
Q1 Q2
Q3

Q41

Q4 Q5

Gastroenterology 2018;-:1–16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
61

62

63

64

65

66
Hdac1 Regulates Differentiation of Bipotent Liver Progenitor
Cells During Regeneration Via Sox9b and Cdk8
67

68

69

70

71

72

73

74

75

76

77

78

79

80
Sungjin Ko,1,2 Jacquelyn O. Russell,2 Jianmin Tian,2,3 Ce Gao,4 Makoto Kobayashi,5

Rilu Feng,6 Xiaodong Yuan,6 Chen Shao,7 Huiguo Ding,8 Minakshi Poddar,2 Sucha Singh,2

Joseph Locker,2,3 Hong-Lei Weng,6 Satdarshan P. Monga,2,3,9 and Donghun Shin1,3

1Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania;
2Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania; 3Pittsburgh Liver
Research Center, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania; 4MOE Key Laboratory for
Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China; 5Department of Molecular
and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; 6Department of Medicine II,
Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; 7Department of
Pathology, Beijing You’an Hospital, Capital Medical University, Beijing, China; 8Department of Gastroenterology and
Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China and 9Department of Medicine, University of
Pittsburgh, Pittsburgh, Pennsylvania
81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

BA
SI
C
AN

D
TR

AN
SL
AT

IO
NA

L
LI
VE

R

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118
BACKGROUND & AIMS: Upon liver injury in which hepatocyte
proliferation is compromised, liver progenitor cells (LPCs),
derived from biliary epithelial cells (BECs), differentiate into
hepatocytes. Little is known about the mechanisms of LPC
differentiation. We used zebrafish and mouse models of liver
injury to study the mechanisms. METHODS: We used trans-
genic zebrafish, Tg(fabp10a:CFP-NTR), to study the effects of
compounds that alter epigenetic factors on BEC-mediated liver
regeneration. We analyzed zebrafish with disruptions of the
histone deacetylase 1 gene (hdac1) or exposed to MS-275 (an
inhibitor of Hdac1, Hdac2, and Hdac3). We also analyzed
zebrafish with mutations in sox9b, fbxw7, kdm1a, and notch3.
Zebrafish larvae were collected and analyzed by whole-mount
immunostaining and in situ hybridization; their liver tissues
were collected for quantitative reverse transcription polymer-
ase chain reaction. We studied mice in which hepatocyte-
specific deletion of b-catenin (Ctnnb1flox/flox mice injected
with AAV8-TBG-Cre) induces differentiation of LPCs into
FLA 5.5.0 DTD � YGAST62149_proof �
hepatocytes after a choline-deficient, ethionine-supplemented
(CDE) diet. Liver tissues were collected and analyzed by
immunohistochemistry and immunoblots. We performed
immunohistochemical analyses of liver tissues from patients
with compensated or decompensated cirrhosis or acute on
chronic liver failure (n ¼ 15). RESULTS: Loss of Hdac1 activity
in zebrafish blocked differentiation of LPCs into hepatocytes by
increasing levels of sox9b mRNA and reduced differentiation of
LPCs into BECs by increasing levels of cdk8 mRNA, which en-
codes a negative regulator gene of Notch signaling. We identi-
fied Notch3 as the receptor that regulates differentiation of
LPCs into BECs. Loss of activity of Kdm1a, a lysine demethylase
that forms repressive complexes with Hdac1, produced the
same defects in differentiation of LPCs into hepatocytes and
BECs as observed in zebrafish with loss of Hdac1 activity.
Administration of MS-275 to mice with hepatocyte-specific loss
of b-catenin impaired differentiation of LPCs into hepatocytes
after the CDE diet. HDAC1 was expressed in reactive ducts and
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hepatocyte buds of liver tissues from patients with cirrhosis.
CONCLUSIONS: Hdac1 regulates differentiation of LPCs into
hepatocytes via Sox9b and differentiation of LPCs into BECs via
Cdk8, Fbxw7, and Notch3 in zebrafish with severe hepatocyte
loss. HDAC1 activity was also required for differentiation of
LPCs into hepatocytes in mice with liver injury after the CDE
diet. These pathways might be manipulated to induce LPC
differentiation for treatment of patients with advanced liver
diseases.
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Ulost liver mass. However, when hepatocyte prolif-
eration is compromised, a phenomenon observed in
advanced liver diseases, biliary epithelial cells (BECs) acti-
vate or dedifferentiate into liver progenitor cells (LPCs), also
called oval cells or ductular reactions, and then differentiate
into hepatocytes.1,2 A correlation between disease severity
and LPC number in patients with chronic liver diseases3

suggests that BECs are indeed activated in the diseased
liver but that the activated LPCs poorly differentiate into
hepatocytes. Although LPCs can give rise to hepatocytes,
they also secrete inflammatory cytokines that can cause
inflammation and subsequent fibrosis.4 Therefore, it has
been hypothesized that promoting differentiation of LPCs
into hepatocytes has a 2-fold beneficial effect in liver pa-
tients: generating more hepatocytes and reducing inflam-
mation. Despite the potential clinical significance of the
mechanistic understanding of LPC differentiation, the mo-
lecular mechanisms underlying this process are poorly
understood.

We5 and others6,7 previously reported that after near-
complete hepatocyte ablation in zebrafish, BECs exten-
sively contribute to hepatocytes, thereby leading to a full
liver recovery. Recently, a similar BEC-driven liver regen-
eration was observed in mice in the settings of impaired
hepatocyte proliferation8,9 and long-term chronic injury.10

In human regressed cirrhotic livers, a large percentage of
parenchyma appears to originate from LPCs,11 implying the
importance of BEC-driven liver regeneration in cirrhosis
regression. Given the robust BEC-driven liver regeneration
in these zebrafish and mouse liver injury models, these
models will help elucidate the molecular mechanisms un-
derlying liver regeneration in advanced liver diseases (i.e.,
LPC-driven liver regeneration).

