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Angiopoietin-like protein 3 blocks nuclear import of FAK
and contributes to sorafenib response
Yi Bao1, Fu Yang2, Bing Liu1, Tangliang Zhao1, Zhipeng Xu3, Ying Xiong1, Shuhan Sun2, Le Qu4 and Linhui Wang1

BACKGROUND: Poor drug response of sorafenib is a major challenge which reduces clinical benefit of renal cell carcinoma (RCC)
patients. It is therefore of great clinical significance to elucidate the underlying mechanism to restore the therapeutic response to
sorafenib.
METHODS: Angiopoietin-like protein 3 (ANGPTL3) protein levels were measured by western blot and immunohistochemistry in two
cohorts of RCC patients. Loss-of-function and gain-of-function experiments were performed to investigate the biological roles of
ANGPTL3 in response to sorafenib treatment in RCC cells. Human proteome microarray and immunoprecipitation analysis were
performed to explore the molecular mechanisms underlying the functions of ANGPTL3.
RESULTS: ANGPTL3 was upregulated in sorafenib-responsive RCC, which correlated with clinically good sorafenib response.
Knockdown of ANGPTL3 conferred sorafenib-tolerance traits to RCC cells, whereas overexpression of ANGPTL3 restored sorafenib
sensitivity in RCC cells. Mechanistically, ANGPTL3 bound to Focal Adhesion Kinase(FAK) and restained sorafenib induced nuclear
translocation of FAK, leading to attenuate the ubiquitination of p53, which contributed to cellular apoptosis and enhanced
sorafenib response.
CONCLUSIONS: ANGPTL3 may be a novel predictor for the response of sorafenib therapy in RCC patients, and a potential target in
improving its therapeutic effect.
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INTRODUCTION
The incidence of renal cell carcinoma (RCC) is rising throughout
the world. Approximately 20% of RCC patients present with
advanced stage disease at the time of diagnosis, and in patients
with localised RCC, nearly 30% will develop recurrence and
metastasis after tumour resection.1,2 Recently, an improved
understanding of RCC pathogenesis has led to the development
of multiple kinase inhibitors, such as sorafenib, that have become
the mainstay of therapeutic options for treating advanced RCC
patients. Sorafenib has potent antitumour and anti-angiogenic
activities due to its inhibition of the serine/threonine kinase Raf-1,
receptor tyrosine kinase vascular endothelial growth factor
receptor, platelet-derived growth factor receptor, FMS-like tyr-
osine kinase 3, Ret, and mast/stem-cell growth factor receptor
(KIT).3–5 Although sorafenib has been shown to improve the
prognosis of patients in large randomised phase III studies, 22% of
patients failed to respond to early treatment with sorafenib
because of intrinsic resistance, and most of the remaining patients
develop drug resistance and tumour progression after
6–15 months of therapy.6–9 Several studies have proposed that
the activation of escape pathways from RAF/MEK/ERK/STAT310–13

possibly may result in sorafenib resistance, but the picture remains
unclear. In addition, no effective treatment is available after drug

resistance arises. On the other hand, few prognostic factors have
been validated as predictive biomarkers of sorafenib response.
Thus, it is urgent to elucidate the underlying mechanisms of
sorafenib resistance and discover reliable biomarkers that can
predict sorafenib response in RCC patients.
There is a family of proteins that are structurally similar to

angiopoietins (ANGs). These proteins are known as angiopoietin-
like proteins (ANGPTLs), which comprise eight proteins, ANGPTL1-
8.14 However, ANGPTLs do not bind to the ANG receptor, Tunica
interna endothelial cell kinase (Tie) 2, or to the related protein
Tie1, which suggests that they may have different biological
functions than ANGs. ANGPTLs participate in multiple biological
processes, such as angiogenesis,15,16 haematopoietic stem cell
expansion,17 inflammation18 and cancer progression.19–22

ANGPTLs, such as ANGPTL123 and ANGPTL4,24,25 have also been
reported as involved in targeting drug resistance. Nevertheless,
the role of ANGPTLs in the regulation of sorafenib response in RCC
remains unknown.
In this study, we validate that ANGPTL3 is highly expressed in

sorafenib-responsive RCC tissues and could predict clinical
benefits from sorafenib therapy. Moreover, ANGPTL3 is function-
ally required for sorafenib sensitivity of RCC. Further mechanistic
study reveals that ANGPTL3 interacts with Focal Adhesion Kinase
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(FAK) to inhibit its nuclear translocation, which finally dampen the
ubiquitination of p53. Overall, we discover that ANGPTL3
modulates sorafenib sensitivity in RCC via inhibiting FAK mediated
p53 ubiquitination.

