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Genome Editing of Human Primary
Keratinocytes by CRISPR/Cas9 Reveals

an Essential Role of the NLRP1 Inflammasome
in UVB Sensing

Gabriele Fenini'*, Serena Grossi'*, Emmanuel Contassot'~>, Thomas Biedermann®, Ernst Reichmann’
’ ’ 4

By forming a protective barrier, epidermal keratinocytes represent the first line of defense against environmental
insults. UVB radiation of the sun is a major challenge for the skin and can induce inflammation, aging, and
eventually skin cancer. UVB induces an immune response in human keratinocytes resulting in activation and
secretion of the proinflammatory cytokines prolL-1B and -18. This is mediated by an assembly of protein com-
plexes, termed inflammasomes. However, the mechanisms underlying sensing of UVB by keratinocytes, and
particularly the types of inflammasomes required for cytokine secretion, are a matter of debate. To address these
questions, we established a protocol that allows the generation of CRISPR/Cas9-targeted human primary kera-
tinocytes. Our experiments showed an essential role of the NLRP1 rather than the NLRP3 inflammasome in UVB
sensing and subsequent IL-1f and -18 secretion by keratinocytes. Moreover, NLRP1 but not NLRP3 was required
for inflammasome activation in response to nigericin, a potassium ionophore and well-established NLRP3 acti-
vator inimmune cells. Because the CRISPR/Cas9-targeted cells retained their full differentiation capacity, genome

editing of human primary keratinocytes might be useful for numerous research and medical applications.
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INTRODUCTION

Immune cells are able to detect many different stress factors,
such as pathogens or endogenous molecules released upon
injury. In response to these insults, they initiate an inflammatory
response, which helps eliminate the stressors and restore a new
homeostatic state (Medzhitov, 2008). Inflammasomes represent
multimeric protein complexes, which are critically involved in
these processes (Strowig et al., 2012). They consist of a sensor
protein, including NLRP1, NLRP3, or AIM2; the adaptor protein
ASC, and the protease caspase-1. Assembly of inflammasomes
induces activation of caspase-1, which in turn cleaves and
thereby activates the proinflammatory cytokines prolL-1B and
-18 (Place and Kanneganti, 2017; Strowig et al., 2012). Secretion
of these cytokines induces an inflammatory response, which is
supported by a lytic type of cell death termed pyroptosis. The
latter is induced upon cleavage of gasdermin D by inflammatory
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caspases, because the amino terminal fragment of gasdermin D
forms pores in the plasma membrane upon oligomerization
(Kayagaki et al., 2015; Liu et al., 2016; Shi et al., 2015).
Inflammasomes are required for immunity but also play a central
role in inflammation, underlying many common (auto)inflam-
matory diseases (Fenini et al., 2017; Strowig et al., 2012).

In immune cells, expression of prolL-18, NLRP3, or AIM2
must be induced before inflammasome activation, for example
by toll-like receptor stimulation (Latz et al., 2013). In contrast,
human primary keratinocytes (HPKs) secrete IL-1p and -18
without priming upon UVB irradiation (Feldmeyer et al., 2007;
Strittmatter et al., 2016b). Several stress factors, including UVB
radiation (Feldmeyer et al., 2007, Hasegawa et al., 2016),
cytoplasmic double-stranded DNA (Dombrowski et al., 2011),
nanoparticles (Yazdi et al., 2010), or viral infection (Reinholz
et al., 2013; Strittmatter et al., 2016b), are reported to induce
inflammasome activation in HPKs.

Although it has been reported that HPKs do not express
NLRP3 and that NLRP1 represents the important inflamma-
some sensor in these cells (Zhong et al., 2016), several groups
suggested a role of the NLRP3 or AIM2 inflammasome in
human keratinocytes (Dai et al., 2011, 2017; Dombrowski
et al.,, 2011; Feldmeyer et al., 2007; Strittmatter et al.,
2016b). In these studies, expression of inflammasome com-
ponents was targeted by RNA interference. However, it is
well known that RNA molecules can modulate the innate
immune system, for example via the toll-like receptor
pathway, and therefore can possibly influence inflammasome
expression and activity (Agrawal and Kandimalla, 2004;
Robbins et al., 2009). Consequently, the role of specific
inflammasome sensors in human primary keratinocytes
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should be addressed by approaches different from small
interfering RNA (siRNA)- or short hairpin (shRNA)-mediated
knockdown. Activating mutations in the gene encoding
NLRP1 cause skin inflammation induced by hyperactivation
of the inflammasome in keratinocytes and thereby increase
the risk of developing skin cancer, showing that inflamma-
some activation in human keratinocytes is also highly relevant
in vivo (Zhong et al., 2016). In contrast, murine keratinocytes
neither express detectable amounts of prolL-1 protein nor
assemble functional inflammasomes (Sand et al., 2018).