In the zebrafish model, the complete ablation of hepa-
tocytes in larvae leads to the collapse of the entire intra-
hepatic biliary network, and all preexisting BECs
dedifferentiate into LPCs.12 During regeneration, a small
subset of LPCs differentiate into BECs, with which the
intrahepatic biliary network is reestablished. Thus, this
zebrafish model will allows investigation into the differen-
tiation of LPCs into BECs and hepatocytes. Given the
contribution of LPCs differentiated into BECs in rodent13

and human14 biliary injury settings, understanding the
mechanisms underlying LPC differentiation into BECs and
FLA 5.5.0 DTD � YGAST62149_proof �
hepatocytes will lead to the comprehensive understanding
of the molecular mechanisms underlying LPC-driven liver
regeneration. Given the key roles of epigenetics in cellular
reprogramming,15 we focused on epigenetic regulators that
can control LPC differentiation, because promoting its dif-
ferentiation may have a beneficial effect on patients with
advanced liver diseases. Here, we show the crucial role of
the histone deacetylase Hdac1 in the differentiation of LPCs
into both hepatocytes and BECs and provide 2 distinct,
novel molecular mechanisms by which Hdac1 regulates this
differentiation process during regeneration.
Materials and Methods
Zebrafish and Mouse Studies

All animals are housed in temperature- and light-controlled
facilities and are maintained in accordance with the Guide for
Care and Use of Laboratory Animals and the Animal Welfare
Act. Experiments were performed with approval of the Insti-
tutional Animal Care and Use Committee at the University of
Pittsburgh. Zebrafish and mouse lines used in this work,
detailed analytic methods, and human studies are described in
the supplementary material.
28 November 2018 � 7:31 am � ce
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Results
Identification of Small Molecules That Block
LPC-to-Hepatocyte Differentiation During
Regeneration

To identify chemical agents that affect LPC-to-hepatocyte
differentiation, we performed an in vivo chemical screening
using our established zebrafish model of BEC-driven liver
regeneration.5 A library of known epigenetic compounds
was selected, because our previous chemical screening
resulted in the identification of BET proteins as important
regulators of BEC-driven liver regeneration,12 raising a
possibility that other epigenetic regulators may also play
essential roles in this process. For this screening, we used
triple transgenic zebrafish: 1) Tg(fabp10a:CFP-NTR), which
expresses nitroreductase fused with cyan fluorescent pro-
tein (CFP) in hepatocytes, allowing for hepatocyte-specific
ablation upon metronidazole (Mtz) treatment; 2)
Tg(Tp1:H2B-mCherry), which expresses histone 2B (H2B)
and mCherry fusion proteins strongly in BECs and weakly in
Figure 1. Identification of compounds that block LPC-to-hep
scheme illustrating the stages of Mtz and testing compound tre
showing the expression of Bhmt, fabp10a:rasGFP, and Tp1:H2B
proportion of larvae exhibiting the representative expression sho
of Hdac1, Tp1:H2B-mCherry, and fabp10a:CFP-NTR in normal
BEC-derived cells expressing Hdac1. (D) Whole-mount in sit
expression in normal livers at 5 dpf and regenerating livers
regenerating livers. (E) qPCR data showing the relative expressio
R6h regenerating livers. Scale bars, 100 mm; error bars show ±

FLA 5.5.0 DTD � YGAST62149_proof �
BEC-derived hepatocytes; and 3) Tg(fabp10a:rasGFP), which
expresses the membrane form of green fluorescent protein
(GFP Q) strongly in hepatocytes and weakly in LPCs.12 The
triple transgenic larvae were treated with Mtz from 3.5 to 5
days postfertilization (dpf) for 36 hours (ablation, A36h),
which resulted in near-complete hepatocyte ablation, fol-
lowed by Mtz washout, scored as the start of regeneration
(regeneration, R0h). We treated the larvae with compounds
from A20h, before BEC dedifferentiation occurs, to R24h, at
which point larvae were harvested for subsequent whole-
mount immunostaining (Figure 1A). To identify a com-
pound that regulates LPC-to-hepatocyte differentiation, we
examined the expression of a hepatocyte marker, Bhmt.16

Through this screening, we identified 3 compounds that
blocked Bhmt expression in regenerating livers at R24h:
MS Q-275, trichostatin A, and OG-L002 (Figure 1B). In
regenerating livers treated with these 3 compounds, fab-
p10a:rasGFP expression was still detected, although lower
than in control regenerating livers (Figure 1B), suggesting
that BECs dedifferentiated into LPCs in these compound-
atocyte differentiation during regeneration. (A) Experimental
atment and analysis (arrow). (B) Single-optical section images
-mCherry in regenerating livers at R24h. Numbers indicate the
wn. (C) Single-optical section images showing the expression
liver at 5 dpf and regenerating liver at R6h. Arrows point to
u hybridization (WISH) images showing hdac1 and kdm1a
at R6h. Dashed lines outline control livers; arrows point to
n levels of hdac1 and kdm1a between 5-dpf control livers and
standard Q24error of the mean.
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treated regenerating livers. MS-275 inhibits HDAC1/2/
3,17,18 and trichostatin A is a pan-HDAC inhibitor.19 OG-L002
inhibits lysine-specific histone demethylases 1A (KDM1A,
also called LSD1),20 which forms the CoREST repressor
complex with HDAC1/2.21 The identification of these com-
pounds suggests that HDAC1/2-containing, histone-
modifying repressor complexes regulate LPC-to-hepatocyte
differentiation during regeneration. Moreover, we found
that hdac1 and kdm1a expressions were highly up-regulated
in regenerating livers at R6h (Figure 1C–E) and diminished
later at R12h and R24h (Supplementary Figure 1). Specif-
ically, Hdac1 expression in BECs was not yet observed at
A18h but was strongly induced at R6h; as the liver recov-
ered, its expression was reduced at R24h (Supplementary
Figure 1A, arrows). Collectively, given the absence of the
hdac2 gene in the zebrafish genome, we hypothesized that
hdac1 regulates LPC-to-hepatocyte differentiation during
regeneration.
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MS-275 Treatment Impairs LPC Differentiation
Into Either Hepatocytes or BECs