METHODS
RCC patients and clinical samples
RCC patients who underwent surgical resections before adjuvant
therapy in Changhai and Changzheng Hospital, Shanghai, China,
from 2009 to 2016 were included in this study. Ten pairs of
sorafenib-sensitive and non-sensitive RCC tissues were used for
preliminary screening, and the detailed clinical characteristics of
these patients are provided in Supplementary Table 1. The
expression of ANGPTL3 mRNA in 68 cases of RCC was detected
and analysed, along with sorafenib sensitivity. The detailed clinical
characteristics of these patients are provided in Supplementary
Table 2. To evaluate the correlation between ANGPTL3 level and
sorafenib response, tumour tissues were collected from the
biopsies or surgical specimens of 136 advanced clear cell RCC
(ccRCC) patients between August 2006 and April 2016. These
patients had received no systemic treatment before biopsy or
radical nephrectomy. Patients in the sorafenib group (n= 70)
received at least two cycles of sorafenib therapy, and patients in
control group (n= 66) received no therapy. These tissues were
constructed into a tissue microarray (Biochip Company Ltd, China),
and ANGPTL3 level was determined by immunohistochemistry.
The detailed clinical characteristics of these patients are listed in
Supplementary Table 5 and Supplementary Table 6. The response
to sorafenib of the RCC patients was determined by computed
tomography (CT) or magnetic resonance imaging, clinical
progression, or death, with the use of the Response Evaluation
Criteria in Solid Tumors (RECIST).

Cell lines and reagents
The human RCC cell lines (OS-RC-2, Caki-2, Caki-1, A498, 786-O,
ACHN, 760-P, KETR-3) were obtained from the Chinese Academy
of Sciences (Shanghai, China). A498 and ACHN cells were
incubated in MEM(10-010-CV, Corning, United States) supplemen-
ted with 10% foetal bovine serum (FBS, 16000044, Gibco, United
States) and other cells were incubated in RPMI-1640 (10-040-CV,
Corning, United States) containing 10% FBS. Cells were grown as a
monolayer on plastic cell culture dishes at 37 °C in a humidified
atmosphere containing 5% CO2. Sorafenib and RITA (NSC 652287)
were purchased from Selleck chemicals (China). MG132 and
cycloheximide (CHX) was purchased from APExBIO (United States).
The primers used were listed in Supplementary Table 8 and the
antibodies used were listed in Supplementary Table 9.

Animal studies
The animal studies were approved by the Institutional Animal Care
and Use Committee of the Second Military Medical University,
Shanghai, China. Male athymic BALB/c nude mice (4–5 weeks old)
were used. A total of 3 × 106 lv-ANGPTL3 and lv-NC OS-RC-2 cells
was injected subcutaneously into left and right side of model
respectively (n= 8). One week after the injection of tumour cells,
animals were randomly assigned to the control or experimental
groups (n= 4 mice/group). The mice were treated with either
vegetable oil (control) or sorafenib (80 mg/kg in vegetable oil).
Xenograft volumes were evaluated by caliper measurements of
two perpendicular diameters and calculated individually as
formula: Volume= a × b2/2 (a represent length and b represent
width). Xenograft growth was measured weekly and quantified
using a noninvasive bioluminescence In-Vivo Imaging System
(IVIS; Xenogen) 10 min after intraperitoneal injection of 4.0 mg of
luciferin (Gold Biotech) in 50 μl of saline, as previously described.26

Xenograft samples were collected for histologic evaluation
(paraffin section) or snap-freezing in liquid nitrogen, and We

collected blood samples from orbital sinus and the blood was
fractionated by centrifugation, and serum was stored at −80 °C
until ready for use.

Plasmids construction
The full-length FAK mRNA sequence was obtained from the NCBI
website (NM_153831.3). The different fragments of ANGPTL3 were
designed as Fig. 4d. The fragment was obtained by Gene synthesis
and cloned into the pcDNA3.1 vector (General Biosystems (Anhui)
Co. Ltd.)

Cell transfection
Transfection of plasmids was performed by using jetPEI (PolyPlus
Transfection, France). Transfection of siRNA (100 nM, GenePharma,
China) was performed by using Lipofectamine RNAiMAX (Invitro-
gen, USA). Sequences of siRNA and shRNA against specific targets
were listed in Supplementary Table 10.

Lentiviral packaging and transfection
Lentiviruses encoding human ANGPTL3 were constructed and
produced by Obio Technology (Shanghai). OS-RC-2 and caki-2
cells were infected with lenti-ANGPTL3 or lenti-EGFP in a MOI of
100. 72 h later puromycin was added to get the stable transfected
cell lines.

Human proteome microarray assay
The HuProt microarray(CDI Laboratories, Inc.) was composed of
20,240 human full-length proteins with N-terminal glutathione S-
transferase (GST) tags. The HuProt microarray assay was
performed by Wayen biotechnologies (Shanghai), Inc. according
to the following procedure. Human Proteome microarrays
(HuProtTM 20 K) were blocked with blocking buffer (1% BSA in
0.1% Tween 20, TBST) for 1 h at room temperature with gentle
agitation. ANGPTL3 protein (ab176028, abcam, USA) was labeled
with biotin by the Antibody Array Assay Kit (Full moon Biosystems,
Sunnyvale, CA), and then diluted to 0.01 mg/ml in blocking buffer
and incubated on the blocked proteome microarray at room
temperature for 1 h. The microarrays were washed three times for
5 min each time with TBST, incubated with streptavidin-Cy5 at
1:1000 dilution (Thermo Fisher Scientific, USA) for 1 h at room
temperature and underwent three more 5-min washes. The
microarrays were spun dry at 1500 rpm for 3 min and subjected
to scanning with a Genepix 4000B (Axon Instruments, Sunnyvale,
CA) in order for results to be visualised and recorded. A GenePix
Pro 6.0 was used for data analysis.

