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Modeling chemotherapy-induced stress to identify 
rational combination therapies in the DNA damage 
response pathway
Ozan Alkan1*, Birgit Schoeberl1*, Millie Shah1, Alexander Koshkaryev1, Tim Heinemann1,  
Daryl C. Drummond1, Michael B. Yaffe2, Andreas Raue1†

Cells respond to DNA damage by activating complex signaling networks that decide cell fate, promoting not only 
DNA damage repair and survival but also cell death. We have developed a multiscale computational model that 
quantitatively links chemotherapy-induced DNA damage response signaling to cell fate. The computational model 
was trained and calibrated on extensive data from U2OS osteosarcoma cells, including the cell cycle distribution 
of the initial cell population, signaling data measured by Western blotting, and cell fate data in response to che-
motherapy treatment measured by time-lapse microscopy. The resulting mechanistic model predicted the cellular 
responses to chemotherapy alone and in combination with targeted inhibitors of the DNA damage response 
pathway, which we confirmed experimentally. Computational models such as the one presented here can be used 
to understand the molecular basis that defines the complex interplay between cell survival and cell death and to 
rationally identify chemotherapy-potentiating drug combinations.

INTRODUCTION
Chemotherapy drugs commonly target rapidly dividing cells, prefer-
entially cancer cells, by inducing replicative stress (1). Upon geno-
toxic stress, cells trigger complex signaling pathways that connect 
cell cycle arrest and DNA repair in G1, S, or G2/M phase with pheno-
typic cell fate decisions made between survival, cell cycle re-entry and 
proliferation, senescence, and cell death (2). The complexity arises from 
the observation that the DNA damage response simultaneously ac-
tivates prodeath mechanisms, such as apoptosis and necroptosis, 
and prosurvival mechanisms including DNA repair and autophagy, 
often via the same signaling proteins and pathways. Within this 
context, thresholds appear to be important, but our mechanistic un-
derstanding of how cells determine cell fate upon genotoxic stress 
remains limited (3, 4).

The DNA damage signaling pathway has been extensively re-
viewed in the literature (5–8). Although complex, many of the sig-
naling proteins that compose this pathway are well described, and 
their protein-protein interactions are largely known. A major regu-
latory function is assigned to the atypical protein kinases (PKs) of 
the phosphatidylinositol 3-kinase (PI3K)–related kinase family mem-
bers: DNA-dependent PK (DNA-PK), ataxia telangiectasia–mutated 
(ATM) PK, and ataxia telangiectasia and Rad3-related (ATR) PK (9). 
They are associated with the recruitment of repair proteins to the 
site of damage and are implicated in various repair pathways, such 
as homologous recombination (HR) and nonhomologous end-joining 
(NHEJ) for double-strand break (DSB) repair, base excision repair 
(BER) or nucleotide excision repair (NER) for single-strand break 
(SSB) repair, and replication fork stabilization (10). In addition to 
their role in various repair processes, the signals from these master 
kinases are transmitted through additional kinases and phosphatases, 
such as cell cycle checkpoint (CHK1/2) and various cell division cycle 
proteins. Eventually, cyclin-dependent kinases and/or p53 transcrip-

tionally induced proteins, such as p21, regulate the cell cycle. Arresting 
the cell cycle is necessary for allowing successful completion of DNA 
repair (11). In the case of sustained DNA damage, cells can undergo 
programmed cell death by inducing apoptotic signaling (12).

Synthetic lethal approaches to cancer therapy development have 
provided novel strategies to specifically target cancer cells while 
sparing noncancer cells and thereby reducing toxicity. The U.S. 
Food and Drug Administration approvals of three poly(adenosine 
5′-diphosphate–ribose) polymerase inhibitors—olaparib (Lynparza, 
AstraZeneca), rucaparib (Rubraca, Clovis Oncology), and niraparib 
(Zejula, Tesaro Inc.)—in BRCA mutant high-grade ovarian cancer 
prove that the DNA damage repair pathway can successfully be ex-
ploited to treat certain cancer types. Inhibitors targeting the DNA 
damage response pathway exhibit activity in combination with che-
motherapies but might also have benefits as monotherapy in cancers 
that exhibit replication stress (RS) and thus may decrease normal 
tissue toxicity (13, 14). Targeted inhibitors against almost any kinase 
within the DNA damage repair pathway (ATR, CHK1, ATM, CHK2, 
and DNA-PK) have been created and are currently in clinical devel-
opment with mixed success (15). Currently, there are two ATR in-
hibitors, VX-970 (recently acquired by Merck KGaA from Vertex 
Pharmaceuticals) and AZD6738 (AstraZeneca), in multiple phase 1 
clinical trials for the treatment of solid tumors in combination with 
DNA-damaging agents (16). In addition, there are three CHK1 in-
hibitors: SRA737 (previously known as CCT245737, Sierra Oncology 
Inc.), MK-8776 (previously known as SCH-900776, Merck and Co.), 
and prexasertib (LY2606368, Lilly Oncology) in early clinical devel-
opment. The field is expanding rapidly, but the challenge moving 
forward will be how to identify patients who will benefit from com-
bination regimens containing a specific DNA damage response pathway 
inhibitor and DNA-damaging agent (chemotherapy) regimen and, 
thus, to maximize the clinical benefit to patients.

Computational models provide a tool to quantitatively understand 
the complex interplay between survival and cell death. Tentner et al. 
(17) developed a quantitative signal response data set for doxorubicin-
induced DNA damage and used relational modeling techniques to 
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understand the interplay between signaling pathways and phenotypic 
response. They found that the cell fate choice between apoptosis and 
cell cycle arrest in the case of doxorubicin is dose-dependent and 
modulated by tumor necrosis factor–. They also demonstrated that 
extracellular signal–regulated kinases 1 and 2 are required for the 
maintenance of a G1/S arrest and subsequent apoptotic cell death 
induced after exposure to low doses of doxorubicin. Other compu-
tational modeling efforts concentrated on the pharmacokinetic and 
pharmacodynamic (PK/PD) effects of targeted inhibitors of the DNA 
damage response to inform the translation of preclinical findings 
into the clinic (18, 19).