Isolation and propagation of keratinocytes, including
epidermal stem cells, is a well-established method, which
requires co-culture in the presence of mitotically-inactivated
murine fibroblasts as feeder cells (Rheinwald and Green,
1975). Genetic manipulation of HPKs represents a useful
tool for targeted gene therapy of diseases affecting keratino-
cytes. Recently, it has been shown that epidermal stem cells
from a patient suffering from junctional epidermolysis bul-
losa, a devastating disease caused by a defective LAMB3
gene, can be “corrected” upon transduction with a retroviral
vector encoding the wild-type protein (Mavilio et al., 2006).
Furthermore, through production of autologous epidermal
sheets with the help of feeder cells, even the entire epidermis
of a 7-year-old boy could be replaced by wild-type LAMB3-
overexpressing keratinocytes (Hirsch et al., 2017). However,
genome editing via the CRISPR/Cas9 approach would allow a
more specific genetic modification of keratinocytes and, in
principle, gene therapy for other genetic diseases affecting
keratinocytes of the epidermis (Doudna and Charpentier,
2014; Zhang et al., 2014). In addition, direct targeting of
human primary keratinocytes by CRISPR/Cas9 would repre-
sent a very useful tool for answering many scientific, medical,
and pharmacological questions in dermatological research.

Here, we developed and optimized a protocol for the
generation of knockout HPKs with the CRISPR/Cas9 tech-
nology. Genetic modification and selection of the targeted
keratinocytes was achieved by co-culture with antibiotic-
resistant and proliferation-incompetent murine fibroblasts.
CRISPR/Cas9-targeted keratinocytes retained the ability of
differentiation and were able to form three-dimensional skin
equivalents. The comparison of keratinocytes lacking either
NLRP1, NLRP3, or ASC expression showed an essential role
of the NLRP1 inflammasome in UVB- and nigericin-induced
IL-1B and -18 secretion.

RESULTS

Establishment of a protocol for stable genetic modification

of keratinocytes

Isolation of HPKs from skin biopsy samples (Rasmussen et al.,
2013; Rheinwald and Green, 1975) or plucked hair (Aasen
and Izpisua Belmonte, 2010) is well established, and the
culture of HPKs represents a physiologically relevant model
in dermatologic research (Strittmatter et al., 2016a). Isolation
and propagation of HPKs on coated or noncoated surfaces
with special low-Ca*" and serum-free media is simple and
suppresses growth of other skin-derived cells, such as fibro-
blasts, Langerhans cells, or melanocytes (Zare et al., 2014).
However, under these culturing conditions, HPKs are prone
to terminal differentiation and stop proliferation after a few
passages. In contrast, cultivation of HPKs in the presence of
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proliferation-incompetent 3T3 fibroblasts strongly increases
their lifetime. In particular, the clone 3T3-)2 has been used
for propagation of keratinocytes. However, these co-cultures
are more elaborate than monocultures (Rasmussen et al.,
2013; Strittmatter et al., 2016a).

Genetic manipulation of HPKs is a useful tool for derma-
tological research, and the method of choice is lentiviral
transduction (Nanba et al., 2013), because transfection of
plasmid DNA is highly toxic and can cause inflammasome
activation (Strittmatter et al., 2016b).