Co-Immunoprecipitation
Co-IP was performed as the manufacturer’s instructions (Pierce Co-
Immunoprecipitation (Co-IP) Kit, Thermo Scientific). RCC cells with
indicated treatment were used for one immunoprecipitation
reaction. Briefly, cells were lysed in a series of buffers and
centrifugation steps to obtain lysate supernatant. Indicated
antibodies were covalently coupled onto an amine-reactive resin
and used to bait the corresponding proteins.

Nucleoprotein extraction
Subcellular fractionation was performed as the manufacturer’s
instructions (Thermo Scientific). Briefly, cells were lysed in a series
of buffers and centrifugation steps to obtain a non-nuclear
fraction and an intact nuclear pellet, followed by further lysing to
isolate nuclear proteins. Nuclear and non-nuclear fractions
(40–100 µg) were separated by SDS–PAGE and transferred to
nitrocellulose filter (NC) membranes

Immunocytochemistry
RCC cells were plated in laser confocal special culture dishs at 30%
confluence and treated with indicated reagents at indicated
concentration for 48 h. Then, the cells were fixed with 4%
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paraformaldehyde solution for 15 min at room temperature,
permeabilised with 0.4% Triton X-100 in PBS for 5 min, and then
blocked with 1% BSA in PBS for 1 h at 37 °C. The blocked cells
were incubated with anti-FLAG antibody (1:100, Sigma) and anti-
FAK antibody (1:100, abcam) overnight at 4 °C, followed by
incubation with Alexa Fluor 488-conjugated anti-mouse IgG
antibody
and Alexa Fluor 555-conjugated anti-rabbit IgG antibody (1:100,

Invitrogen, Carlsbad, CA) for 2 h. Nuclear staining of cells was
conducted using 4,6-diamidino-2-phenylindole (DAPI). Represen-
tative images were acquired using the Leica Microsystem.

Immunohistochemistry
Specimens were stained with antibody ANGPTL3 (abcam, 1:100).
The sections were heated at 70 °C for 1 h, dewaxed in xylene, and
dehydrated through a gradient concentration of alcohol. After
retrieving and blocking the endogenous peroxidase and non-
specific staining with 3% H2O2 and normal bovine serum, the

sections were incubated with primary antibody overnight at 4 °C.
The slides were then incubated with horseradish peroxidase
(HRP)-conjugated secondary antibody for 10 min at 37 °C. Finally,
the sections were visualised by diaminobenzidine (DAB) solution
and counterstained with haematoxylin. Two pathologists blinded
to the patient outcome scored the staining intensities and
percentages of positive tumour cells independently.

Data analysis
All statistical analyses in this study were performed with SPSS
22.0 software (SPSS Inc, USA). Data were presented as ‘mean ± sd’
The significance of mean values between two groups was
analysed by two-tailed Student’s t-test. Spearman’s correlation
analysis was performed to determine the correlation between two
variables. Pearson chi-square test acted to analyse the clinical
variables. Kaplan–Meier survival analysis was utilised to compare
ccRCC patient survival based on dichotomised ANGPTL3 expres-
sion by log-rank test. Cox proportional hazards regression analyses
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Fig. 1 ANGPTL3 is preferentially upregulated in sorafenib-responsive renal cell carcinoma. a qRT-PCR analysis of ANGPTL3 mRNA levels and
the IC50 of sorafenib in 7 RCC cell lines (n= 3). b The mRNA expression levels of ANGPTL 3 in an independent set of RCC tumours samples
with 10 good and 10 poor responses to sorafenib therapy (n= 3). c Western blot analysis of ANGPTL3 protein level in the 7 RCC cell lines. On
the right is a graph of ANGPTL3 relative expression and the IC50 of sorafenib (n= 3). d Representative western blot results for ANGPTL3
protein levels in the pretherapy tumour tissues from RCC patients with good responses (n= 10) or poor responses (n= 10) to sorafenib
therapy. The chart on the right shows the relative expressions of ANGPTL3. e qRT-PCR analysis of ANGPTL3 mRNA levels in the pretherapy
tumour tissues of RCC patients with good responses (n= 32) or poor responses (n= 36) to sorafenib therapy (p= 0.002).
f Immunohistochemical analysis of ANGPTL3 protein level in RCC tissues before sorafenib therapy. Representative immunohistochemistry
images from patients who were non-responsive (N1, N2, N3) and responsive (R1, R2, R3) to sorafenib are shown. The scale bar represents
100 μm. g Percentages of non-responsive and responsive to sorafenib samples between different ANGPTL3 levels. Results are presented as the
means ± SD. *p < 0.05, **p < 0.01. See also Supplementary Figure 1 and Supplementary Table 1-2
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were utilised to analyse the effect of clinical variables on patient
survival. A p value of 0.05 was considered significant.