Here, we applied a mechanistic computational modeling ap-
proach to quantitatively characterize the cell-intrinsic regulation of 
cell cycle and DNA damage response signaling with respect to pheno
typic cell fate decisions. Our model not only predicted therapeutic 
targets within the DNA damage response that can potentiate the 
cytotoxicity of several common chemotherapies but also identified com

binations that unexpectedly led to attenuation of the chemotherapy-
mediated effects. Both cases were experimentally validated.

RESULTS
Construction of a multiscale computational model to predict 
cell fate in response to chemotherapy
Using ordinary differential equations (ODEs), we developed a quan
titative computational model that describes protein phosphorylation 
events, changes in gene expression, and cell fate in response to stress 
induced by chemotherapies on different time scales (Fig. 1). DNA 
damage response signaling occurs within minutes to hours; gene ex-
pression changes occur within hours to days; and cellular responses 
such as DNA damage repair, cell cycle arrest, and apoptosis may 
happen in the order of days. The model is composed of a cell cycle 
and a canonical DNA damage response signaling pathway module. 
As opposed to models that resolve the detailed molecular events of 

Fig. 1. Illustration of the computational model describing the DNA damage response signaling, gene expression changes, cell cycle stages, and cellular re-
sponses. The model includes a representation of the cell cycle (stages G1, S, and G2) and the DNA damage repair signaling pathways (gray boxes). Chemotherapy dose 
and the cell cycle composition before treatment are the model inputs. Doxorubicin leads to DSBs in G2 phase, whereas SN38 and gemcitabine induce SSBs in S phase. 
DSBs and SSBs trigger distinct individual branches of the signaling model. Stage-dependent cell cycle checkpoints (stop signs) and different DNA repair pathways (NHEJ, 
HR, and NER/BER) link the signaling model back to the cell cycle model. The model includes p53-dependent apoptosis and drug effects on proliferation and survival sig-
naling. Node-labeled “m_” indicates mRNA. The reactions are labeled with 1 to 102; the complete mathematical description of the computational model is available in 
data file S1. DDR, DNA damage response. qRT-PCR, quantitative reverse transcription polymerase chain reaction.

 on July 24, 2018
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

http://stke.sciencemag.org/


Alkan et al., Sci. Signal. 11, eaat0229 (2018)     24 July 2018

S C I E N C E  S I G N A L I N G  |  R E S E A R C H  A R T I C L E

3 of 13

the cell cycle (20), we included a simplified model that describes the 
cell cycle phases and their relationship to DNA damage. Our cell 
cycle model distinguishes G1, S, and G2 phases, as well as different 
types of DNA damage: We included SSBs and DSBs. Depending on 
the type of DNA damage induced by chemotherapy, cells transition 
to the respective damaged state and trigger a signaling response 
characteristic for the type of damage. From the signaling response, 
processes such as repair, cell cycle arrest, and apoptosis feed back 
into the cell cycle model. Our model is trained against population-
level data and describes signal transduction, repair, arrest, and apop-
tosis of cells in three different cell cycle stages. This is accomplished 
by explicitly modeling these three cell populations, including differ-
ential action of the chemotherapy treatment on the various cell cycle 
stages and subsequent divergent signaling events. Thus, the model 
describes the time evolution of a population of cells in different cell 
cycle states. Similarly, the signaling module of the computational 
model independently describes the average signaling response for 
cells in different cell cycle states.

Three DNA-damaging agents were the focus of this study: gem-
citabine, irinotecan in its active form SN38, and doxorubicin. Gem-
citabine is a nucleotide analog that is incorporated into DNA during 
S phase. It blocks DNA polymerases, stalls replication forks, and 
leads to RS and SSBs (21, 22). SN38 stabilizes the complex between 
topoisomerase-I and DNA and leads to SSBs mostly in S phase (23–25). 
Upon collision with moving DNA replication forks, those SSBs can 
become DSBs by collapse of the replication forks. Doxorubicin has 
a diverse set of mechanisms of action (26); we were particularly in-
terested in its ability to stabilize topoisomerase-II and induce DSBs 
(27). By inclusion of a separate reaction pathway that only operates 
at high concentrations of doxorubicin, we also accounted for its ad-
ditional non-DNA damage response–related mechanisms of action 
(28). In a simplified way, this additional reaction can represent ad-
ditional cytotoxicity by the generation of reactive oxygen species (29) 
or the inhibition of transcription (30). Those mechanisms lead to 
additional cytotoxicity at doses higher than about 0.1 M in vitro. 
As a result, our model harbors two pathways that can lead to apop-
tosis: One pathway is triggered by DNA damage signaling–related 
mechanisms, and the other pathway is triggered by non-DNA damage 
response–related mechanisms. The two types of DNA damage, SSBs 
and DSBs, trigger different parts of the signaling network by phos-
phorylating DNA-PK, ATM, and ATR. We used the chemotherapy 
dose as input into our computational model to simulate the activa-
tion of the DNA damage response pathways, cell cycle distribution, 
and ultimately cell fate (Fig. 1).

Different components of the signaling network are linked to the 
cellular responses and are triggered proportionally. For instance, the 
higher the phosphorylation level of CHK1, the lower the transition 
rates from S to G2 phase. Feedback loops to the cell cycle model in-
clude both the induction of cell cycle checkpoints and the activation 
of DNA damage response (Fig. 1). We implemented an early S-phase 
checkpoint that is triggered by transcriptional induction of p21, an 
S-phase checkpoint that is triggered by phospho-CHK1–dependent 
signaling, and a G2 checkpoint that is triggered by phospho-CHK2 
(pCHK2)–dependent signaling. The repair processes shift the dis-
tribution of cells from the damaged, arrested cell cycle states back 
to the corresponding cycling states. Activity of phospho–DNA-PK 
(pDNA-PK) increases NHEJ repair, the activity of phospho-ATM 
(pATM) and phospho-ATR increases HR, and the activity of phospho-
ATR increases SSB repair or replication fork stabilization.