We developed and optimized a protocol for the stable
genetic modification of HPKs (Figure 1) based on their len-
tiviral transduction and co-culture with 3T3-)2 feeder cells.
After separation of epidermis and dermis from a skin biopsy
sample, keratinocytes were isolated from the epidermal layer
upon enzymatic digestion with trypsin and seeded onto
mitotically-inactivated  (proliferation-incompetent) feeder
cells in the presence of the ROCK inhibitor Y-27632 (day 1).
Culture in the presence of this inhibitor enhances the survival
and proliferation of epidermal stem cells (Nanba et al., 2013;
Strudwick et al., 2015) and is therefore maintained until the
first trypsinization. After medium change (day 2), HPKs were
transduced with lentiviruses at day 3 in the presence of pol-
ybrene (hexadimethrine bromide). Two days and a medium
change later, the remaining feeder cells were gently removed
with a diluted trypsin/EDTA solution, and HPKs were de-
tached by standard trypsinization and seeded on a new layer
of puromycin-resistant and mitotically-inactivated feeder
cells (day 5) in the presence of the ROCK inhibitor. The
optimal density for trypsinization of HPKs was 50%—60%,
but not higher than 70%, because confluent cells irreversibly
lose their proliferative capacity (see Supplementary Figure S1
online). Transduction of HPKs with a lentiviral construct
encoding a single guide RNA (sgRNA) targeting the ASC gene
and encoding Cas9 resulted in almost complete ablation of
ASC expression by selecting the transduced HPKs with high
concentrations of puromycin (5 pg/ml) for 1 week (Figure 2a
and b). Prolonged selection of HPKs with puromycin rather
than high concentrations for a few days negatively influenced
their long-term survival (results not shown).

In brief, we successfully established a protocol for the
efficient stable genetic modification of HPKs. This was ach-
ieved by lentiviral transduction and selection of transduced
cells with antibiotics in co-culture with antibiotic-resistant
feeder cells. This protocol allows the generation of CRISPR/
Cas9-mediated knockout HPKs but also of HPKs that over-
express proteins in an inducible or constitutive manner (data
not shown).

Characterization of knockout HPKs

Using the described protocol, we targeted expression of genes
encoding the inflammasome proteins caspase-1 or ASC in
HPKs. Western blots of the cell lysates of targeted cells showed
a dramatic reduction in caspase-1 or ASC protein expression
(Figure 2c). ASC and caspase-1 expression are required for
UVB-induced inflammasome activation in HPKs (Feldmeyer
et al., 2007). To assess whether the generated CRISPR/Cas9-
targeted HPKs are able to form a functional inflammasome,
we irradiated these cells with UVB and analyzed IL-1p secre-
tion as a readout for inflammasome activation. As expected, in
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Figure 1. Workflow for the
generation of CRISPR/Cas9-targeted
human primary keratinocytes (HPKs).
(@) On day 0, mitotically inactivated
3T3-)2 feeder cells were seeded at a
density of 50%. (b) At day 1, freshly
isolated HPKs were added (ratio of
HPKs:J2 = 5:1), and (c) the medium
was changed after 24 hours. (d)
Clones of 5 or 6 HPKs were
transduced with lentiviral vectors
encoding sgRNA and Cas9, and (e) the

s
- - medium was changed after 24 hours.
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y y y y 8 y
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| : dashed lines highlight keratinocyte
g f day 5 e day 4 clones. hrs, hours.

1) (%)
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ASC and caspase-1 sgRNA CRISPR/Cas9-targeted HPKs, IL-18
secretion was strongly reduced compared with control cells, as
shown by Western blot (Figure 2c) and ELISA (Figure 2d). This
confirms earlier results obtained by siRNA-mediated knock-
down experiments (Feldmeyer et al., 2007). Very importantly,
control CRISPR/Cas9-targeted HPKs, which were transduced
with a nontargeting sgRNA, secreted similar amounts of I1L-18
as nontransduced wild-type cells. These results show that
lentiviral transduction and selection of transduced HPKs by
puromycin do not affect their ability to form active inflam-
masomes. Therefore, CRISPR/Cas9 targeting and manipulation
of HPKs is a useful tool for investigating inflammasome acti-
vation in these cells.