RESULTS
ANGPTL3 is preferentially upregulated in sorafenib-responsive RCC
To determine whether ANGPTLs are associated with sorafenib
sensitivity in RCCs, we examined the mRNA expression levels of
ANGPTL1-8 in 7 RCC cell lines (Fig. 1a and Supplementary
Figure 1A), as well as a set of pre-treated tumour tissues from a
cohort of RCC patients that presented with distinct responses to
sorafenib therapy (Fig. 1b, Supplementary Figure 1B, Supplemen-
tary Table 1). Figure 1a, b shows that in both the RCC cell lines and
the RCC tumour tissues, ANGPTL3 expression was correlated with
the good response to sorafenib at the mRNA levels, which was
further validatedat the protein levels by western blot (Fig. 1c, d).
The sample size was then increased to verify the above findings.
Patients with lower ANGPTL3 expression in RCC tissues had a
higher proportion of sorafenib resistance (Fig. 1e–g, Supplemen-
tary Table 2). Together, these results showed that ANGPTL3 was
preferentially upregulated in sorafenib-responsive RCC and may
be required to maintain sorafenib sensitivity.

ANGPTL3 is required to maintain sorafenib sensitivity in RCC cells
To explore the functional role of ANGPTL3 in sorafenib tolerance,
we suppressed ANGPTL3 expression utilising two independent

short hairpin RNAs against ANGPTL3 in two sorafenib responsive
RCC cell lines (Supplementary Figure S2A and S2B). As shown in
Fig. 2a, RCC cells with ANGPTL3 knockdown displayed elevated
IC50 compared with the control cells. In addition, ANGPTL3
knockdown attenuated sorafenib-induced cellular apoptosis, as
determined by levels of cleavage of poly (ADPribose) polymerase
(PARP) and caspase 3 expression, as well as flow cytometry
(Fig. 2b, c). Together, these data indicate that ANGPTL3 is required
to maintain sorafenib sensitivity in RCC cells and inhibiting
ANGPTL3 could increase tolerance to sorafenib treatment.

Overexpression of ANGPTL3 enhances the sorafenib sensitivity of
RCC in vitro and in vivo
Next, we overexpressed ANGPTL3 expression in two sorafenib-
resistant RCC cells (Supplementary Figure 3A and 3B). Compared
with the control group, overexpressing ANGPTL3 resensitised RCC
cells to sorafenib treatment and led to decreased IC50 (Fig. 3a).
Increased cleavage of PARP and caspase 3 were observed in
ANGPTL3 overexpressing RCC cells following sorafenib treatment
(Fig. 3b). Consistently, flow cytometry showed that sorafenib
exposure resulted in an increased proportion of apoptotic cells
among ANGPTL3 overexpressing RCC cells (Fig. 3c).
Then we injected ANGPTL3-overexpressing and control OS-RC-2

cells subcutaneously into the left and right axils of nude mice,
respectively. When the volume of the xenograft reached 100mm3

mice were orally treated with vehicle or sorafenib (80 mg/kg/day).
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Fig. 2 ANGPTL3 is required to maintain sorafenib sensitivity in RCC cells. a CCK8 assay of ACHN and 769-p cells transfected with sh-ANGPTL3-
1, sh-ANGPTL3-2 or sh-NC after sorafenib treatment at the indicated concentrations for 48 h (n= 3). The IC50 values are shown in the lower
histogram. bWestern blot analysis of the indicated proteins in ACHN and 769-p cells transfected with sh-ANGPTL3-1, sh-ANGPTL3-2 or control
sh-NC after sorafenib treatment at the indicated concentrations for 48 h (n= 3). GAPDH was used as a loading control. c Flow cytometry
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*p < 0.05. See also Supplementary Figure 2
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The results showed that xenografts formed from ANGPTL3-
overexpressing RCC cells exhibited better responses to sorafenib
(Fig. 3d, f and Supplementary Figure 3C). ANGPTL3 is a secreted
protein, and we found that serum human ANGPTL3 levels was
higher in tumour-bearing mice than in non-tumour-bearing mice
(Supplementary Figure 3D), indicating that human ANGPTL3 was
secreted from the xenograft. However, the different xenografts on
the left and the right sides of the same mouse showed different
response to sorafenib under the same blood ANGPTL3 concentra-
tion (Fig. 3e), suggesting that the ANGPTL3 in the bloodstream

may not be the main factor influencing the response of tumour
cells to sorafenib. Collectively, these findings indicate that the
forced expression of ANGPTL3 overcomes sorafenib tolerance in
RCC cells and that it may play its role through non-endocrine
pathways.

