency promotes
347	preeclampsia and cardiovascular malformations in mice Science.
348	Li C, GB, Bernabeu C, Kumar S. 2001 Angiogenesis in breast cancer: the role of transforming growth
349	factor beta and CD105. <i>Microscopy research and technique</i> 52 437-449.
350	Luo, Q, C Wang, G Jin, D Gu, N Wang, J Song, H Jin, F Hu, Y Zhang, T Ge, X Huo, W Chu, H Shu, J Fang,
351	M Yao, J Gu, W Cong, and W Qin 2015 LIFR functions as a metastasis suppressor in
352	hepatocellular carcinoma by negatively regulating phosphoinositide 3-kinase/AKT pathway.
353	Carcinogenesis 36 1201-1212.
354	Magni, P, E Dozio, M Ruscica, H Watanobe, A Cariboni, R Zaninetti, M Motta, and R Maggi 2007
355	Leukemia inhibitory factor induces the chemomigration of immortalized
356	gonadotropin-releasing hormone neurons through the independent activation of the Janus
357	kinase/signal transducer and activator of transcription 3, mitogen-activated protein
358	kinase/extracellularly regulated kinase 1/2, and phosphatidylinositol 3-kinase/Akt signaling
359	pathways. Mol. Endocrinol. 21 1163-1174.
360	McGinnis, R, V Steinthorsdottir, NO Williams, G Thorleifsson, S Shooter, S Hjartardottir, S Bumpstead,
361	L Stefansdottir, L Hildyard, JK Sigurdsson, JP Kemp, GB Silva, LCV Thomsen, T Jaaskelainen, E
362	Kajantie, S Chappell, N Kalsheker, A Moffett, S Hiby, WK Lee, S Padmanabhan, NAB Simpson,
363	VA Dolby, E Staines-Urias, SM Engel, A Haugan, L Trogstad, G Svyatova, N Zakhidova, D
364	Najmutdinova, F Consortium, G Consortium, AF Dominiczak, HK Gjessing, JP Casas, F
365	Dudbridge, JJ Walker, FB Pipkin, U Thorsteinsdottir, RT Geirsson, DA Lawlor, AC Iversen, P
366	Magnus, H Laivuori, K Stefansson, and L Morgan 2017 Variants in the fetal genome near FLT1
367	are associated with risk of preeclampsia. <i>Nat Genet</i> .
	· ·