Furthermore, we addressed the question of whether the
CRISPR/Cas9-targeted HPKs retain full differentiation capac-
ity. Ablation of ASC expression in epidermal keratinocytes of
mice does not cause a spontaneous phenotype, showing that it
is not required for differentiation of murine keratinocytes
(Drexler et al., 2012). Likewise, cultivation in the absence of
epidermal growth factor (EGF) induced differentiation of
control, caspase-1, and ASC sgRNA CRISPR/Cas9-targeted
HPKs in a similar manner and, most importantly, comparable
to wild-type keratinocytes (Figure 2e). Indeed, wild-type,

control, caspase-1, and ASC sgRNA CRISPR/Cas9-targeted
HPKs induced expression of early differentiation markers,
such as keratin 1 and keratin 10, but also of filaggrin and
involucrin, which are expressed in the stratum granulosum and
stratum corneum, after 3 days in culture without EGF. When
cultivated on collagen gels containing human primary fibro-
blasts, HPKs form a three-dimensional structure, resembling
characteristic features of the epidermis in vivo (Pontiggia et al.,
2009). To test whether our protocol is compatible with strati-
fication and three-dimensional differentiation of HPKs in skin
equivalents, we seeded wild-type and ASC sgRNA CRISPR/
Cas9-targeted HPKs on top of a collagen-based dermal
equivalent. After 2 weeks in culture, both preparations resulted
in skin equivalents with a stratified epidermis-like structure
(see Supplementary Figure S2 online). These experiments
show that sgRNA CRISPR/Cas9-targeted HPKs are able to
differentiate in two- and three-dimensional culture in vitro and
therefore, most likely, also in vivo.

UVB activates the NLRP1 rather than the NLRP3
inflammasome in HPKs

Recently, it has been suggested that NLRP1 is the predominant
inflammasome sensor in human keratinocytes (Zhong et al.,
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Figure 2. Generation and characterization of CRISPR/Cas9-targeted HPKs. (a) Western blot analysis and (b) quantification of ASC bands using lysate of HPKs
transduced with a lentiviral vector targeting the ASC gene or a nontargeting sgRNA (control) and cultured under puromycin selection as indicated. (b) The
intensities of ASC bands on Western blots were normalized to B-actin protein levels and are shown relative to the levels seen in control sgRNA-targeted CRISPR/
Cas9 HPKs. sgRNA-targeted genes and antibodies used for Western blots are indicated. (c) Western blot analysis of cell lysate (CL) and supernatant (SN) of
nontargeting control, caspase-1, and ASC sgRNA CRISPR/Cas9-targetd HPKs or wild-type cells maintained on feeder cells. (d) ELISA for IL-1B quantification in
supernatants of untreated and UVB-irradiated control, caspase-1, and ASC sgRNA CRISPR/Cas9-targeted HPKs and wild-type keratinocytes. *P < 0.05.

(e) Western blot analysis using cell lysate of control, caspase-1, and ASC sgRNA CRISPR/Cas9-targetd HPKs and wild-type HPKs. Cells were harvested at the
exponential growth phase (exp) and when reaching confluency (conf), both in keratinocyte medium, or after the indicated days in keratinocyte differentiation
medium (DM). sgRNA-targeted genes and antibodies used for Western blots are indicated. Data are expressed as the mean + standard error of the mean of three
independent experiments using two-way analysis of variance with Dunnett multiple comparison test (in d) or are representative of three independent
experiments (in ¢). HPK, human primary keratinocyte; K, keratin; ns, not significant; sgRNA, single guide RNA; wt, wild type.