ANGPTL3 physically interacts with FAK
To dissect the mechanism underlying the promotive role of
ANGPTL3 in the sorafenib sensitivity of RCCs, we used a human
proteome microarray composed of 20,240 human full-length
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Fig. 3 Overexpression of ANGPTL3 enhances the sorafenib sensitivity of RCC in vivo and in vitro. a CCK8 assay of ANGPTL3-overexpressing
and control OS-RC-2 and Caki-2 cells after sorafenib treatment at the indicated concentrations for 48 h (n= 3). The IC50 values are shown in
the lower histogram. b Western blot analysis of the indicated proteins in ANGPTL3-overexpressing and control OS-RC-2 and Caki-2 cells after
sorafenib treatment at the indicated concentrations for 48 h (n= 3). GAPDH was used as a loading control. c Flow cytometry analysis of
Annexin V-stained ANGPTL3-overexpressing and control OS-RC-2 and Caki-2 cells after sorafenib treatment (7.5 μM) for 48 h (n= 3).
Representative images (left) and average ratios of cell death (right) are shown. d Nude mice were given xenografts of ANGPTL3-
overexpressing and control OS-RC-2 cells (5 × 106 cells per site) and were treated with vehicle or sorafenib (80 mg/kg). e Volumes of the
tumours are shown (n= 5 per group). e Representative bioluminescent images. Results are presented as the means ± SD. *p < 0.05, **p < 0.01.
See also Supplementary Figure 3
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proteins with N-terminal glutathione S-transferase (GST) tags to
seek ANGPTL3-interacting proteins (Supplementary Table 3) and
there were 78 protein spots showing high signal (F635 > 500).
The subcellular localisation of ANGPTL3 was measured and
found to be mainly distributed in the cytoplasm (Supplementary
Figure 4A-C). Cellular component analysis of Gene Ontology
revealed that twenty-five of the above 78 proteins were located
in the cytoplasm and 11 proteins were finally selected based on
their functions for further evaluation (Fig. 4a, Supplementary
Table 4). Then subjected to loss-of-function analysis (Supple-
mentary Figure 4D). Four out of the 11 candidate proteins were
associated with sorafenib sensitivity (Supplementary Figure 4E),
but only one protein, FAK, was further reproducibly detected by
independent immunoprecipitation (Fig. 4b and Supplementary
Figure 4F). Consistently, ANGPTL3 co-localised with FAK in the
cytoplasm by immunofluorescence staining and laser confocal
observation (Fig. 4c); this result was validated by quantitative
co-localisation analysis (Pearson’s correlations R= 0.8220 and
0.8262 respectively, in OS-RC-2 and Caki-2 cells).27 Then, we
constructed truncated ANGPTL3 mutants to determine its
binding sites with FAK (Fig. 4d). A co-immunoprecipitation
assay revealed that the FBG-like domain of ANGPTL3 (residues
244-432) was required for its interaction with FAK (Fig. 4e).
These data confirm that ANGPTL3 bind to FAK through its FBG-
like domain.

ANGPTL3 represses FAK-mediated sorafenib resistance
FAK is a multifunctional regulator of cell signalling in various tumours
and promotes cell motility, survival and proliferation.28,29 Over-
expressing FAK reduced sorafenib effectiveness in RCC cells
(Supplementary Figure 5A, B) and FAK knockdown improved the
sorafenib sensitivity of RCC cells (Supplementary Figure 5C). Notably,
overexpression of ANGPTL3 diminished the distinct difference in the
sorafenib response between FAK-overexpressing and control RCC
cells (Fig. 5a, b). Consistently, interfering with FAK also eliminated the
discrepancy in sorafenib sensitivity between ANGPTL3-knocking
down and control RCC cells (Fig. 5c, d). The most well-characterised
mechanism that FAK promotes tumourigenicity involves FAK
autophosphorylation at Y397. However we found that ANGPTL3
did not affect the total level and phosphorylation level of FAK
(Supplementary Figure 5D). What’s more, PF-562271, an ATP-
competitive kinase inhibitor of FAK, did not improve the sensitivity
of RCC to sorafenib and did not reverse the resistance caused by
ANGPTL3 knockdown (Fig. 5e, f). Sorafenib can inhibit FAK
phosphorylation30,31 and we validated that in RCC cells (Fig. 5g).
The simultaneous use of PF-562271 and sorafenib treatment
increased the degree of FAK phosphorylation inhibition compared
to PF-562271 or sorafenib treatment alone but the change of the
degree is small. (Fig. 5g). In addition to its kinase-dependent
functions, FAK functions through kinase-independent pathways,
according to previous reports.32,33 Our results showed that in the
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Fig. 5 ANGPTL3 represses FAK-mediated sorafenib resistance. a CCK8 assay of ANGPTL3-overexpressing and control RCC cells transfected
with the indicated plasmid after sorafenib treatment at the indicated concentrations for 48 h. The IC50 values are shown in the rightmost
histogram. b Flow cytometry analysis of Annexin V-stained ANGPTL3-overexpressing and control RCC cells after sorafenib treatment for 48 h
(n= 3). The average ratios of cell death are shown. c CCK8 assay of 769-p and ACHN cells transfected with sh-ANGPTL3-1, sh-FAK or sh-NC
concurrent with sorafenib treatment at the indicated concentrations for 48 h (n= 3). The IC50 values are shown in the rightmost histogram.
d Flow cytometry analysis of Annexin V-stained RCC cells transfected with shANGPTL3-1, sh-FAK or sh-NC for 48 h after sorafenib treatment for
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(n= 3) (right). Results are presented as the means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. See also Supplementary Figure 5
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absence of sorafenib, FAK was mainly cytoplasm localised, and after
treatment with sorafenib, FAK appeared to have nuclear localisation,
whereas overexpression of ANGPTL3 inhibited the nuclear