To calibrate the model, an experimental data set using various 
experimental methods has been generated, which captures the time 
course and dose dependency of the response to chemotherapy at the 
mRNA, protein, phosphoprotein, and cellular levels. The cellular level 
consists of tracking proliferation and apoptosis by live-cell imaging. 
The data set was tailored to the scope and complexity of the compu-
tational model, which allowed us to identify the 95% confidence 
intervals for half of the parameters and lower or upper bounds for 
the remaining parameters. As a model system, we chose the U2OS 
osteosarcoma cell line because a large body of data already exists in 
the literature. For model calibration, more than 3000 individual data 
points have been measured for different time points and different 
chemotherapy treatment conditions. A variety of the experimental 
methods and data was used to calibrate the computational model 
(Fig. 2). Time-lapse microscopy data captured the dose-dependent 
effects of chemotherapies on the dynamics of cell proliferation and 
death (Fig. 2A). A red fluorescent reporter was used to count the 
number of living cells over time, and a green live cell dye reporting 
Caspase 3/7 activity was used to enumerate apoptotic cells. Flow cy-
tometry was used to determine the cell cycle distribution before drug 
treatment as input into the computational model (Fig. 2B). The sig-
naling dynamics of eight proteins of the DNA damage response 
pathway (pATM, pDNA-PK, pCHK1, pCHK2, phospho- and total 
p53, total p21, and yH2AX) were measured over a 24-hour time course 
at different drug concentrations by quantitative Western blotting 
(Fig. 2C).

The experimental data used to calibrate the computational model 
consisted of time course data of all phosphorylated signaling pro-
teins as a function of three concentrations, the full dose response at 
the 6-hour time point as measured by quantitative Western blotting, 
and the time-lapse data enumerating viable versus apoptotic cells 
over time at five doses (Fig. 3). The computational model was calibrated 
against the complete experimental training data set simultaneously. 
The model calibration involves tuning of the model parameters (for 
example, reaction rate constants or transition rates) to find the best 
possible fit of the model outputs (for example, dynamics of popula-
tion growth or phospho-signaling) to the experimentally measured 
counterparts. Common challenges, especially when considering 
larger-scale models, are that the numerical algorithms that per-
form the model fitting can get trapped in local optima and that the 
identified parameter values retain high uncertainty (that is, noniden-
tifiability problem). We have analyzed the optimality of the model pa-
rameters and how well they are constrained by the experimental 
data (identifiability) and have found that the optimal set of param-
eters that we identified satisfies quality measures (figs. S2 and S3). 
The simulation results for the optimal set of parameters were com-
pared to the experimental data (Fig. 3). Additional model simula-
tions and data, including the two transcriptional targets of the DNA 
damage response pathway (p21 and Wip1 mRNA) measured by 
qRT-PCR, are shown in data file S1. Overall, the model captures the 
data well considering the scope and the relative simplicity of the 
model. We also quantified the degree of misfit for individual exper-
imental conditions to identify parts of the model that could be fur-
ther improved (table S1). Small-molecule inhibitors against the master 
kinases DNA-PK, ATM, and ATR often have off-target effects on 
other family members such as mammalian target of rapamycin or 
on the structurally similar PI3K kinases (31, 32). To represent those 
possible polypharmacological effects, we implemented on-target ef-
fects of the small-molecule inhibitors on the DNA damage repair 
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Fig. 2. Experimental data sets used to train the computational model. (A) Proliferation and cell death: exemplary microscopy images of untreated U2OS cells at the 
24-hour time point and of cells treated with 1 M doxorubicin at the 48-hour time point (additional images shown in fig. S1). (B) Distribution of cell cycle stages at baseline 
quantified by flow cytometry measuring DNA content [DAPI (4′,6-diamidino-2-phenylindole)] and DNA synthesis rate [EdU (5-ethynyl-2′-deoxyuridine)]. (C) DNA damage 
response signaling in U2OS cells was exposed to 0, 0.01, 0.05, and 0.1 M gemcitabine, SN38, and doxorubicin; the abundance of phosphoproteins was assessed over the sub-
sequent 24 hours. pATM, pCHK1, p53, and p21 were measured by Western blot; representative examples are shown. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Fig. 3. Trained computational model describes signaling and proliferation data as a function of time and dose. (A and B) Quantification of DNA damage response 
protein phosphorylation by Western blot data (represented in Fig. 2C), analyzed as response to 0.01, 0.05, and 0.1 M chemotherapy over 24 hours (A), and dose-response 
curves at the 6-hour time point (B). (C) Imaging-based quantification of cell proliferation dynamics with and without chemotherapy exposure by counting nuclear reporter–
positive cells. Data are normalized to time point zero. Dots represent data of separate experiments; each replicate was individually used to calibrate the computational 
model. Lines indicate the corresponding simulation trajectories. Further experimental details are described in Methods.
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signaling pathway and off-target effects on proliferation and survival 
pathways. Off-target effect can be statistically significant at higher 
concentrations and may involve many possible targets. We chose to 
implement a broad effect of the inhibitors in our model by directly 
inhibiting the initiation of S phase and inducing apoptosis of all cell 
populations independent of cell cycle stage.

Mathematically, the model consists of a set of ODEs. Each equa-
tion represents the dose-time behavior of an entity in our model (nodes 
in Fig. 1), for instance, protein levels in phosphorylated and non-
phosphorylated form, mRNA levels, or amount of viable, damaged 
or apoptotic cells in the different cell cycle stages. Transition reac-
tions between equations (coupling) are used to model transitions 
between the different cell populations (for example, moving viable 
cells to apoptotic cells) and protein species (for example, moving non
phosphorylated protein to phosphorylated protein promoted by the 
level of a kinase).