2016). In contrast, other publications also showed important
roles of the NLRP3 and AIM2 inflammasomes in HPKs
(Dombrowski et al., 2011; Feldmeyer et al., 2007; Hasegawa
et al., 2016; Reinholz et al., 2013). An siRNA approach sug-
gested that both NLRPT and NLRP3 contribute to UVB-
induced IL-1B secretion in HPKs (Feldmeyer et al., 2007). On
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the other hand, pharmacological inhibition of the NLRP3
inflammasome had no effect on IL-1 release by HPKs (Fenini
et al., 2018). To address this inconsistency, we generated
NLRP1 and NLRP3 sgRNA CRISPR/Cas9-targeted HPKs, using
two different sgRNAs; ASC sgRNA CRISPR/Cas9-targeted cells
served as control. Gene targeting was assessed 5 days after
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Figure 3. NLRP1, but not NLRP3, has a key role in sensing UVB radiation and nigericin in HPKs. (a) Nontargeting control, ASC, NLRP1 (two sequences), and
NLRP3 (two sequences) CRISPR/Cas9-targeted HPKs were either primed overnight with IFNy (20 ng/ml) or left untreated. Western blot analysis using cell lysate
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transduction by genomic cleavage detection assays (see
Supplementary Figure S3 online). Protein down-regulation
was confirmed by Western blots (Figure 3a). Expression of
NLRP3 can be detected only upon priming with IFNy
(Strittmatter et al., 2016b). Under this condition, NLRP3 pro-
tein expression was absent in NLRP3 sgRNA CRISPR/Cas9-
targeted cells. Western blots showed that expressions of
caspase-1, ASC, prolL-1p, and prolL-18 were not affected by
ablation of NLRPT and NLRP3 (Figure 3a). When exposed to
UVB, ASC and NLRP1 but not NLRP3 CRISPR/Cas9-targeted
HPKs showed a strongly reduced inflammasome activation,
even after priming with IFNY, as reflected by the diminished
IL-1p and -18 secretion (Figure 3b—d) and lactate dehy-
drogenase release (Figure 3e). Nigericin is a well-established
stimulus for NLRP3 inflammasome activation in immune
cells (Mariathasan et al., 2006). NLRP3 depletion in HPKs
did not influence IL-1B release upon treatment with
nigericin. In contrast, ablation of NLRP1 expression
impaired IL-1B and -18 secretion in a similar manner as
targeting of ASC expression (Figure 3b—d). As expected,
targeting of ASC, but not of NLRP1 or NLRP3, impaired
cytokine secretion in response to poly(deoxyadenylic-
deoxythymidylic) acid sodium salt (i.e., poly[dA:dTI]), an
AIM2 inflammasome activator (see Supplementary Figure S5
online). These experiments suggest that NLRP1 rather than
NLRP3 is the key inflammasome sensor in HPKs.

DISCUSSION
By inducing inflammation, inflammasomes play a funda-
mental role in immunity and in many different common
(auto)inflammatory diseases, ranging from diabetes to
atherosclerosis (Larsen et al., 2007; Ridker et al., 2017;
Strowig et al., 2012). Upon the detection of a broad variety
of danger signals, they mount an immune response by acti-
vation of caspase-1 and in turn by release of mature IL-1p and
-18. Inflammasome components are mainly expressed by
immune cells upon priming, like toll-like receptor signaling,
which induces expression of prolL-1B and other inflamma-
some components such as NLRP3 and AIM2 (Place and
Kanneganti, 2017; Strowig et al., 2012). Furthermore, IL-1f
secretion can also be induced in HPKs by UVB irradiation,
which does not require a specific priming signal (Faustin and
Reed, 2008; Feldmeyer et al., 2007). UVB is a major threat
for epidermal keratinocytes and induces inflammation, skin
aging, and eventually skin cancer. How HPKs sense UVB
radiation is poorly understood, but studies based on siRNA-
or shRNA-mediated knockdown experiments suggested a
role of both the NLRP1 and NLRP3 inflammasomes
(Feldmeyer et al., 2007; Hasegawa et al., 2016).

Mice are a frequently used model in biological and med-
ical research, including skin studies. However, in contrast to
HPKs, previous studies suggest that murine keratinocytes