We next investigated in detail the effect of MS-275 treat-
ment on BEC-driven liver regeneration by examining the
expression of additional liver markers at R24h (Figure 2A).
During BEC-driven liver regeneration, Hnf4a, a hepatoblast/
hepatocyte marker, expression is induced in LPCs and is
maintained in hepatocytes but not in BECs; BEC marker
expression is sustained in LPCs but disappears from LPCs
when these cells differentiate into hepatocytes.5 In MS-275–
treated regenerating livers, Hnf4a was normally induced in
BEC-derived cells (Figure 2B), further supporting the normal
dedifferentiation of BECs into LPCs. Tg(Tp1:VenusPEST) and
Tg(Tp1:H2B-mCherry) lines express fluorescent proteins un-
der the same Tp1 promoter containing the Notch-responsive
element22 and show BECs in the liver.23 The short half-life
of VenusPEST proteins shows only cells with active Notch
signaling, whereas the prolonged stability of H2B-mCherry
proteins allows for tracing of BEC-derived cells even when
Notch signaling is off.5 Analysis of these BEC markers together
with Hnf4a showed the reduced number of hepatocytes
(Hnf4aþ/VenusPEST–) and BECs (Hnf4a–/VenusPESTstrong) in
MS-275–treated regenerating livers at R24h compared with
controls (Figure 2B–D). Undifferentiated or less-differentiated
cells, defined as Hnf4aþ/VenusPESTweak, were detected in
=
Figure 2.MS-275 treatment impairs LPC differentiation into eith
scheme illustrating the stages of Mtz and MS-275 treatment an
the expression of Hnf4a, Tp1:VenusPEST, Tp1:H2B-mCherry, a
BEC-derived, H2B-mCherryþ cells, Hnf4a–/VenusPESTstrong ce
patocytes (open arrows). A third cell type, Hnf4aþ/VenusPESTw

control regenerating livers. Quantification of the percentage of h
cells among H2B-mCherryþ cells is shown; n indicates the nu
showing the expression of Alcam, Tp1:VenusPEST, Tp1:H2B-m
Arrows point to BECs; arrowheads point to Alcamþ/VenusPES
centage of (D) BECs or (E) Alcamþ/VenusPESTweak or – cells am
WISH images showing cp and gc expression in regenerating
indicate the proportion of larvae exhibiting the representative
standard error of the mean. M, mol/L; WISH, whole-mount in s

FLA 5.5.0 DTD � YGAST62149_proof �

585
MS-275–treated, but not control, regenerating livers
(Figure 2B, blue bar), which was further confirmed by
analyzing the expression of Alcam, another BEC marker. BECs
are Alcamþ/VenusPESTstrong (Figure 2C, arrows), and hepa-
tocytes are Alcam–/VenusPEST–. Alcamþ/VenusPESTweak or –

cells (Figure 2C, arrowheads) were not detected in control
regenerating livers, whereas these cells were abundantly
present in MS-275–treated regenerating livers (Figure 2). The
defect in LPC-to-hepatocyte differentiation was further
confirmed by almost no expression of the hepatocyte markers
cp and gc in MS-275–treated regenerating livers at R24h
(Figure 2F). Moreover, the continuous treatment of MS-275
until R48h also blocked Bhmt expression in regenerating
livers at R48h (Supplementary Figure 2A). However, the
washout of MS-275 at A36h/R0h resulted in Bhmt expression
in most regenerating livers at R24h, although weaker than in
controls (Supplementary Figure 2B). MS-275 treatment from
A36h did not affect LPC differentiation into either hepatocytes
or BECs (Figure 2), indicating the A20h–A36h period as the
critical time window of MS-275 effect on LPC differentiation
during regeneration.

Upon 70% partial hepatectomy or carbon tetrachloride
injection, in which hepatocytes contribute to regenerated
hepatocytes (ie, hepatocyte-driven liver regeneration),
hepatocyte-specific Hdac1/2 double-knockout mice exhibit
reduced hepatocyte proliferation and increased apoptosis.24

Given this positive role of HDAC1/2 in hepatocyte-driven
liver regeneration, we also examined the effect of MS-275
on proliferation and cell death during BEC-driven liver
regeneration. The proliferation of BEC-derived cells was not
significantly different between control and MS-275–treated
regenerating livers at R6h (Supplementary Figure 3A) and
R24h (Supplementary Figure 3D), and their number was
comparable between dimethyl sulfoxide (DMSO)– and MS-
275–treated regenerating livers at R0h (Supplementary
Figure 3G). Unexpectedly, BEC proliferation, as assessed
by the percentage of 5-ethynyl-2’-deoxyuridineþ cells
among BECs, was significantly increased in MS-275–treated
regenerating livers at R24h compared with controls
(Supplementary Figure 3E). Few BEC-derived cells were
dying in either control or MS-275–treated regenerating
livers at R12h (Supplementary Figure 3F). These prolifera-
tion and cell death data suggest a distinct role of Hdac1 in
BEC-driven liver regeneration compared with hepatocyte-
driven liver regeneration.
er hepatocytes or BECs during regeneration. (A) Experimental
d analysis (arrow). (B) Single-optical section images showing
nd fabp10a:CFP-NTR in regenerating livers at R24h. Among
lls are BECs (arrows) and Hnf4aþ/VenusPEST– cells are he-
eak cells, is present (arrowheads) in MS-275–treated but not
epatocytes, BECs, and undifferentiated or less-differentiated
mber of larvae examined. (C) Single-optical section images
Cherry, and fabp10a:CFP-NTR in regenerating livers at R24h.
T– cells derived from BECs. (D, E) Quantification of the per-
ong H2B-mCherryþ (BEC-derived) cells, as shown in C. (F)

livers at R24h. Arrows point to regenerating livers. Numbers
expression shown. Scale bars, 100 mm; error bars show ±