Identification of chemotherapy-potentiating  
drug combinations
It is well established that agents targeting the DNA damage response 
pathway can potentiate chemotherapies. We applied our computa-
tional model to perform a sensitivity analysis and identify which 
targets lead to the maximal inhibition of proliferation or cell death 
in the presence of doxorubicin, gemcitabine, or SN38. To this end, 
we simulated the effect on proliferation by combining each chemo-
therapy with any possible target within the DNA damage response 
pathway in silico (Fig. 4). Our model can quantitatively distinguish 
between proliferation, stasis, and cell death. We selected two concen-
trations for the chemotherapies: a subcytostatic dose of 0.001 M 
(Fig. 4A) and a cytostatic or, in the case of doxorubicin, even cyto-
toxic dose of 1 M (Fig. 4B). The effect of modulating the DNA 
damage response pathway was considered by simulating the inhibi-
tion of eight molecular targets within the DNA damage response 
pathway (ATM, ATR, DNA-PK, CHK1, CHK2, p53, p21, and a com-
bination of CHK1 and CHK2). We assumed hypothetical potent 
targeted inhibitors with a subnanomolar dissociation constant (KD 
of 0.5 nM at a dose of 1 M). We evaluate the fold change in cell 
number by comparing the effect of the drug combination after 3 days 
of continuous drug exposure versus chemotherapy alone.

Upon consideration of inhibitor effects at high- and low-dose 
monotherapy and combination chemotherapy, the strongest predicted 
potentiation effect is observed for the combination of an ATR or 
CHK1 inhibitor with either gemcitabine or SN38 (or with both che-
motherapies combined). At low and high chemotherapy concentra-
tions, these combinations potentiate stasis and cell death, respectively 
(Fig. 4B). The model can explain this effect by the strong induction 
of SSBs and activation of the ATR/CHK1 signaling pathway by both 
gemcitabine and SN38. In this damaged state, the model predicts 
that cells rely on cell cycle arrest via the CHK1 pathway. Inhibition 
of ATR or CHK1 removes this checkpoint while cells are still dam-
aged and thus drives the cells into cell death. With doxorubicin, the 
combination effect of ATR/CHK1 inhibition is attenuated because 
of the induction of DSBs in addition to SSBs, in which case cells are 
arrested predominantly by the ATM/CHK2 checkpoint and the in-
hibition of the CHK1 pathway is less effective. The model also pre-
dicts that, for low concentrations of doxorubicin, a DNA-PK inhibitor 
would increase stasis (Fig. 4A). At high concentrations, doxorubicin 
alone dominates the response, and no potentiation effect is predicted 
(Fig. 4B). The addition of an ATM inhibitor to high chemotherapy 

concentrations does not improve the effect but appears to attenuate 
the effect at low-dose chemotherapy.

Dose-response profiles of potentiating drug combinations 
and experimental validation
To further investigate the identified combinations, we performed 
simulations over a range of concentrations for an ATR or CHK1 
inhibitor with gemcitabine and DNA-PK and an ATM inhibitor with 
doxorubicin to obtain drug response profiles. We compared model 
simulations to the experimental validation for combinations of the 
small-molecule inhibitors—VE-822 (ATR inhibitor), MK-8776 (CHK1 
inhibitor), KU-0060648 (DNA-PK inhibitor), and KU-60019 (ATM 
inhibitor)—and chemotherapies and varied the drugs over a wide 
concentration range (Fig. 5 and figs. S4 and S5). The validation data 
set is an independent data set that was not used for the model building. 
Overall, the model predictions are in good qualitative agreement with 
the experimental data. For the ATR or CHK1 combination with 
gemcitabine, potentiated cytotoxicity is predicted by the model over 
a wide concentration range (Fig. 5A) and validated by the experi-
mental data (Fig. 5B). For the ATR inhibitor, there is a difference be-
tween model simulation and validation data at high doses (Fig. 5B, 
white dashed boxes). At concentrations above 1 M, the ATR inhibitor 
VE-822 is cytotoxic as single agent. This is potentially due to off-target 
effects such as multikinase inhibition. For the model simulations, 
we assume perfect target specificity of the in silico inhibitors. This 
explains the observed differences. The ATR inhibitor VE-822 and 
the CHK1 inhibitor MK-8776 differ in the quantity of their off-target 
effects, with the former leading to stronger cytotoxicity. The pre-
dicted combination of doxorubicin with the DNA-PK inhibitor shows 
an increase of cytostasis in the lower concentration range of chemo-
therapy. Notably, only potentiation of a cytostatic effect is achieved 
by this combination. It does not lead to potentiation of cell death as 
the ATR or CHK1 combinations. For the highest concentrations 
(Fig. 5B), this combination also shows increased cytotoxic effects 
that the model simulation fails to capture. At concentrations above 
0.1 M, doxorubicin is known to induce a non–topoisomerase II–
mediated form of cell death in addition to its DNA damage–related 
effect (29). Our computational model is focused on the DNA 
damage response pathway and does not capture this aspect of 
doxorubicin mechanistically. Only at the highest concentration can 
an increase in cell death be achieved with this combination, which 
matches the experimental data. As single drugs, both the DNA-PK 
inhibitor KU-0060648 and the ATM inhibitor KU-60019 used here 
did not lead to statistically significant cytotoxic effects even at doses 
above 1 M.