neither express prolL-1B nor form active inflammasomes
(Sand et al., 2018). In addition, caspase-1 is a regulator of
UVB-induced apoptosis in HPKs but is dispensable for this
process in murine keratinocytes and in the epidermis of these
animals (Sollberger et al., 2015). Therefore, there are
important differences concerning the role of inflammasomes
in human versus murine keratinocytes and skin. Recently, it
was reported that activating mutations in the NLRPT gene
cause skin inflammation in humans, which is mediated by
inflammasome activation in keratinocytes (Zhong et al.,
2016). Because expression of NLRP3 in HPKs and in hu-
man skin could not be detected, it was concluded that NLRP1
is the most important inflammasome sensor in human kera-
tinocytes (Zhong et al., 2016), in contrast to several other
reports based on siRNA and shRNA experiments
(Dombrowski et al., 2011; Feldmeyer et al., 2007; Hasegawa
et al., 2016; Reinholz et al., 2013; Strittmatter et al., 2016b;
Watanabe et al., 2007; Yazdi et al., 2010). Because it is well
known that siRNA and shRNA can induce and modulate
immune responses relevant for the inflammasome pathway
(Agrawal and Kandimalla, 2004; Robbins et al., 2009), we
targeted ASC, caspase-1, NLRP1, and NLRP3 expression by
sgRNA and CRISPR/Cas9. In contrast to siRNA and shRNA
approaches, genome editing of HPKs with CRISPR/Cas9 has
much less severe effects on immune pathways, including
inflammasomes. Most important, in contrast to NLRP3
sgRNA CRISPR/Cas9-targetd HPKs, those with ablated ASC or
NLRP1 expression secreted drastically reduced levels of IL-1
upon UVB irradiation and upon treatment with nigericin
compared with the corresponding control cells. This shows
that NLRP1 rather than NLRP3 is the main inflammasome
sensor of HPKs, as also recently suggested (Fenini et al.,
2018). The importance of NLRP1 in human skin is also sup-
ported by other reports showing a susceptibility to skin
inflammation and autoimmunity, such as vitiligo and psori-
asis, caused by variations in NLRPT (Ekman et al., 2014; Jin
et al., 2007a, 2007b; Levandowski et al., 2013). It has been
suggested that particularly mouse NLRP1 can directly acti-
vate caspase-1 by CARD-CARD interactions independently of
ASC expression, although the presence of ASC further sup-
ports activation of the protease (Van Opdenbosch et al.,
2014; Yu et al.,, 2018). In contrast, ASC CRISPR/Cas9-
targeted HPKs did not secrete IL-1B upon UVB radiation
(Figure 2c and d and Figure 3a—e), showing that in HPKs,
ASC expression is needed for NLRP1 inflammasome
activation.

We established a protocol for sgRNA CRISPR/Cas9-
targeting of HPKs. HPKs represent an established model for
many different research and medical applications. They are
frequently used in monoculture or in conjunction with
dermal fibroblasts in more sophisticated three-dimensional
models, where keratinocytes form a stratified epithelium,

(CL) of mock-treated cells. (b) Supernatant (SN) of UVB-irradiated and nigericin-treated cells was analyzed by Western blot for secretion of the indicated
proteins. Quantification of band signal intensity of secreted mature IL-1f and IL-18 normalized to the corresponding untreated samples from three independent
experiments (c, and see Supplementary Figure S4 online). Supernatant (SN) of UVB-irradiated and nigericin-treated cells was analyzed by ELISA (d) for
IL-1P secretion levels or (e) for lactate dehydrogenase release. sgRNA-targeted genes and antibodies used for Western blots are indicated. Data are expressed as
the mean =+ standard error of the mean of four (in d and e) or three (in ¢) independent experiments using one-way analysis of variance with Dunnett multiple
comparison test (in d and e) or are representative of three independent experiments (in a). *P < 0.05, **P < 0.01 and ***P < 0.001. HPK, human primary

keratinocyte; sgRNA, single guide RNA.
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resembling human skin (Pontiggia et al., 2009). However,
HPKs in monoculture undergo differentiation after few pas-
sages, thus limiting their applications. The use of fibroblasts
as feeder cells extends the lifespan of HPKs and is the method
of choice when large amounts of HPKs are required
(Rasmussen et al., 2013; Rheinwald and Green, 1975).
Recently, CRISPR/Cas9 technology was used to correct a
mutation in the COL7AT gene causing dominant (Shinkuma
et al., 2016) and recessive (Webber et al., 2016) dystrophic
epidermolysis bullosa in vitro. Patient-derived fibroblasts or
induced pluripotent stem cells were targeted by CRISPR/
Cas9, differentiated into keratinocytes, and expanded on
feeder cells.