368	Mol, BWJ, CT Roberts, S Thangaratinam, LA Magee, CJM de Groot, and GJ Hofmeyr 2016
369	Pre-eclampsia. The Lancet 387 999-1011.
370	Noel, A, M Jost, and E Maquoi 2008 Matrix metalloproteinases at cancer tumor-host interface. Semin
371	<i>Cell Dev Biol</i> 19 52-60.
372	Plun-Favreau, H, D Perret, C Diveu, J Froger, S Chevalier, E Lelièvre, H Gascan, and M Chabbert 2003
373	Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding
374	determinants in the immunoglobulin-like domain of LIF receptor. J. Biol. Chem. 278
375	27169-27179.
376	Qin Luo1, YZ, Ning Wang1, Guangzhi Jin, Haojie Jin, Dishui Gu,Xuemei Tao, Xisong HuO, Tianxiang Ge,
377	Wenming Cong, Cun Wang, Wenxin Qin 2014 Leukemia inhibitory factor receptor is a novel
378	immunomarker in distinction of well-differentiated HCC from dysplastic nodules. Oncotarget.
379	6.
380	Richard J. Levine, MD, M.P.H., Chun Lam, M.D., Cong Qian, M.S.,, and PD Kai F. Yu, Sharon E.
381	Maynard, M.D., Benjamin P. Sachs, M.B., B.S., D.P.H.,Baha M. Sibai, M.D., Franklin H.
382	Epstein, M.D., Roberto Romero, M.D.,Ravi Thadhani, M.D., M.P.H., and S. Ananth
383	Karumanchi, M.D., 2006 Soluble Endoglin and Other Circulating Antiangiogenic Factors in
384	Preeclampsia. The new england journal of medicine 355 992-1005.
385	Sargent, CWRalL 2005 Latest Advances in Understanding Preeclampsia. science 308 1592-1594.
386	Schiemann, W, L Graves, H Baumann, K Morella, D Gearing, M Nielsen, E Krebs, and N Nathanson
387	1995 Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by
388	mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous
389	receptor activation. Proc. Natl. Acad. Sci. U.S.A. 92 5361-5365.
390	Shivalingappa Venkatesha1, Mourad Toporsian2,6, Chun Lam1,6, Jun-ichi Hanai1, Tadanori
391	Mammoto1, Yeon M Kim3, Yuval Bdolah1, Kee-Hak Lim1, Hai-Tao Yuan1, Towia A
392	Libermann1, Isaac E Stillman1, Drucilla Roberts4, Patricia A D'Amore5, Franklin H Epstein1,
393	Frank W Sellke1, Roberto Romero3, Vikas P Sukhatme1, Michelle Letarte2 & S Ananth
394	Karumanchi 2006 Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature
395	Medicine 12 642 - 649.
396	Sibai, B, G Dekker, and M Kupferminc 2005 Pre-eclampsia. The Lancet 365 785-799.
397	Souza, JP, AM Gülmezoglu, J Vogel, G Carroli, P Lumbiganon, Z Qureshi, MJ Costa, B Fawole, Y
398	Mugerwa, I Nafiou, I Neves, J-J Wolomby-Molondo, HT Bang, K Cheang, K Chuyun, K
399	Jayaratne, CA Jayathilaka, SB Mazhar, R Mori, ML Mustafa, LR Pathak, D Perera, T Rathavy,
400	Z Recidoro, M Roy, P Ruyan, N Shrestha, S Taneepanichsku, NV Tien, T Ganchimeg, M
401	Wehbe, B Yadamsuren, W Yan, K Yunis, V Bataglia, JG Cecatti, B Hernandez-Prado, JM
402	Nardin, A Narváez, E Ortiz-Panozo, R Pérez-Cuevas, E Valladares, N Zavaleta, A Armson, C
403	Crowther, C Hogue, G Lindmark, S Mittal, R Pattinson, ME Stanton, L Campodonico, C
404	Cuesta, D Giordano, N Intarut, M Laopaiboon, R Bahl, J Martines, M Mathai, M Merialdi,
405	and L Say 2013 Moving beyond essential interventions for reduction of maternal mortality
406	(the WHO Multicountry Survey on Maternal and Newborn Health): a cross-sectional study.
407	The Lancet 381 1747-1755.
408	Swayampakula, M, PC McDonald, M Vallejo, E Coyaud, SC Chafe, A Westerback, G Venkateswaran, J
409	Shankar, G Gao, EMN Laurent, Y Lou, KL Bennewith, CT Supuran, IR Nabi, B Raught, and S

Page 18 of 31

18

411	in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene.
412	Valbuena-Diez, AC, FJ Blanco, B Oujo, C Langa, M Gonzalez-Nunez, E Llano, AM Pendas, M Diaz, A
413	Castrillo, JM Lopez-Novoa, and C Bernabeu 2012 Oxysterol-induced soluble endoglin release
414	and its involvement in hypertension. Circulation 126 2612-2624.
415	Wang, K, Y Song, DB Chen, and J Zheng 2008 Protein phosphatase 3 differentially modulates vascular
416	endothelial growth factor- and fibroblast growth factor 2-stimulated cell proliferation and
417	signaling in ovine fetoplacental artery endothelial cells. Biol Reprod 79 704-710.
418	Weiliang Chen, TX, Donghai Wang, Bin Huang, Peng Zhao, Jian Wang, Xun Qu, Xingang Li 2016
419	Human astrocytes secrete IL-6 to promote glioma migration and invasion through
420	upregulation of cytomembrane MMP14. Oncotarget. 7.
421	Yi-zhou Jiang Kai Wang, RF, and Jing Zheng 2010 Expression of Aryl Hydrocarbon Receptor in Human
422	Placentas. Journal of Histochemistry & Cytochemistry 58 679-685.
423	Zeisler, H, E Llurba, F Chantraine, M Vatish, AC Staff, M Sennstrom, M Olovsson, SP Brennecke, H
424	Stepan, D Allegranza, P Dilba, M Schoedl, M Hund, and S Verlohren 2016 Predictive Value of
425	the sFlt-1:PIGF Ratio in Women with Suspected Preeclampsia. N Engl J Med 374 13-22.
426	Zheng, Q, K Dai, X Cui, M Yu, X Yang, B Yan, S Liu, and Q Yan 2016 Leukemia inhibitory factor promote