Q25itu hybridization.
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Hdac1 Is Required for LPC Differentiation During
BEC-Driven Liver Regeneration

HDAC1 and HDAC2 usually play redundant roles in mice;
therefore, only deletion of both genes causes defects in
diverse developmental or regeneration processes.24,25

However, the absence of the hdac2 gene in the zebrafish
genome makes it possible to detect a phenotype in hdac1-
mutant zebrafish.26 The hdac1 homozygous mutants die
around 2–4 dpf and exhibit severe defects in multiple or-
gans, including the liver, but heterozygous mutants nor-
mally survive without any noticeable defects.26 Thus, we
used hdac1þ/– mutants for our BEC-driven liver regenera-
tion study. BEC-driven liver regeneration appeared normal
at R24h in hdac1þ/– mutants; however, by reducing the
dosage of MS-275 from 25 mmol/L, we found a dosage that
resulted in a regeneration defect in only hdac1þ/– but not
wild-type larvae. The treatment of 10 mmol/L MS-275
blocked LPC-to-hepatocyte differentiation in hdac1þ/– but
not wild-type larvae, as assessed by Bhmt, cp, and gc ex-
pressions at R24h (Figure 3A–D). Although 10 mmol/L
MS-275 treatment resulted in reduced BEC numbers in
wild-type regenerating livers, the number was further
decreased in hdac1þ/– regenerating livers (Figure 3E and F).
Altogether, these mutant data indicate hdac1 as the key hdac
gene required for LPC differentiation during regeneration.
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Hdac1 Regulates LPC-to-Hepatocyte
Differentiation by Repressing sox9b Expression

Given that genes and pathways used during develop-
ment are often reused during regeneration, to determine the
molecular mechanisms by which Hdac1 regulates LPC dif-
ferentiation, we examined the expression levels of hepatic
genes that play important roles in liver development.
Quantitative polymerase chain reaction (qPCR) analysis
showed that sox9b and foxa3 were highly up-regulated in
MS-275–treated regenerating livers compared with DMSO-
treated regenerating livers at R6h (Figure 4A). We focused
on these genes because both Hdac1 and Kdm1a inhibition
impaired LPC-driven liver regeneration (Figure 1B), sug-
gesting that the CoREST complex, which contains Hdac1 and
Kdm1a, controls the regeneration by repressing gene
expression. It was reported that HDAC inhibitor treatment
increased SOX9 expression in human primary fetal hepato-
cytes27 and clear-cell sarcoma cells.28 Trichostatin A treat-
ment or HDAC1 knockdown also increased SOX9 expression
in human lung adenocarcinoma cells.29 Given the role of
SOX9 in maintaining stem cell/progenitor states in liver
cancer30 and mammary31 stem cells, we hypothesized that
the enhanced sox9b expression in MS-275–treated regen-
erating livers prevented LPC differentiation. To test this
hypothesis, we lowered sox9b expression in regenerating
livers using sox9b heterozygous mutants. As previously re-
ported, BEC-driven liver regeneration failed to occur in
sox9b–/– mutants,7 whereas it did occur in sox9bþ/– mutants
(Supplementary Figure 4). In sox9bþ/– larvae, Bhmt was
normally expressed in regenerating hepatocytes at R24h
(Supplementary Figure 4A), but number of BECs was
significantly reduced at this stage compared with their
FLA 5.5.0 DTD � YGAST62149_proof �
wild-type siblings (Supplementary Figure 4B), indicating the
haploinsufficiency of sox9b in regulating BEC number during
BEC-driven liver regeneration. The hepatocyte differentia-
tion defect observed in hdac1þ/– larvae treated with 10
mmol/L MS-275 was significantly rescued in sox9bþ/– mu-
tants, as assessed by Bhmt expression (Figure 4B). In
contrast to this hepatocyte differentiation defect, the
reduced BEC number phenotype was not rescued in
sox9bþ/– mutants (Supplementary Figure 4C).

Next, using a chromatin immunoprecipitation (ChIP)-
qPCR assay, we determined whether the enhanced sox9b
expression in MS-275–treated regenerating livers is medi-
ated by the hyperacetylation of the sox9b genomic locus. To
obtain the amount of liver tissues required for this assay, we
used adult zebrafish, as previously reported.5 The Tg
(fabp10a:CFP-NTR) adult fish were treated with 5 mmol/L
Mtz only for 5 hours and subsequently treated with MS-275
from R19h to R4d. As observed in the larvae, Bhmt
expression was greatly reduced and sox9b expression was
significantly up-regulated in MS-275–treated regenerating
adult livers compared with control regenerating livers
(Figure 4C and D), suggesting an LPC-to-hepatocyte differ-
entiation defect. To examine the histone acetylation status of
the sox9b genomic locus, we assessed the levels of acetyla-
tion of histone H3 at lysine 9 (H3K9ac), a marker of active
gene promoters, within the 3-kilobase (kb) Qregion from the
sox9b transcription start site, because such a 3-kb region
regulates Sox9 expression in the mouse liver32 and zebra-
fish.33 We randomly selected 14 genomic loci in this region
and further narrowed this down to 2 loci for H3K9ac
enrichment analysis. We also selected a region that is
located 8.5 kb upstream from the sox9b 50 untranslated
region Qas a negative control. H3K9ac enrichment in the 2
selected regions was significantly increased in regenerating
livers compared with uninjured livers (Figure 4E), consis-
tent with the enhanced expression of sox9b in regenerating
livers (Figure 4D). The H3K9ac enrichment was further
increased in MS-275–treated regenerating livers compared
with the control regenerating livers (Figure 4E). As a
negative control, the level of H3K9ac enrichment in the
control region was very low and comparable between the
uninjured livers and MS-275–treated regenerating livers
(Figure 4E). Altogether, these sox9b mutant and ChIP-qPCR
data show sox9b as the key downstream target gene of
Hdac1 that regulates LPC-to-hepatocyte differentiation.
Hdac1 Regulates LPC-to-BEC Differentiation by
Repressing Cdk8/Fbxw7-Mediated Degradation
of Notch Intracellular Domain