localisation of FAK (Fig. 6a, b). Collectively, these data indicated that
ANGPTL3 may repress FAK-mediated sorafenib resistance by
inhibiting the nuclear localisation of FAK.
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ANGPTL3 inhibits FAK-mediated p53 ubiquitination
Nuclear FAK functions as a scaffold for p53 and MDM2, increasing
p53 polyubiquitylation and degradation, thereby promoting cell
survival.34 To verify that ANGPTL3 can modulate the kinase-
independent function of FAK, we examined the expression and
the ubiquitination of p53 after overexpressing ANGPTL3 or FAK.
We found that overexpressing ANGPTL3 increased p53 protein
level and reverse FAK-mediated p53 degradation while these
differences disappeared after treatment with MG132, a proteaso-
mal inhibitor (Fig. 6c). To further investigate whether ANGPTL3
could inhibit p53 protein degradation, a cycloheximide (CHX)
chase experiment was performed, which demonstrated that
overexpression of ANGPTL3 inhibited p53 protein degradation
(Fig. 6d). The ubiquitination assay revealed that FAK enhanced
sorafenib-induced ubiquitination of p53 and that overexpression
of ANGPTL3 reversed this effect (Fig. 6e).These data demonstrated
that ANGPTL3 inhibits FAK-mediated p53 ubiquitination via
inhibiting sorafenib induced nuclear localisation of FAK. In
addition, we overexpressed FAK and performed a CHX chase
experiment with or without treatment of PF-562271 (Supplemen-
tary Figure 6A). Overexpression of FAK promoted the degradation
of p53, whereas the combination of PF-562271 accelerated the
degradation of p53, suggesting that FAK promotes ubiquitination
of p53 independent of its kinase activity. It has been reported that
FAK kinase inhibitors can promote the entry of FAK into nuclei,35

which was confirmed in the present study (Supplementary
Figure 6B). These findings indicated that FAK kinase inhibitors
such as PF-562271 could promote FAK nuclear entry similar to
sorafenib, further explaining why PF-562271 and sorafenib did not
produce a synergistic effect (Fig. 5E and F).
Then we used a p53 activator, RITA (NSC 652287), which inhibits

the interaction between p53 and MDM2, thus inhibiting p53
ubiquitination. The results showed that RITA could promote
sorafenib sensitivity in RCC cells and diminish the distinct
difference in the IC50 of sorafenib and the cell death proportion
after sorafenib treatment between ANGPTL3-knockdown and
control RCC cells (Fig. 6f, g). RITA could increase the p53 protein
level and restore the cleavage of PARP, cleavage of caspase 3 and
p53 protein level in ANGPTL3-knockdown RCC cells (Fig. 6h).
Moreover, combined RITA and sorafenib treatment prevented the
emergence of sorafenib resistance, indicating a potential strategy
for sorafenib resistance prevention (Fig. 6i). So ANGPTL3 or the
interaction of p53 and MDM2 could serve as potential therapeutic
targets to abrogate resistance to sorafenib therapy in RCC.

High ANGPTL3 levels predict better responses to sorafenib in RCC
patients
As ANGPTL3 is functionally involved in sorafenib response in RCC
cells, we further evaluated whether the expression of ANGPTL3 in
tumour tissues was associated with the response to sorafenib

therapy. We measured ANGPTL3 levels in 136 RCC samples from
70 patients receiving sorafenib therapy and 66 patients receiving
no drug therapy after surgery as control group (Supplementary
Table 5). Sorafenib therapy provided limited benefits for the
overall progression-free survival (PFS) of RCC patients (Fig. 7a),
while patients with high ANGPTL3 expression levels in their
tumours had a more significant improvement in PFS after
receiving sorafenib than those in the control group did. However,
patients with low ANGPTL3 expression levels showed poor
response to sorafenib therapy (Fig. 7b). ANGPTL3 expression in
this RCC cohort showed no differences in relation to different TNM
stages or Furman grades (Supplementary Table 6). Both univariate
and multivariate analyses revealed that sorafenib therapy was
associated with significant improvements in PFS in patients with
high ANGPTL3 expression levels (Supplementary Table 7).
Moreover, in clinically relaspsed tumour after sorafenib therapy,