Mechanism of action inferred from proliferation dynamics of 
drug combinations
Next to the dose, the choice of the time point is essential to observe 
the maximal effect of a drug combination. To further validate the 
model, we compared simulated proliferation/cell death dynamics for 
selected combinations and concentrations to experimental valida-
tion (Fig. 6). The experimental data sets containing inhibitors were 
not used during model building. Overall, the model and experimental 
data are in good agreement. We treated U2OS cells with 0.04 M 
gemcitabine and 1 M VE-822 and observed that, whereas gemcit-
abine alone only leads to cytostatic effects over the 3-day time 
course, the combination with an ATR inhibitor shows a decrease in 
cell number after 24 hours of treatment, which is in concordance 

 on July 24, 2018
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

http://stke.sciencemag.org/


Alkan et al., Sci. Signal. 11, eaat0229 (2018)     24 July 2018

S C I E N C E  S I G N A L I N G  |  R E S E A R C H  A R T I C L E

7 of 13

with the observed increase in apoptotic cells during the same period 
(Fig. 6A). Within the first 24 hours of drug exposure, there is a small 
but significant increase in the number of live cells detected for the 
combination. The model simulation replicates this behavior and can 
therefore help to mechanistically explain this observation. Gemcit-
abine leads to cytostatic effect with a strong induction of the S-phase 
cell cycle checkpoint by the ATR/CHK1 pathway. Combining gem-
citabine with ATR (or CHK1) inhibition releases this S-phase 
checkpoint while cells are still damaged. This forces cells into pro-
gressing their cell cycle prematurely and to succumb to the conse-

quences of the sustained DNA damage. The premature cell division 
leads to a temporary increase in the experimentally counted number 
of live (nuclear reporter positive) cells by live-cell imaging, followed 
by a rapid reduction of the overall cell population. This mechanism 
of action is captured by time-lapse microscopy movies available in 
movie S1. Similar observations have been described earlier (33). After 
48 hours, the number of apoptotic cells declined. The model was 
not able to capture this rapid decline. This is due to the limited ability 
of the current model to produce a sharp, time-delayed induction of 
apoptosis. To facilitate a delay in apoptosis in the model, we implemented 

Fig. 4. Sensitivity analysis of cellular responses to perturbation of the DNA damage response signaling in the presence of chemotherapies. (A and B) For the 
chemotherapies, a low dose of 0.001 M (A) and a high dose of 1 M (B) were simulated. The inhibition of eight molecular targets within the DNA damage response pathway 
(ATM, ATR, DNA-PK, CHK1, CHK2, p53, p21, and CHK1/2) was simulated. The effect of chemotherapies is simulated as monotherapy or in combination (bars) and shown 
on the x axis. The outcome is quantified as log10 fold change of cell number after 3 days of the drug exposure. The vertical dashed line is aligned to the effect of the che-
motherapy alone (first bar in each and dashed lines), which is the comparator for the effect of the combinations.
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a linear chain of reactions that can approximate a delay and chose a 
chain length of five. To increase the “sharpness” of the delay, a longer 
chain would need to be used. This would increase the model size sub
stantially and make subsequent computations more time-consuming. 
Another possibility involves the use of time-delay differential equa-
tions, but they are not often used in the field because of more difficult 
numerical handling. We feel that the misfit is not statistically signif-
icant enough to justify a different model that would result in more 
problematic handling. Please note also that the number of apoptotic 
cells is relatively small compared to the number of viable cells at any 
given time. We further used the combination of 0.0016 M doxoru-
bicin and 0.5 M KU-0060648 and observed that, whereas the single 
agents are not effective at these concentrations, the combination with 
a DNA-PK inhibitor leads to a significant induction of cytostasis 
(Fig. 6B). This is achieved by sustaining the DNA damage as initially 
predicted using the sensitivity analysis (Fig. 4A).

In vitro to in vivo translation of combining ATR inhibitor 
VE-822 with irinotecan in the MS-751 cervical cancer model
To test whether our in vitro findings in the U2OS cell line have a 
potentiating effect with an ATR inhibitor and chemotherapy and 
translates to increased efficacy in vivo, we selected the MS-751 cer-
vical cancer model (the U2OS model does not grow in vivo). For 
testing a drug combination in vivo, the exposure profile of both drugs 
is an important consideration. Therefore, we attempted to mimic 
the in vitro experiment with the in vivo dosing as closely as possible. 
Both gemcitabine and SN38 had a comparable potentiating effect in 
combinations with an ATR inhibitor (Figs. 5 and 7A). The reported 
drug half-life in mice is about 0.28 hours for gemcitabine (34) and 
1.1 to 3 hours for irinotecan (prodrug of SN38 that is used in vivo) 

(35). The potentiating combination that we identified relies on both 
drugs being present simultaneously at the site of therapeutic effect. 
Liposome-encapsulated drugs have the advantage of slowly releas-
ing their payloads at the site of the tumor due to a combination of 
the enhanced permeability and retention effect and engineered con-
trolled release rates, and this may prolong the exposure at the tumor 
site (36, 37). For our in vivo study, we therefore selected a sustained 
release formulation of SN38 [nanoliposomal irinotecan (nal-IRI) 
(38, 39)] as the chemotherapy partner and an experimental liposomal 
formulation of the ATR inhibitor VE-822 (Ls-VE-822) that we have 
developed. However, the translation of the effective dose in vitro to 
an in vivo dosing schedule is challenging. The dosing schedule used 
here was selected on the basis of the previous experience with the 
MS-751 model. First, we validated that SN38 in combination with 
an ATR inhibitor shows a potentiating effect in MS-751 in vitro 
(Fig. 7B). Despite harboring the HPV E6 protein that has been asso-
ciated with increase degradation of p53 (40), we observe that MS-751 
cells treated with SN38 alone arrest their cell cycle. This requires that 
either p53 remains functional in these cells or the S-phase check-
point is not under direct control of p53. When treated with SN38 or 
gemcitabine, MS-751 cells also show induction of p53-S15 phospho
rylation (fig. S6). Consequently, the combination still has the desired 
potentiating effect. Similarly, the drug combination significantly 
enhances the antitumor response in animals bearing the MS-751 
xenografts in vivo (Fig. 7C). As opposed to the in vitro experiments, 
where the combinations were applied simultaneously, Ls-VE-822 was 
administered 24 hours after nal-IRI. The chemotherapy that pro-
duces DNA damage, ATR/Chk1 activation, and consequently cell 
cycle arrest was injected first. The ATR inhibitor was injected sec-
ond to inhibit ATR/Chk1 and release the cell cycle checkpoint while 