Our approach, instead, targets HPKs directly, requires less
manipulation of the cells, and allows their selection. How-
ever, for the future, improvements of our protocol, particu-
larly for gene therapeutic applications, are necessary. HPKs
should be expanded after genetic modification by CRISPR/
Cas9 from single cells, allowing the selection of true knock-
outs and even knockins and their characterization by
sequencing. Lentiviral or retroviral integration can disrupt
genetic information, resulting in aberrant transcripts and
possibly leading to cancer development (Hirsch et al., 2017;
Moiani et al., 2012; Qian et al., 2017). This can be avoided
using other currently available approaches, such as trans-
fection of the recombinant Cas9 protein with the sgRNA of
interest.

Here, we show successful sgRNA CRISPR/Cas9-targeting of
HPKs. The modification of HPKs by CRISPR/Cas9 has the
potential to result in excellent research models, for example,
in combination with human skin equivalents. This is strongly
required because of obvious limitations of animal experi-
mentation. In addition, several applications in human pa-
tients are conceivable, which go far beyond the treatment of
epidermolysis bullosa.

MATERIALS AND METHODS

Cell culture

HEK 293T cells (CRL-3216; ATCC, Manassas, VA), 3T3-)2 feeder
cells (CRL-1658, ATCC) and 3T3-J2 puromycin-resistant feeder cells
were cultured in DMEM (Thermo Fisher Scientific, Waltham, MA)
supplemented with 10% fetal bovine serum (PAN-Biotech, Aiden-
bach, Germany) and 1% antibiotic/antimycotic (Thermo Fisher Sci-
entific). Cells were harvested with trypsin/EDTA solution (0.05%/
0.02% weight/volume) (Thermo Fisher Scientific).

Co-cultures of HPKs and 3T3-J2 feeder cells were performed in
Rheinwald and Green medium (RGM): three parts DMEM, one part
HAM'’s F12 Nutrient Mixture (Thermo Fisher Scientific), 10% fetal
bovine serum, 1% antibiotic/antimycotic, 20 ug/ml adenine (Sigma-
Aldrich, St. Louis, MO), 5 pg/ml apo-transferrin (Sigma-Aldrich), 2
nmol/L 3,3’,5-triiodothyronin (Sigma-Aldrich), 200 ng/ml hydrocor-
tisone (Sigma-Aldrich), 100 pg/ml cholera toxin (Sigma-Aldrich), 5
pg/ml insulin (Sigma-Aldrich), and 10 ng/ml EGF (Sigma-Aldrich).
HPKs were trypsinized at an optimal density of 50%—60%. Before
trypsinization of HPKs, 3T3-)2 feeder cells were removed by short
incubation with diluted trypsin/EDTA solution (0.005%/0.05%
weight/volume in Dulbecco’s phosphate-buffered saline (DPBS)).
HPKs were detached with trypsin/EDTA solution (0.05%/0.02%
weight/volume) and seeded onto a new layer of mitotically inacti-
vated 3T3-)2 feeder cells in RGM supplemented with 10 umol/L
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ROCKT inhibitor (Y-27632 2HCI, Selleckchem, Houston, TX). After
24 hours the medium was changed to standard RGM, and HPKs
were maintained in co-culture with 3T3-)2 feeder cells until the
experiment.

Monocultures of HPKs were grown in serum-free keratinocyte
medium (KSFM) Thermo Fisher Scientific) supplemented with EGF
and bovine pituitary extract (BPE). Cells were harvested as described
and cultured for at least 48 hours before the experiment. All cells
were incubated at 37 °C in 5% CO, and 95% humidity.

Manipulation of cells

3T3-)2 puromycin-resistant feeder cells were generated to allow
selection of co-cultured lentivirally transduced HPKs. 3T73-)2 feeder
cells were transduced with pLenti CMVtight Puro DEST (w768-1)
(#26430, Addgene) and selected with 5 pg/ml puromycin (Sigma-
Aldrich).

To inhibit cell proliferation, 3T3-)2 and 3T3-J2 puromycin-
resistant feeder cells were treated for 2 hours at 37 °C with 10 pg/
m| mitomycin C (Santa Cruz Biotechnology) diluted in growth me-
dium. Cells were washed three times with DPBS, trypsinized as
described, and plated in growth medium at a density of 50%.