Dedhar 2017 The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles

427 trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia.
428 Biomed Pharmacother 80 102-108.

429

Figure and table legends

Table1. The primer set in this study.

Table2. The basic information of pregnant women

Figure 1: Expression levels of LIF and LIFR in human placentas from first trimester (n=7), full term (n=7/11) and preeclampsia (n=7/11) was determined by western blot, ELISA or immunohistochemistry. (A, C, D) The expression of LIF and LIFR protein in human placentas from the first trimester (n=7) and full-term pregnancies (n=7) was determined by western blot. (B, E, F) The expression of LIF and LIFR protein in human placentas from pregnant women with preeclampsia (n=7) compared with those from normotensive full-term pregnancies (n=7) was determined by western blot. (G) LIF protein in human placentas from women with preeclampsia (n=7) was determined by western blot. (G) LIF protein in human placentas from women with preeclampsia (n=11) and matched pregnant controls (n=11) was measured by ELISA. (H) Immunohistochemical localizations of LIF and LIFR in normal and preeclamptic placentas. Arrows, syncytiotrophoblast; Arrowhead, cytotrophoblast; as-terisk, endothelium. Scale bar=250µm. Representative western blots are shown for LIF, LIFR and β -actin. Data are normalized to β -actin and are expressed as the mean ±SD (Student's t-test, *p < 0.05).

Figure 2: Overexpression of LIFR promotes the release of sEng in HTR8/SVneo cells. (A, B, C) The efficiency of the overexpression of LIFR was determined by qRT-PCR and western blot. (D, E, F) The concentration of sEng and sFlt-1 in the cell supernatant after the overexpression of LIFR in HTR8/SVneo cells and in the plasma of women with PE or normotensive term pregnancies were measured by ELISA. Bars represent the means \pm SEM. (Student's t-test, * P<0.05, ** P<0.01, *** P<0.001).

Figure 3: Overexpression of LIFR enhances the migration and invasion of HTR-8/SVneo cells. (A, B, C) Effects of the overexpression of LIFR on the migration and invasiveness of HTR-8/SVneo cells were determined using the Transwell system. (D) Effects of the overexpression of LIFR on HTR-8/SVneo cell proliferation by MTT assay. Scale bar= $200 \mu m$. Bars represent the means ± SEM (Student's t-test, * P<0.05, ** P<0.01).

Figure 4: LIFR is involved in the release of sEng via the up-regulation of MMP14 in HTR-8/Svneo cells. (A, B, C) The expressions of MMP14 mRNA and protein in HTR8/SVneo cells transfected with an expression vector encoding LIFR (LIFR) or an empty vector (Mock), according to qRT-PCR and western blot. (D, E) The expression of MMP14 protein in preeclamptic and normal placentas, as determined by western blot. (F, G) The efficacy of MMP14 siRNA was detected by western blot and qRT-PCR in HTR8/SVneo cells after overexpression of LIFR. (H) The concentration of sEng in the cell supernatant after MMP14 knockdown was determined by ELISA in HTR8/SVneo cells overexpressing LIFR. The relative expression level of MMP14 protein was normalized to β -actin. The data are expressed as the means ± SEM or SD (Student's t-test, one-way ANOVA, * P<0.05, ** P<0.01)

Figure 5: An MMP14 inhibitor (NSC405020) inhibits HTR-8/Svneo cell migration and invasion induced by LIFR. (A, B, C) The cell migration and invasion were decreased by NSC405020 as demonstrated by the Transwell system. (D) The expression of MMP14 protein in HTR8/SVneo cells treated with NSC405020 (50 μ m) was shown by western blot. Scale bar=200 μ m. Bars represent the means ± SEM (Student's t-test, * P<0.05, ** P<0.01).