nuclear translocation of FAK and low expression of p53 were
observed (Fig. 7c). In addition, the FAK and p53 protein levels also
correlated with the IC50 value of sorafenib in the RCC cells (in
Fig. 1a). In general, cells with higher FAK levels had higher IC50
values of sorafenib (except 786-O) and cells with lower p53 levels
had higher IC50 values (except Caki-1 and 786-O) (Supplementary
Figure 7A). Thus, the expression of ANGPTL3 could serve as an
independent predictor of the response to sorafenib and the
subcellular distribution of FAK, together with the expression of
p53 might predict acquired resistance to sorafenib in RCC
patients. In addition, the effects of several other TKI drugs were
examined on FAK nuclear localisation. Sunitinib, pazopanib and
cabozantinib had similar effects to those of sorafenib. All of these
drugs promoted FAK nuclear entry, and overexpression of
ANGPTL3 suppressed these effects (Supplementary Figure 7B),
suggesting that the present findings may also apply to other TKI
drugs.

DISCUSSION
An unmet clinical challenge exists in treating advanced RCC
patients who are nonresponsive to sorafenib. The therapeutic
options for these patients are quite limited at present. Hence, it is
of great importance to investigate the mechanisms involved in
sorafenib resistance and identify novel targets for sorafenib
resistance prevention and therapy. In this study, we investigated
the critical role of ANGPTL3 in sorafenib resistance and its
underlying mechanism of action. We also demonstrated the value
of ANGPTL3 as an independent predictor of response to sorafenib
in RCC patients.
Many studies of the ANGPTLs family have been published, and

these studies confirm that the ANGPTLs family is closely related to
tumours. For example, ANGPTL1 can inhibit stemness, angiogen-
esis and metastasis in hepatocellular carcinoma cells,36,37 while

Fig. 6 ANGPTL3 represses sorafenib resistance via inhibiting p53 ubiquitination. a Western blot analysis of FAK in the subcellular fractions of
OS-RC-2 cells after sorafenib (7.5 μM) or DMSO treatment. b Immunofluorescence analysis of FAK (red) to determine its subcellular distribution
in ANGPTL3-overexpressing or control OS-RC-2 cells after sorafenib (10 μM) treatment. Scale bar, 25 μm. FAK subcellular distribution was
calculated (right). c Western blot analysis of protein p53 in ANGPTL3-overexpressing and control OS-RC-2 cells transfected with the indicated
plasmid after sorafenib (7.5 μM) treatment for 48 h. The proteasome inhibitor MG132 was added 12 h prior to lysis. GAPDH was used as a
loading control. d Western blot analysis of p53 in ANGPTL3-overexpressing and control OS-RC-2 cells after cycloheximide (CHX) and sorafenib
treatment for various times. e Western blot analysis of protein p53 ubiquitination in ANGPTL3-overexpressing and control OS-RC-2 cells
transfected with the indicated plasmid after sorafenib (7.5 μM) treatment for 48 h. GAPDH was used as a loading control. f CCK8 assay of 769-p
and ACHN cells transfected with sh-ANGPTL3-1 or sh-NC along with vehicle or RITA concurrent with sorafenib treatment at the indicated
concentrations for 48 h (n= 3). The IC50 values are shown in the rightmost histogram. g Flow cytometry analysis of Annexin V-stained RCC
cells transfected with shANGPTL3-1 or sh-NC along with vehicle or RITA for 48 h concurrent with sorafenib treatment for 48 h (n= 3).
Representative images (left) and average ratios of cell death (right) are shown. (H) Western blot analysis of the indicated proteins in 769-p and
ACHN cells transfected with sh-ANGPTL3-1 or sh-NC along with DMSO or RITA concurrent with sorafenib (5 μM) treatment for 48 h. GAPDH
was used as a loading control. i Nude mice were subcutaneously xenografted with OS-RC-2 cells (5 × 106 cells) and treated orally with
sorafenib (80mg/kg) along with RITA (10mg/kg) daily. Tumour volumes are shown (n= 5 per group). Results are presented as the means ± SD.
*p < 0.05, **p < 0.01, ***p < 0.001. See also Supplementary Figure 6
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ANGPTL2 and ANGPTL4 are upregulated in a variety of tumours
and promote tumour proliferation and the process of epithelial-
mesenchymal transition.19,38 Interestingly, in this study, by
screening tumour tissues and RCC cell lines, we found that
ANGPTL3 promoted sorafenib sensitivity in RCC, which is not
consistent with the results of a few studies that suggest that
ANGPTL3 promotes tumour development.39,40 ANGPTL3 is speci-
fically expressed in the liver and kidney, and it has previously been
reported that it binds to integrins to promote angiogenesis.15 It is