Fig. 5. Drug response profiles and experimental validation. (A and B) Drug response profiles for gemcitabine and doxorubicin predicted by the computational mod-
el (A) and experimental validation using small-molecule inhibitors of ATR, CHK1, DNA-PK, and ATM (B). For the analysis, the drug and inhibitor concentrations were varied 
over a wide range, and outcome is quantified after 3 days. The black line indicates the stasis line as predicted by the computational model. Blue stars represent the low-
dose chemotherapy, and the red stars indicate the high-dose chemotherapy in combination with a targeted inhibitor as chosen for the single-dose combinations (Fig.  4). 
The dashed white boxes indicate areas where the model prediction and experimental data are discordant.
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cells were still damaged. Because of the slow-release formulation, 
both drugs will still be present in the tumor microenvironment at 
the same time. Ls-VE-822 alone does not alter tumor growth. Simi-
larly, nal-IRI alone only shows moderate activity at this dose level. 
The combination data, however, suggest that the cytotoxicity po-
tentiating combination that we identified with our modeling analysis 
can qualitatively translate into potentiated efficacy in vivo. Because 
the pharmacokinetics and tissue distribution of drugs, as well as the 
behavior of the tumor model, differ considerably between in vivo 
and in vitro, a more accurate translation cannot be expected. We 
further acknowledge that the differences could be even further am-
plified in human.

DISCUSSION
Although we have a detailed understanding of the DNA damage re-
sponse signaling pathway wiring, it is yet insufficiently understood 
how the signaling components trigger cell fate decisions between 
survival, cell cycle re-entry and proliferation, senescence, and cell death. 
Here, we have presented a computational model that links the DNA 
damage response signaling to phenotypic cellular responses such as 
DNA damage repair, cell cycle arrest, and apoptosis and incorporates 
multiple time scales. Previous work combining computational models 
and experiments has focused on a detailed understanding of the 
wiring of the signal transduction pathway (17), DNA damage sensing 
(41), or PK/PD models (18). To construct the model, we linked a 
simple computational model of the cell cycle to a canonical signaling 
model representing the DNA damage response pathway. The model 
was trained and validated with an extensive signaling data set and 

time-lapse microscopy tracking the cell 
fate by enumerating the number of live 
cells and apoptotic cells. Although we 
aimed at integrating multiple time scales, 
we also paid attention to the fact that the 
overall size of the computational model 
stays within practical limits. As opposed 
to developing a model that includes a 
high degree of mechanistic detail, we de-
cided on a model complexity that is 
matched to the amount and quality of the 
available experimental data. Computa-
tional models that exhibit greater com-
plexity bear the risks of overfitting, 
nonidentifiability, and consequently less 
accurate predictions (42). Our model 
focuses on the canonical DNA damage 
signaling pathway that includes targets 
of interest for cell cycle control. Signal-
ing pathways connected to other cellular 
responses, such as apoptotic signaling 
and repair pathways, have been included 
in a less detailed manner. Because not 
all cell lines may behave like the U2OS 
cell line, future work will be required to 
include the characterization and predic-
tion of heterogeneous responses across 
multiple cell lines (fig. S7). Understand-
ing under which circumstances a given 
combination potentiates a chemotherapy 

will be important for biomarker and indication identification. We 
recently demonstrated that, for the ErbB pathways, mechanistic models 
can help to characterize heterogeneous responses in cell lines and have 
the potential to improve patient stratification (43). The current DNA 
damage model can serve as a backbone to understand where cellular 
heterogeneity will most likely influence the response to drug combina-
tions. Model extension to incorporate additional regulatory mechanisms 
of the DNA damage response pathway might be necessary in the future.

Our integrated approach allows us to study and predict the re-
sponse of U2OS cells to combination treatments of chemotherapies 
with inhibitors of the DNA damage response pathways. We applied 
our model to predict and understand the potentiating combination 
regimens. Because of our computational approach, the impact of 
modulators of the DNA damage repair pathway can be studied on 
multiple time scales: DNA damage signaling—which occurs within 
minutes—or cell cycle arrest, repair, and cell death—which occur 
over hours or days. Therefore, conclusions can be made about the 
dependence of drug combinations on cell cycle stage or the quality of 
the response, that is, cytostatic versus cytotoxic. Nonintuitive sys-
tem behavior can be studied most comprehensively with the help of 
a computational model because of the various nonlinear feedback loops 
of the DNA damage response system.

Using the computational model, we systematically investigated 
potentiating drug combinations in vitro and in vivo between DNA 
damage–inducing chemotherapy and DNA damage signaling mod-
ulators. We showed that the efficacy of signaling modulators is highly 
dependent on the respective chemotherapy combination. We found 
that the dependence of the effect of the chemotherapy on the cell 
cycle alone is an important factor in this consideration. We further 

Fig. 6. Dynamics of live and apoptotic cells treated with potentiating drug combinations. (A and B) Proliferation 
and apoptosis assessed in U2OS cells cultured with 0.04 M gemcitabine and 1 M ATR inhibitor VE-822 (A), or 0.0016 M 
doxorubicin and 0.5 M DNA-PK inhibitor KU-0060648 (B). The experimental data (dots, representative of separate 
experiments) are compared to the response simulated by the computational model (solid lines) together with their 
associated uncertainties (shades).
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predicted cytotoxic versus cytostatic effects of various drug combina-
tions and their dose dependency. Experimental validation data in the 
cell line where we trained the model were in line with model predic-
tions. These results confirm that the ATR/CHK1 pathway in com-
bination with SSB damage–inducing chemotherapy such as SN38 or 
gemcitabine is a promising drug regimen. Quantitative predictions 
of the population dynamics of cell growth and death in conjunction 
with time-lapse imaging data helped to study the mechanism of ac-
tion of this drug combination. We speculate that the mechanism of 
action is based on a premature release of damaged cells from the 
ATR-dependent S-phase cell cycle checkpoint that leads to rapid cell 
death after mitosis. Finally, the proposed drug combination was tested 
in vivo using a highly stabilized liposomal formulation of irinotecan 
and a novel liposomal ATR inhibitor and showed similarly enhanced 
activity as observed with the in vitro data. The computational model 
presented here represents a framework that can be used to drive fur-
ther translational research in the DNA damage response field and 
may help to design combination regimens that specifically target 
cancer cells and protect normal cells from chemotherapy treatment 
but still sensitize cancer cell damage.