Figure 6: The exogenous LIF enhances the migration and invasion of JAR and HTR-8/SVneo cells through the phosphorylation of STAT3. (A, B, C, D, E) The effects of LIF on cell migration, invasion and proliferation were measured by MTT assay and the Transwell system. (F, G) The phosphorylation of the STAT3 in JAR and HTR-8/SVneo cells after treated with different concentrations of LIF, as determined by western blot. Scale bar=200 μ m. The bands represent STAT3, pSTAT3, and β -actin (internal reference) proteins, as shown by western blot. The data are expressed as the means ± SEM (Student's t-test, * P<0.05, ** P<0.01, *** P<0.001).

Figure 7: The STAT3 inhibitor can inhibit the migration of JAR and HTR-8/SVneo cells. (A, B) Effects of the STAT3 inhibitor on cell migration according to the Transwell system. (C, D) The expression of STAT3 and pSTAT3 in cells that were incubated with a STAT3 inhibitor according to western blot. The data are normalized to β -actin. Scale bar=200 µm. Bars represent the means ± SEM. a, b Means with different letters are significantly difference (one-way ANOVA, * P< 0.05).

Figure 8: The overexpression of LIFR could not stimulate the phosphorylation of STAT3. The bands represent the LIFR, STAT3, pSTAT3, and β -actin (internal reference) proteins after western blot analysis.

Sequence (5'–3')		
hLIFR		
Forward	GTGACCCACAACACACTCTG	
Reverse	CACATTCCAAGGGCATATCTGAG	
hMMP14		
Forward	GGCTACAGCAATATGGCTACC	
Reverse	GATGGCCGCTGAGAGTGAC	
GAPDH		
Forward	TGGGCTACACTGAGCACCAG	
Reverse	AAGTGGTCGTTGAGGGCAAT	

Table1. The primer set in this study

	First trimester(n=7)	Full term(n=11)	PE(n=11)
Maternal age(years)	27.3±2.8	29.8±0.9	30±1.4
Gestation age(weeks)	7.0±0.3	38.8±0.3	37.7±0.5
Fetal weight(g)		3422.3±59.8	2886.4±171.6 **
Systolic pressure(mmHg)		112.5±2.4	146.5±3.1 ***
Diastolic		73.5±2.7	97.6±1.4 ***
pressure(mmHg)			
Proteinuria		(-)	(++)
Mode of delivery		CS	CS

Table2. The basic information of pregnant women

*P<0.05, ***P<0.001(value as mean ±SEM)