We next sought to determine the molecular mechanism
by which Hdac1 regulates LPC-to-BEC differentiation. Dur-
ing development, Notch signaling is required for differenti-
ation of hepatoblasts into BECs; overactivation of Notch
signaling in hepatoblasts makes excessive BECs.32 Further-
more, Notch signaling has been considered a key driver that
differentiates LPCs into BECs in rodent biliary injury
models13 and human biliary diseases.14 Thus, we hypothe-
sized that the defect in LPC-to-BEC differentiation observed
28 November 2018 � 7:31 am � ce
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Figure 3. Hdac1 is required for LPC differentiation during regeneration. (A) Experimental scheme illustrating the stages of Mtz
and MS-275 treatment and analysis (arrow). (B) Single-optical section images showing Bhmt and Tp1:H2B-mCherry
expression in regenerating livers at R24h. (C) Quantification Q26of the percentage of Bhmtþ hepatocytes among BEC-derived
cells, as shown in B. (D) WISH images showing cp and gc expression in regenerating livers at R24h. Arrows point to
regenerating livers. (E) Confocal projection images showing the expression of Alcam, Tp1:VenusPEST, and Tp1:H2B-mCherry
in regenerating livers at R24h. Arrows point to VenusPESTþ/Alcamþ cells (ie, BECs); arrowheads point to VenusPEST–/Alcamþ

cells. (F) Quantification of BEC number per area, as shown in E. Scale bars, 100 mm; error bars show ± standard error of the
mean. Het, heterogeneous; M, mol/L; WISH, whole-mount in situ hybridization.
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Figure 4. Hdac1 regulates
LPC-to-hepatocyte differ-
entiation by repressing
sox9b expression. (A)
qPCR data showing the
relative expression levels
of fabp10a, hnf4a, sox9b,
foxa1/2/3, epcam, and
prox1a between DMSO-
and MS-275–treated
regenerating livers at R6h.
(B) Single-optical section
images showing Bhmt and
Tp1:H2B-mCherry expres-
sion in regenerating livers
at R24h. Quantification of
the percentage of Bhmtþ

hepatocytes among BEC-
derived cells is shown. (C)
Single-optical section im-
ages showing Bhmt and
Tp1:H2B-mCherry expres-
sion in regenerating livers
of adult zebrafish at R4d.
(D) qPCR data showing the
relative expression levels
of bhmt and sox9b among
uninjured control livers,
DMSO- and MS-275–
treated regenerating livers
at R4d. (E) ChIP-qPCR
data showing the relative
enrichment of the selected
sox9b promoter regions
among uninjured control
livers, DMSO- and MS-
275–treated regenerating
livers at R4d, after immu-
noprecipitation with
H3K9ac antibody. Scheme
illustrates the sox9b
genomic locus. Arrows
point to the regions
amplified by qPCR. Green
and yellow boxes denote
untranslated and coding
regions, respectively.
Scale bars, 100 mm; error
bars show ± standard er-
ror of the mean. M, mol/L;
ns, not significant; WT,
wild type.
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Figure 5. Hdac1 regulates
LPC-to-BEC differentiation
via Cdk8, Fbxw7 and
Notch3. (A) Confocal pro-
jection images showing
the expression of
Tp1:H2B-mCherry, Tp1:
VenusPEST, and Alcam in
regenerating livers (dashed
lines) at R24h. Quantifica-
tion of VenusPESTþ/
Alcamþ cell (ie, BEC)
number is shown. (B)
Single-optical section
images showing Tp1:
VenusPEST and Tp1:H2B-
mCherry expression in
regenerating livers (dashed
lines) at R30h. hs:N3ICD
expression was induced
by multiple heat shocks at
A24h, R3h, and R24h. (C)
WISH images showing
fbxw7, cdk8, and skp1
expression in normal livers
(dashed lines) at 5 dpf and
regenerating livers (arrows)
at R6h. (D) qPCR data
showing the relative
expression levels of fbxw7,
skp1, cdk8, her9, her2, and
her15.1 between DMSO-
and MS-275–treated
regenerating livers at R6h.
(E–G) Quantification of
BEC number per area, as
shown in Supplementary
Figures 5A and B and 6A,
respectively. Scale bars,
100 mm; error bars show ±
standard error of the
mean. Het, heteroge-
neous; M, mol/L WISH,
whole-mount in situ hy-
bridization; wt, wild type.
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in MS-275–treated regenerating livers (Figure 2B–E) might
be caused by reduced Notch activity. To test this hypothesis,
we treated hdac1þ/– larvae with a low dose of the Notch
inhibitor LY411575.34 The treatment of 0.1 mmol/L
LY411575 reduced BEC numbers greatly in hdac1þ/–, but
moderately in wild-type, regenerating livers (Figure 5A),
FLA 5.5.0 DTD � YGAST62149_proof �
suggesting that hdac1þ/– regenerating livers exhibited
reduced Notch activity compared with the wild type. We
aimed to rescue the BEC defect observed in MS-275–treated
regenerating livers by enhancing Notch activity with the
Tg(hs:N3ICD) line that expresses Notch3 intracellular
domain upon heat shock.35 Although the BEC defect was not
28 November 2018 � 7:31 am � ce
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Figure 6. Kdm1a regulates LPC differentiation during regeneration. (A, C) Confocal projection images showing the expression
of Alcam, Tp1:VenusPEST, and Tp1:H2B-mCherry in regenerating livers (dashed lines) at R24h. Quantification of BEC number
per area is shown. (B) Single-optical section images showing Bhmt and Tp1:H2B-mCherry expression in regenerating livers at
R24h. Quantification of the percentage of Bhmtþ hepatocytes among BEC-derived cells is shown; both strong and weak Bhmt
expression were considered Bhmtþ. (D) The process of BEC-driven liver regeneration upon massive hepatocyte ablation in
zebrafish larvae, focusing on the role of Hdac1 in LPC differentiation into hepatocytes and BECs. Scale bars,100 mm; error bars
show ± standard error of the mean. WT, wild type.
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rescued, we observed that ectopic Notch activity induced by
hs:N3ICD expression disappeared much faster in MS-275–
treated regenerating livers than in DMSO-treated regener-
ating livers, as assessed by Tp1:VenusPEST expression. At
R30h, 6 hours after the last heat shock, weak but noticeable
Tp1:VenusPEST expression was observed broadly in DMSO-
treated regenerating livers, whereas such expression was
barely observed in MS-275–treated regenerating livers
(Figure 5B), raising a possibility that MS-275 treatment
promotes the degradation of Notch intracellular domain
(NICD) proteins in regenerating livers. NICD is degraded by
the ubiquitin/proteasome pathway: it is first phosphory-
lated by Cdk8, and then phosphorylated NICD is ubiquiti-
nated by an SCF complex containing an E3 ubiquitin ligase
substrate adaptor, Fbxw7.36 In regenerating livers at R6h,
cdk8, fbxw7, and skp1, a core component gene of the SCF
complex,37 were up-regulated (Figure 5C), and cdk8
expression was further increased in MS-275–treated
regenerating livers (Figure 5D). Intrigued by this up-
regulation, we tested whether reducing Cdk8 activity
could restore the reduced BEC number phenotype observed
in MS-275–treated regenerating livers. Indeed, the treat-
ment of the Cdk8 inhibitor, senexin A,38 restored the BEC
number to normal levels (Figure 5E and Supplementary
Figure 5A). Moreover, reducing Fbxw7 level with fbxw7
heterozygous mutants restored, albeit in part, the reduced
BEC number in MS-275–treated hdac1þ– mutants (Figure 5F
and Supplementary 5B). BEC numbers in regenerating livers
at R24h were increased in both senexin A-treated larvae and
fbxw7þ/– mutants (Figure 5E and F), further supporting that
enhanced Notch activity results in excessive BECs. These
increased BEC numbers were also restored to the normal
number upon Hdac1 repression (senexin A vs senexin
A/MS-275 co-treatment in Figure 5E; fbxw7þ/– vs
fbxw7þ/-;hdac1þ/– in Figure 5F). Altogether, these data
indicate that Hdac1 regulates LPC-to-BEC differentiation
during regeneration by positively controlling Notch activity
through the repression of Cdk8/Fbxw7-mediated degrada-
tion of NICD.
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Notch3 Is Required for LPC-to-BEC
Differentiation During Regeneration