Isolation of HPKs from skin biopsy samples
Skin biopsy samples were disinfected by a short incubation with
70% ethanol and washed in DPBS. Fat was removed, and the
remaining tissue was cut into small pieces. The skin pieces were
incubated for 2 hours in DMEM containing 1% antibiotic/anti-
mycotic and subsequently overnight in 4 U/ml Dispase Il (Roche,
Rotkreuz, Switzerland) in DPBS at 4 °C. Separation of dermis and
epidermis was performed the next day, and the epidermis was
incubated for 20 minutes at 37 °C in trypsin/EDTA solution (0.25%/
0.02%). A single cell suspension of keratinocytes was obtained by
pipetting the epidermis up and down in DMEM containing 25% fetal
bovine serum and 1% antibiotic/antimycotic and passing the cell
suspension through a 100-pm nylon strainer (BD, Franklin Lakes,
NJ). Cells were centrifuged (170g, 3 minutes, room temperature),
resuspended, and plated onto mitotically inactivated 3T3-J2 feeder
cells (with a 5:1 ratio) in RGM without EGF supplemented with 10
pumol/L ROCKT inhibitor.

Skin biopsy samples were collected with informed written con-
sent upon approval from the local ethical committees and were
conducted according to the Declaration of Helsinki principles.

Generation of CRISPR/Cas9-targeted HPKs

sgRNAs were designed using the Benchling platform (https:/
benchling.com), and single-stranded DNA oligonucleotides (see
Supplementary Table ST online) purchased from Microsynth (Bal-
gach, Switzerland) were cloned into the lentiCRISPRv2 plasmid
(#52961, Addgene) (Sanjana et al., 2014). Plasmids were co-
transfected into HEK 293T cells with the packaging vectors
psPAX2 (#12260, Addgene) and pMD2.G (#12259, Addgene), and
48 hours later lentiviruses were harvested and concentrated by
centrifugation (16,000g, 4 hours, 4 °C). HPKs co-cultured with 3T3-
)2 feeder cells were transduced 2 days after isolation. Concentrated
viruses were dissolved in RGM containing 10 pmol/L ROCKT1 in-
hibitor and 2.5 pg/ml polybrene (hexadimethrine bromide) (Sigma-
Aldrich). Medium was changed 24 hours after transduction to RGM
containing 10 pmol/L ROCK1 inhibitor. HPKs were split 4—5 days
after isolation and seeded onto a fresh layer of mitotically inactivated
3T3-J2 puromycin-resistant feeder cells in RGM containing 10 umol/
L Y-27632. After 24 hours medium was changed to RGM containing
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5 pg/ml puromycin (Sigma-Aldrich). Selection was performed for 48
hours. CRISPR/Cas9 targeting efficiency was assessed at the genomic
level by processing the DNA with the Genomic Cleavege Detection
Kit (Thermo Fisher Scientific) or at the protein level by Western blot.

Inflammasome activation in HPKs

For experiments, trypsinized HPKs were resuspended in KSFM sup-
plemented with EGF and BPE and containing 10 pmol/L Y-27632.
After 24 hours medium was changed to KSFM (supplemented with
EGF and BPE), and cells were grown until 70% density.

For priming, HPKs were exposed overnight to 20 ng/ml human
IFNY (Peprotech, Rocky Hill, NJ).

Before inflammasome activation, medium was exchanged by
fresh KSFM (supplemented with EGF and BPE). HPKs were either left
untreated, irradiated with 86.4 mj/cm? UVB (UV802L; Waldmann,
Villingen-Schwenninge, Germany), stimulated with 5 pmol/L niger-
icin (Selleckchem, Houston, TX), or transfected with 2 pg/ml pol-
y(dA:dT) (InvivoGen, San Diego, CA).

In vitro differentiation of HPKs

HPKs were grown in KSFM (supplemented with EGF and bovine
pituitary extract) and at 100% confluency, medium was replaced by
keratinocyte basal medium chemically defined (Lonza, Basel,
Switzerland), supplemented with 0.1 mmol/L ethanolamine and 0.1
mmol/L phosphoethanolamine.

Statistical analysis

Statistical analysis was performed using unpaired Student t test or
one-way analysis of variance followed by Dunnett’s multiple com-
parison test using Prism software (GraphPad, La Jolla, CA). Differ-
ences were considered significant when: *P < 0.05, **P < 0.01 and
kP < 0.001.
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