METHODS
Cell culture
U2OS and all other cells were grown in RPMI 1640 supplemented 
with 10% fetal bovine serum and antibiotics. Imaging and time lapse–
compatible NucLight red cell lines were generated as recommended 
by Essen BioScience Inc. using lentiviral particles, infection, and 
puromycin selection protocols.

Chemotherapy agents, small-molecule inhibitors, and cell 
cycle modulators
All drugs, such as chemotherapy agents and small-molecule inhibitors 
if not mentioned separately, were purchased from Sigma-Aldrich, 

SelleckChem, Tocris Bioscience, etc. nal-IRI (Onivyde) was a 
clinical-grade material manufactured and provided by Merrimack 
Pharmaceuticals Inc. The formulation was described previously (37). 
For details, see table S2.

Antibodies and Western blots
U2OS cells were exposed to doxorubicin (0, 0.1, 0.5, and 1 M), SN38 
(0, 0.01, 0.1, and 1 M), and gemcitabine (0, 0.05, 0.1, and 1 M) 
over a period of 24 hours. Controls (no drug) and corresponding 
chemotherapy-treated samples were lysed with 2% SDS containing 
lysis buffer and stored at −80°C until all samples were collected and 
run at the same time for the Western blot analysis. The correspond-
ing labeled target specific bands were selected and quantified using 
the Image Li-Cor Studio software and analysis tool. All target and 
phospho-specific antibodies were purchased from Cell Signaling 
Technology and/or Epitomics and were used at 1:1000 dilutions. A 
list of all antibodies is available in table S3. Standard antibody-based 
Western blot and immunohistochemistry protocols were used.

Whole-cell lysis protocol
Cells were grown and treated in a 6-cm dish scale. To harvest cells, 
medium was removed and quickly replaced by ice-cold PBS. PBS 
was then replaced with 250 l of 2% SDS lysis buffer. After 5 min of 
incubation, the lysed cells were scraped off and loaded onto a cell 
lysate homogenizer microcentrifuge spin-column (catalog no. 79656, 
QIAshredder, Qiagen). The filtrate was then loaded onto a 0.2-m cen-
trifugal filter column [catalog no. ODM02C34, Nanosep MF (0.2 m), 
Pall]. The lysates were then stored at −80°C. SDS-containing lysis 
buffer (2%) was modified after (44).

Imaging
Live-cell imaging was performed by using the IncuCyte Zoom (Essen 
BioScience).  Fluorescence-activated cell sorter (FACS)–based exper-
iment was performed by using FACSCalibur and/or Aria (BD Biosciences).

Fig. 7. Response to SN38 and VE-822 (ATR inhibitor) in the U2OS and MS-751 cervical cancer lines in vitro and MS-751 cervical cancer model in vivo. (A and 
B) Time course data of cell number measurements in U2OS cells (A) and MS-751 cells (B) after treatment with 0.01 M SN38, 1 M VE-822, or in combination (n = 4), overlaid 
with the corresponding model simulation. Drugs were added at the 24-hour time point. (C) Growth of MS-751 xenografts in mice treated as indicated on days 17, 24, 31, 
and 38 (dashed lines) after tumor implantation. nal-IRI was given at a dose of 5 mg/kg and liposomal ATR inhibitor Ls-VE-822 at 20 mg/kg intravenously. For the combination 
treatment, Ls-VE-822 was injected 24 hours after the nal-IRI injection (n = 10 mice per group). PBS, phosphate-buffered saline.
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Cell cycle stage analysis (FACS)
FACS-based experiment was performed by using Click-iT Plus Assay 
Kits for Flow Cytometry (Life Technologies) and FACSCalibur and/
or Aria (BD Biosciences). Methods and protocols were performed 
as described by the manufacturer and the Massachusetts Institute 
of Technology Flow Cytometry Core Facility (http://web.mit.edu/
flowcytometry/www/).

Quantitative gene expression analysis by qRT-PCR
Cells were cultured and treated accordingly in a 96-well plate scale. 
RNA was extracted using the Qiagen RNeasy Kit (catalog no. 73404, 
RNeasy Plus Mini Kit, Qiagen) following the manufacturer’s proto-
col. Nondiluted RNA (~100 ng) was used for complementary DNA 
synthesis with a commercial kit (catalog no. 4368814, Applied Bio-
systems) following the manufacturer’s protocol. The gene expression 
was measured by using and following the manufacturer’s guidelines 
for the gene-specific TaqMan probes and ViiA Real-Time PCR sys-
tem and software (Life Technologies).

Computational analysis and model building
Computational analysis and mechanistic model building were 
performed using the MATLAB software (MathWorks) and the 
Data2Dynamics modeling environment (45) that is tailored to high-
end model calibration and parameter estimation. Mathematical de-
tails about the model structure and equations are available in data 
file S1. The model was calibrated simultaneously to the entirety of 
the available experimental data. We validated the performance of the 
parameter calibration procedure by the quality control suggested in 
(46) by running multiple independent estimations from randomized 
initial locations and also analyzed identifiability of the model pa-
rameters using the profile likelihood method (47). Additional de-
tails are available in data file S1.