We next determined which Notch receptor(s) regulated
LPC differentiation during regeneration. Given its biliary-
restricted expression,39 we examined whether notch3 was
implicated in BEC-driven liver regeneration. The notch3–/–

mutants exhibited the normal differentiation of LPCs into
hepatocytes in regenerating livers at R24h, as assessed by
Bhmt expression (Supplementary Figure 6B). By contrast,
notch3–/– mutants had few BECs in regenerating livers at
R24h (Figure 5G and Supplementary Figure 6A), indicating
Notch3 as the essential Notch receptor for BEC-driven liver
regeneration, particularly LPC-to-BEC differentiation. Using
notch3þ/– mutants, which have the normal number of BECs
in regenerating livers, we determined whether the treat-
ment of a suboptimal dose of MS-275 could reduce the
number of BECs in the regenerating livers of notch3þ/–, but
FLA 5.5.0 DTD � YGAST62149_proof �
not wild-type, larvae. The treatment of 1.5 mmol/L MS-275
did not affect BEC number in wild-type regenerating livers
but significantly reduced its number in notch3þ/– regener-
ating livers at R24h (Figure 5G). Altogether, these notch3
mutant data show the essential role of Notch3 in LPC-to-
BEC differentiation during regeneration and further sup-
port the notion that Hdac1 regulates this differentiation
process by positively controlling Notch signaling.

Kdm1a Also Regulates LPC Differentiation Into
Either Hepatocytes or BECs During Regeneration

Given that Kdm1a suppression with OG-L002 blocked
LPC-to-hepatocyte differentiation (Figure 1B) and that
Kdm1a and Hdac1 often function in the same repressive
complexes,21 we hypothesized that Kdm1a suppression also
blocked LPC-to-BEC differentiation as observed upon Hdac1
suppression. Indeed, OG-L002 treatment greatly reduced
BEC number in regenerating livers at R24h (Figure 6A).
Furthermore, kdm1a–/– mutants also exhibited the defects in
LPC differentiation: in regenerating livers at R24h, kdm1a–/–

mutants displayed almost no Bhmt expression (Figure 6B)
and significantly reduced BEC number compared with their
siblings (Figure 6C). Altogether, these Kdm1a data suggest
that Hdac1 and Kdm1a co-regulate LPC differentiation
during regeneration.