generally believed that promoting angiogenesis can promote
the development of tumours. However, in this study,
the expression of ANGPTL3 and the functional experiments
in vivo and in vitro indicate that ANGPTL3 promotes sorafenib
sensitivity. This discrepancy is very interesting, and in vitro
studies we found that ANGPTL3 did promote angiogenesis but
that this effect could be eliminated under sorafenib treatment
(data not shown). Therefore, we think that ANGPTL3 may play a
role in other ways.
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Fig. 7 High ANGPTL3 levels predict better responses to sorafenib in RCC patients. a, b Kaplan–Meier analysis of PFS in RCC patients with and
without sorafenib therapy. a All patients regardless of ANGPTL3 expression (p= 0.010). b patients with high levels (left, p= 0.0084) or low
levels (right, p= 0.261) of ANGPTL3 expression. c Immunostaining of ANGPTL3, FAK and p53 in consecutive tumour sections from matched
human RCC taken before sorafenib therapy (Pre-therapy) and after sorafenib resistance (Post-relapse). Black scale bar represents 50 μm.
Micrograph indicates the magnified morphology of tumour tissue.Blue scale bar represents 10 μm. d Schematic diagram of the ANGPTL3-
based signalling pathway in RCC sorafenib sensitivity. FAK enters the nucleus under sorafenib treatment and leads to ubiquitination of p53,
thereby inhibiting cellular apoptosis; ANGPTL3 can reverse this process by binding to FAK and inhibiting its nuclear localisation. See also See
also Supplementary Figure 7 and Supplementary Table 5-7
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To find the downstream mechanisms of ANGPTL3 action, we
used a human proteome microarray, which is more sensitive than
other methods, to find that the protein FAK binds to ANGPTL3.
Previous studies found that ANGPTL3 could combine with
integrins,15 but the signal values of ANGPTL3–integrin binding
in this microarray were low, which indicated that ANGPTL3 might
not bind integrins. We hypothesise that the differences in the
experimental environment between in vitro and in vivo and the
difference in hybridisation times may have affected the outcome,
indicating a limitation of the proteome microarray.
FAK is a non-receptor tyrosine kinase that transduces signals

from a diverse group of stimuli (e.g., integrins, cytokines,
chemokines, and growth factors) to control a variety of cellular
pathways and processes, including cell proliferation, migration,
morphology, and cell survival.33,41–43 It is generally believed to
have both kinase-dependent and kinase-independent functions.33

This study found that sorafenib can promote the nuclear
localisation of FAK and thus enhance the ubiquitination of p53,
while ANGPTL3 can combine with FAK in the cytoplasm and
inhibit nuclear localisation of FAK, thus activating p53 and
promoting cellular apoptosis. Therefore, we believe that sorafenib
has two effects on FAK: on the one hand, FAK phosphorylation
was inhibited by sorafenib, reducing tumourigenicity30,31; the
other hand, this study found that FAK entered the nuclear under
sorafenib treatment, and led to the degradation of p53, promoting
tumour survival. The nuclear function of FAK is a response by
which RCC cells protect themselves against sorafenib, reducing
the therapeutic efficacy of sorafenib. In addition, this study
showed that sunitinib, pazopanib and cabozantinib can promote
FAK nuclear entry, suggesting that this may be a common
mechanism for RCC cells to respond to TKI drugs, which needs
further study.
ANGPTL3 is a secreted protein, and previous studies have

focused on its role in relation to target receptors on the cell
membrane through the endocrine or paracrine pathway.44,45

However, we found that a considerable amount of the ANGPTL3
protein synthesised by RCC cells is still distributed inside these
cells and can play a corresponding physiological role. This result
adds to our understanding of ANGPTL3 function and suggests that
the study of secreted proteins should not ignore their possible
functions inside the cell.
The p53 gene is intact (i.e., not deleted, mutated, or methylated)

in most RCC.46 P53 has been implicated as a master regulator of a
variety of cellular processes, including proliferation, senescence,
differentiation, apoptosis, ferroptosis, DNA repair, metabolism,
angiogenesis, and autophagy.47 We found a decrease in p53
expression under sorafenib, consistent with previous reports.48

Designing small molecules to block the MDM2-p53 interaction
and reactivate p53 function is a promising therapeutic strategy for
the treatment of cancers retaining wild-type p53.49 In this study,
we found that RITA, an activator of p53, can inhibit the occurrence
of therapy resistance when combined with sorafenib. However,
targeted drug resistance is associated with many factors, and as a
secretory protein, ANGPTL3 does have the potential to act on
stromal cells and thus affect the sensitivity of targeted therapy, a
possibility that is not explored in this study and requires further
study.
In conclusion, we showed that ANGPTL3 represses sorafenib

resistance via regulating the ubiquitination of p53 by inhibiting
the nuclear translocation of FAK (Fig. 7d). These data imply that
ANGPTL3 may be not only a therapeutic target in the treatment of
RCC patients with sorafenib resistance but also a novel biomarker
for predicting responsiveness to sorafenib treatment.
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