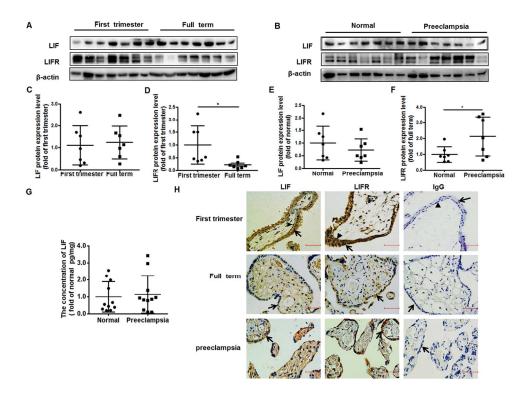


Figure 1: Expression levels of LIF and LIFR in human placentas from first trimester (n=7), full term (n=7/11) and preeclampsia (n=7/11) was determined by western blot, ELISA or immunohistochemistry. (A, C, D) The expression of LIF and LIFR protein in human placentas from the first trimester (n=7) and full-term pregnancies (n=7) was determined by western blot. (B, E, F) The expression of LIF and LIFR protein in human placentas from pregnancies (n=7) was determined by western blot. (B, E, F) The expression of LIF and LIFR protein in human placentas from pregnancies (n=7) was determined by western blot. (G) LIF protein in human placentas from normotensive full-term pregnancies (n=7) was determined by western blot. (G) LIF protein in human placentas from women with preeclampsia (n=11) and matched pregnant controls (n=11) was measured by ELISA. (H) Immunohistochemical localizations of LIF and LIFR in normal and preeclamptic placentas. Arrows, syncytiotrophoblast; Arrowhead, cytotrophoblast; as-terisk, endothelium. Scale bar=250 µm. Representative western blots are shown for LIF, LIFR and β -actin. Data are normalized to β -actin and are expressed as the mean ±SD (Student's t-test, *p < 0.05).

184x133mm (300 x 300 DPI)

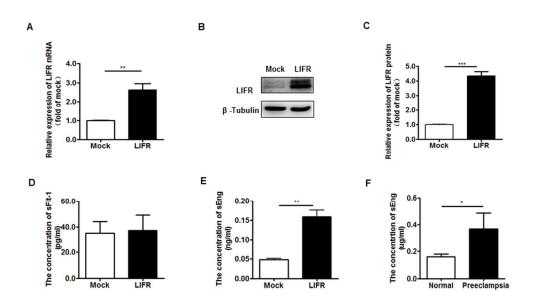


Figure 2: Overexpression of LIFR promotes the release of sEng in HTR8/SVneo cells. (A, B, C) The efficiency of the overexpression of LIFR was determined by qRT-PCR and western blot. (D, E, F) The concentration of sEng and sFlt-1 in the cell supernatant after the overexpression of LIFR in HTR8/SVneo cells and in the plasma of women with PE or normotensive term pregnancies were measured by ELISA. Bars represent the means ± SEM. (Student's t-test, * P<0.05, ** P<0.01,, *** P<0.001).

129x73mm (300 x 300 DPI)

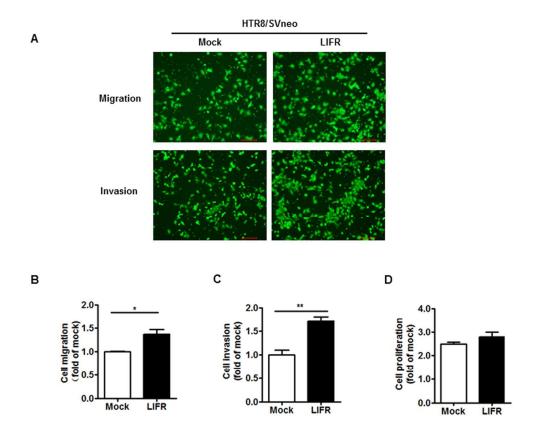


Figure 3: Overexpression of LIFR enhances the migration and invasion of HTR-8/SVneo cells. (A, B, C) Effects of the overexpression of LIFR on the migration and invasiveness of HTR-8/SVneo cells were determined using the Transwell system. (D) Effects of the overexpression of LIFR on HTR-8/SVneo cell proliferation by MTT assay. Scale bar=200µm. Bars represent the means ± SEM (Student's t-test, * P<0.05, ** P<0.01).

152x123mm (600 x 600 DPI)