Evidence in Mammals That Supports the Role of
Hdac1 in LPC-to-Hepatocyte Differentiation

To determine whether the role of Hdac1 in LPC differ-
entiation is conserved in mammals, we examined the effect
of MS-275 on LPC-to-hepatocyte differentiation in a new
mouse liver injury model, in which a small subset of BEC-
derived LPCs contribute to hepatocytes.40 In this model,
hepatocyte-specific deletion of the b-catenin gene, Ctnnb1,
(knockout [KO Q]) nearly completely prevents hepatocyte
proliferation after choline-deficient, ethionine-supple-
mented (CDE) diet–induced liver injury, permitting b-cat-
eninþ BECs to give rise to hepatocytes. KO mice were fed a
CDE diet for 2 weeks, followed by recovery on a normal
chow diet for 7 days; MS-275 or vehicle was intraperito-
neally injected daily from R1d during the recovery phase
(Figure 7A). There was no significant difference between
DMSO- and MS-275–injected regenerating mice at R7d in
body weight, liver weight, and serum liver injury marker
levels (Supplementary Figure 7), suggesting that MS-275
administration did not exacerbate liver damage. Expect-
edly, MS-275 administration increased the levels of acety-
lation of histone H3 at lysine 27 and H3K9ac in the liver
(Figure 7E). In DMSO-injected regenerating livers at R7d, a
significant number of CK19–/HNF4Aþ/b-cateninþ hepato-
cytes (BEC-derived hepatocytes in the KO mice Q) were
observed, whereas in MS-275–injected regenerating livers,
their number was greatly reduced (Figure 7B, arrows).
We found that the proliferation rate of the BEC-derived
hepatocytes was comparable between DMSO- and MS-
275–injected regenerating livers (Figure 7C, arrows), ruling
out the possibility that the decrease in their number in
28 November 2018 � 7:31 am � ce
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MS-275–injected regenerating livers is due to reduced
proliferation. Moreover, although not significant, overall
ductular reactions were slightly increased in MS-275–
injected regenerating livers (Figure 7D). We also found that
MS-275 injection increased SOX9 expression in the regen-
erating livers (Figure 7E), as observed in zebrafish. Collec-
tively, these mouse data strongly support the findings from
zebrafish that Hdac1 regulates LPC-to-hepatocyte differen-
tiation during regeneration.

Next, we investigated HDAC1 and SOX9 expression in
human livers with advanced liver diseases by examining 15
patient liver specimens with 3 types of cirrhosis: compen-
sated, decompensated, and acute-on-chronic liver failure
(ACLF). SOX9 expression was detected in BECs and most
reactive ducts in all measured specimens (Supplementary
Table 6). Although a few hepatocytes inside of hepatocyte
buds showed SOX9 expression (Figure 7F, arrows), most
hepatocyte buds did not express SOX9 (Figure 7F). Among
15 patients, HDAC1 expression was detected in 7 hepatitis B
virus (HBV)–associated cirrhotic patients, either compen-
sated or decompensated; however, it was undetectable in
alcohol-associated decompensated cirrhotic and ACLF pa-
tients (Figure 7F and Supplementary Table 6). HDAC1 was
expressed in reactive ducts and hepatocytes (Figure 7F,
arrowheads and white arrows, respectively). HBV-associated
cirrhotic livers strongly expressed HDAC1 in hepatocyte
buds, whereas SOX9 expression in these LPC-derived he-
patocytes was undetectable (Figure 7). It is worth noting
that the ACLF patients, who received liver transplantation,
did not have the detectable, hepatic expression of HDAC1
(Figure 7F). Their livers were full of SOX9þ reactive ducts
(Figure 7F), implying a defect in LPC-to-hepatocyte differ-
entiation. Whether ACLF patients who spontaneously
recovered express HDAC1 requires further investigation. In
addition, in contrast to HBV-associated cirrhosis, 2 alcohol-
associated decompensated cirrhotic patients did not express
HDAC1 (Supplementary Table 6). This might explain the
previous study showing that LPCs failed to differentiate into
hepatocytes in patients with alcoholic hepatitis.41 Collec-
tively, these human data suggest the conserved role of
HDAC1 in LPC-to-hepatocyte differentiation.
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1546
Discussion
In this study, we provide novel molecular mechanisms

by which Hdac1 regulates differentiation of LPCs into either
=
Figure 7. Evidence in mammals that supports the role of Hdac1
illustrating the period of a CDE diet, AAV8 and MS-275 inject
showing CK19, HNF4A, and b-catenin expression in regenerat
tocytes (CK19–/HNF4Aþ/b-cateninþ); arrowheads to BECs (CK1
PCNA, HNF4A and b-catenin expression with 40,6-diamidino-
Arrows point to PCNAþ/HNF4Aþ/b-cateninþ hepatocytes. Qua
hepatocytes is shown. (D) Section images showing anti-pan-cy
area is shown. (E) Western blot images of whole-liver lysate fro
Human liver section images showing SOX9 and HDAC1 expr
HDAC1þ reactive ducts, and white arrows to HDAC1þ hepatocyt
standard error of the mean. DAPI, 40,6-diamidino-2-phenylin
(phosphorylating).
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hepatocytes or BECs during regeneration. These fate de-
cisions have usually been studied using LPCs isolated and
established from diseased livers in vitro. Although such
in vitro studies have shown the molecular mechanisms
underlying LPC differentiation,13,42 findings from the
in vitro studies need to be validated in vivo. However, lack
of in vivo models in which LPCs efficiently differentiate into
both hepatocytes and BECs during regeneration has pre-
vented such in vivo validation. Recently, liver injury models
in which BECs, via LPCs, extensively contribute to hepato-
cytes have been established in zebrafish5–7 and mice.8–10

Particularly in the zebrafish model, liver regeneration oc-
curs through differentiation of LPCs into both hepatocytes
and BECs; therefore, this model can be used not only to
validate findings from in vitro studies but also to show
novel molecular mechanisms underlying LPC differentiation
during regeneration. Using the zebrafish model, we show
that 1) Hdac1 represses sox9b expression, thereby permit-
ting LPC-to-hepatocyte differentiation, and that 2) Hdac1
represses cdk8 expression, thereby enhancing Notch
signaling, which induces LPC-to-BEC differentiation
(Figure 6D). These findings not only confirm the known role
of Notch signaling in LPC-to-BEC differentiation,13,14,42 but
they also reveal 3 crucial genes (cdk8, fbxw7, and notch3)
that regulate Notch signaling during liver regeneration,
which is further supported by an in vitro study showing that
Fbxw7 deficiency skews the differentiation of mouse LPCs
toward BECs.43 Complementary to these findings from
zebrafish, we also provide evidence of the role of Hdac1 in
LPC-to-hepatocyte differentiation in mice and humans.