Preparation of a liposomal ATR inhibitor (VE-822)
Cholesterol (Chol) was purchased from Avanti Polar Lipids, and 
hydrogenated soy phosphocholine (HSPC) and methoxy-poly(ethylene 
glycol)-1,2-distearyl-sn-glyceryl (PEG2000-DSG) were obtained from 
Lipoid GmbH. Chol, HSPC, and PEG2000-DSG were codissolved in 
100% ethanol (200 proof, catalog no. 459828, Sigma-Aldrich) at a 
molar ratio of 3:2:0.03 at 65°C. Sucrose octasulfate (SOS) was ac-
quired from Molekula, and the triethylamine salt was formed by ti-
tration of the acidic form of SOS with triethylamine as previously 
described (37). The solution of premade 1.1 M triethylammonium 
(TEA)–SOS was mixed with the lipid solution at 60° to 65°C. This 
suspension was extruded three times through five stacked polycar-
bonate track–etched filters (Corning Nuclepore) with an average pore 
size of 100 nm using an argon pressure extruder (Lipex Biomembranes) 
at 60° to 65°C, and resulting unilamellar liposomes were quickly 
chilled in ice and then stored at 4°C. The concentration of phospholipid 
was measured using a phosphate assay, and particle diameter was 
recorded using a Malvern Nanosizer. Before drug loading, the TEA-SOS 
gradient was created by removing excess of untrapped TEA-SOS using 
500-kDa polysulfone hollow fiber filters (lot no. D06-E500-10-N, 
Spectrum Labs). Osmolarity of liposomes was balanced by mixing 
with 50% dextrose solution to a final dextrose concentration of 15% (w/v).

VE-822 (lot no. SSC40215, MedKoo Biosciences) was dissolved 
in 15% dextrose solutions in deionized water by titration with 1 M HCl 
and heating at 45°C and then filtrated with 0.2-m Nalgene 13-mm 
syringe filters. Drug concentration in the solution was detected by 

high-performance liquid chromatography. A stock solution of VE-822 
containing drugs (8 to 10 mg/ml) was added to the liposomes at a 
drug/lipid ratio of 800 g/mol phospholipid, and the pH was adjusted 
to pH 6.5 using 1M Hepes buffer (pH 6.5) and 0.1 N NaOH.

The liposome-drug mixture was incubated with occasional agita-
tion for 30 min at 65°C. The incubation mixture was quickly cooled 
down and incubated for 10 min at 0°C and then allowed to attain 
ambient temperature. Unencapsulated drug was removed by 500-kDa 
polysulfone hollow fiber filters eluted with HBS-6.5 buffer [5 mM 
Hepes, 250 mM NaCl (pH 6.5)]. Liposome fractions eluted in the void 
volume were combined, sterilized by 0.2-m filtration, and stored at 
4° to 6°C before use.

Combination therapy on MS-751 cervical cancer xenografts  
in mice
Antitumor efficacy of nal-IRI in combination with liposomal ATR 
inhibitor (Ls-VE-822) was studied in the MS-751 cervical xenograft 
model. The cells were obtained from American Type Culture Col-
lection and propagated in RPMI 1640 medium supplemented with 
10% fetal bovine serum, penicillin G (50 U/ml), and streptomycin sulfate 
(50 g/ml) at 37°C with 5% CO2 as recommended by the supplier. 
NCR nu/nu homozygous athymic female nude mice (4 to 5 weeks old; 
weight, at least 16 g) were obtained from Tacoma. The mice were 
inoculated subcutaneously in the right flank with 0.1 ml of the sus-
pension containing 5 × 106 cells suspended in PBS supplemented 
with 30% Matrigel. When tumors achieved the size between 150 and 
350 mm3, the animals were assigned to the treatment groups ac-
cording to the following method. The animals were ranked accord-
ing to the tumor size and divided into six categories of decreasing 
tumor size. Four treatment groups of 10 animals per group were 
formed by randomly selecting one animal from each size category, 
so that, in each treatment group, all tumor sizes were equally repre-
sented. The animals received four tail vein injections, at the intervals 
of 7 days, of the following preparations: control (Hepes-buffered 
saline, pH 6.5) or nal-IRI at a dose of 5 mg/kg per injection. The li-
posomal ATR inhibitor was administrated 24 hours later at a dose 
of 20 mg/kg per injection. Liposomes for injections were prepared 
as described above. The animal weight and tumor size were moni-
tored twice weekly. The tumor progression was monitored by palpa-
tion and caliper measurements of the tumors along the largest (length) 
and smallest (width) axes twice a week. The tumor sizes were deter-
mined twice weekly from the caliper measurements using the formula: 
tumor volume = [(length) × (width)2]/2. To assess treatment-related 
toxicity, the animals were also weighted twice weekly. When the 
tumors in the group reached 10% of the mouse body weight, the 
animals in the group were euthanized.

SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/11/540/eaat0229/DC1
Fig. S1. Additional images from live-cell imaging of U2OS cell line.
Fig. S2. Results of 500 independent model fits from randomized starting parameters.
Fig. S3. Identifiability analysis of model parameter by analysis of likelihood profiles.
Fig. S4. Drug response profiles for all chemotherapy and targeted inhibitors predicted by the 
computational model.
Fig. S5. Additional, experimentally measured drug response profiles for chemotherapy and 
targeted inhibitors.
Fig. S6. Western blot data for U2OS and MS-751 cell lines treated with chemotherapies, ATR 
inhibitor, or combinations.
Fig. S7. Additional drug response profiles comparing the potentiating effect of gemcitabine 
and ATR inhibition between the U2OS cell line and a panel of lung cancer cell lines.
Table S1. Quantification of model misfit for individual experimental conditions.
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Table S2. Chemotherapy drugs and targeted inhibitors used.
Table S3. Antibodies used for Western blotting.
Movie S1. Time-lapse video of U2OS cells treated with a combination of gemcitabine and ATR 
inhibitor.
Data file S1. Model parameters and computational analyses.
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reveal new biology to investigate further.
chemotherapy regimens. These findings show how modeling in cells can both help inform therapeutic development and
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