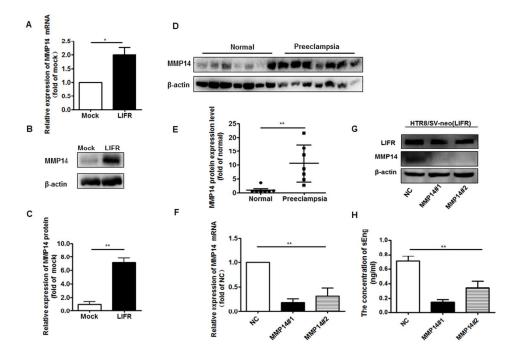


Figure 4: LIFR is involved in the release of sEng via the up-regulation of MMP14 in HTR-8/Svneo cells. (A, B, C) The expressions of MMP14 mRNA and protein in HTR8/SVneo cells transfected with an expression vector encoding LIFR (LIFR) or an empty vector (Mock), according to qRT-PCR and western blot. (D, E) The expression of MMP14 protein in preeclamptic and normal placentas, as determined by western blot. (F, G) The efficacy of MMP14 siRNA was detected by western blot and qRT-PCR in HTR8/SVneo cells after overexpression of LIFR. (H) The concentration of sEng in the cell supernatant after MMP14 knockdown was determined by ELISA in HTR8/SVneo cells overexpressing LIFR. The relative expression level of MMP14 protein was normalized to β-actin. The data are expressed as the means ± SEM or SD (Student's t-test, one-way ANOVA, * P<0.05, ** P<0.01)</p>

190x142mm (300 x 300 DPI)

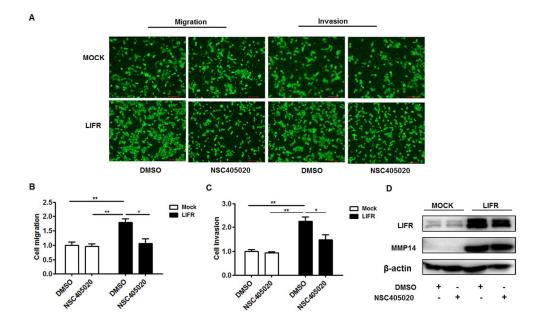


Figure 5: An MMP14 inhibitor (NSC405020) inhibits HTR-8/Svneo cell migration and invasion induced by LIFR. (A, B, C) The cell migration and invasion were decreased by NSC405020 as demonstrated by the Transwell system. (D) The expression of MMP14 protein in HTR8/SVneo cells treated with NSC405020 (50 μ m) was shown by western blot. Scale bar=200 μ m. Bars represent the means ± SEM (Student's t-test, * P<0.05, ** P<0.01).

244x149mm (170 x 170 DPI)

Figure 6: The exogenous LIF enhances the migration and invasion of JAR and HTR-8/SVneo cells through the phosphorylation of STAT3. (A, B, C, D, E) The effects of LIF on cell migration, invasion and proliferation were measured by MTT assay and the Transwell system. (F, G) The phosphorylation of the STAT3 in JAR and HTR-8/SVneo cells after treated with different concentrations of LIF, as determined by western blot. Scale bar=200 μ m. The bands represent STAT3, pSTAT3, and β -actin (internal reference) proteins, as shown by western blot. The data are expressed as the means ± SEM (Student's t-test, * P<0.05, ** P<0.01, *** P<0.001).

190x142mm (300 x 300 DPI)

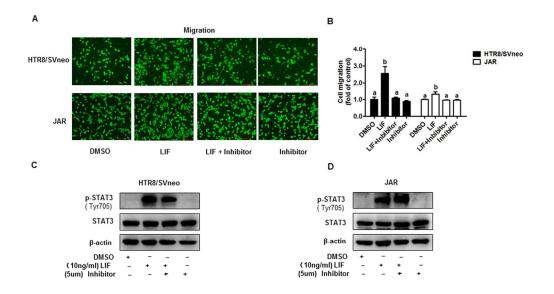


Figure 7: The STAT3 inhibitor can inhibit the migration of JAR and HTR-8/SVneo cells. (A, B) Effects of the STAT3 inhibitor on cell migration according to the Transwell system. (C, D) The expression of STAT3 and pSTAT3 in cells that were incubated with a STAT3 inhibitor according to western blot. The data are normalized to β -actin. Scale bar=200 µm. Bars represent the means ± SEM. a, b Means with different letters are significantly difference (one-way ANOVA, * P< 0.05).

147x85mm (300 x 300 DPI)

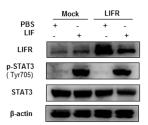


Figure 8: The overexpression of LIFR could not stimulate the phosphorylation of STAT3. The bands represent the LIFR, STAT3, pSTAT3, and β -actin (internal reference) proteins after western blot analysis.

254x190mm (300 x 300 DPI)