Despite its wide use in the liver field as a BEC/LPC
marker and a lineage tracing tool,44 the role of Sox9 in liver
injury settings remains largely unknown. In this study, we
show the repressive role of Sox9b in LPC-to-hepatocyte
differentiation. This finding is supported by an in vitro
study showing the negative role of SOX9 in the differentia-
tion of human LPCs into hepatocytes.45 This role of Sox9b is
rather consistent with the role of mammalian SOX9 in the
maintenance of stemness and the inhibition of differentia-
tion in liver cancer30 and mammary31 stem cells and kidney
progenitor cells.46 SOX9 is restrictively expressed in BECs
in the normal liver; however, its expression is often induced
in hepatocytes in various rodent liver injury models47 and in
human liver diseases.45 Based on our finding about the role
of Sox9b in LPCs, we speculate that SOX9 expression in
hepatocytes may make them lose their cellular identity,
in LPC-to-hepatocyte differentiation. (A) Experimental scheme
Q27ion stages, and analysis stage. (B) Section confocal images

ing mouse livers at R7d. Arrows point to BEC-derived hepa-
9þ/HNF4A–/b-cateninþ). (C) Section confocal images showing
2-phenylindole (DAPI) staining in regenerating livers at R7d.
ntification of the percentage of PCNA Q28þ among BEC-derived
tokeratin (panCK) immunostaining. Quantification of panCKþ

m DMSO- or MS-275–injected regenerating livers at R7d. (F)
ession. Arrows point to SOX9þ hepatocytes, arrowheads to
es. Scale bars, 100 mm (B–D) and 50 mm (F); error bars show ±
dole; GAPDH, glyceraldehyde-3-phosphate dehydrogenase
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thereby promoting their dedifferentiation into oval cells (ie,
LPCs) and simultaneously preventing their differentiation
into hepatocytes. It will be interesting to examine in mice if
hepatocyte- or BEC-specific deletion of Sox9 results in any
defect in LPC-driven liver regeneration.

It was previously suggested that in hepatocyte injury
settings, such as the CDE model, Wnt/b-catenin signaling
activated by macrophage-derived Wnt3a represses Notch
activity in LPCs by inducing Numb expression, thereby
promoting differentiation of LPCs into hepatocytes.13 It
was also suggested that in biliary injury settings, such as
the 3,5-diethoxycarbonyl-1,4-dihydrocollidine model,
Notch signaling activated by myofibroblast-derived Jag-
ged1 promotes LPC differentiation into BECs.13 However,
more recent in vivo studies showed that either the acti-
vation of Wnt/b-catenin signaling or the inhibition of
Notch signaling in BECs/LPCs was not sufficient to
differentiate 3,5-diethoxycarbonyl-1,4-dihydrocollidine–
induced LPCs into hepatocytes,48 indicating that additional
factors regulate this differentiation process. In our study,
reduction of Sox9b expression rescued a defect in LPC-to-
hepatocyte differentiation observed in Hdac1-repressed
regenerating livers, suggesting Sox9 as the additional fac-
tor that regulates LPC-to-hepatocyte differentiation. As a
key component of multiple transcriptional repressor
complexes,49 Hdac1 represses the expression of numerous
genes by removing acetylation marks on the lysine resi-
dues of histones. Therefore, it is surprising that reducing
the expression level or the activity of a single gene is
sufficient to rescue a defect in LPC differentiation
observed in Hdac1-repressed larvae: sox9b for LPC-to-
hepatocyte differentiation and cdk8 or fbxw7 for LPC-to-
BEC differentiation. Likewise, reducing the expression
level of Bmp4 with Bmp4þ/– mutants rescued a defect in
proximal airway development observed in foregut
endoderm-specific Hdac1/2 double-KO mice.25

During development, Sox9 is not required for differen-
tiation of hepatoblasts into BECs in mice50 or zebrafish,23

whereas Sox9 appears to regulate LPC-to-BEC differentia-
tion during regeneration, as suggested by the reduced BEC
number in sox9bþ/– regenerating livers (Supplementary
Figure 4B). It was recently reported that both Sox4 and
Sox9 deletion is required for blocking hepatoblast-to-BEC
differentiation,51 indicating that Sox4 compensates for the
absence of Sox9 in the developing liver. However, during
BEC-driven liver regeneration, other genes, such as Sox4, do
not compensate for the absence of Sox9. Likewise, Notch3 is
not required for hepatoblast-to-BEC differentiation during
development because of the compensation by Notch2.52

However, the absence of BECs in regenerating livers of
notch3–/– mutants (Supplementary Figure 6A) indicates the
failed compensation by other Notch receptors during BEC-
driven liver regeneration. It is tempting to speculate that
developmental processes have more compensatory mecha-
nisms than regeneration processes, because every animal
goes through developmental processes for its survival, but
only a subset of animals go through regeneration processes
for their survival.
FLA 5.5.0 DTD � YGAST62149_proof �
In summary, we provide the molecular mechanisms
underlying LPC differentiation into either hepatocytes or
BECs. Given the potential of promoting innate liver
regeneration as therapeutics for advanced human liver
diseases, a better understanding of the molecular mecha-
nisms underlying LPC-driven liver regeneration is crucial
for developing such a therapy. Not only does our finding
that Hdac1 regulates LPC differentiation via Sox9b and
Cdk8-Fbxw7-Notch3 show novel molecular mechanisms
underlying LPC differentiation, but it also suggests a
means to repress Sox9 expression or function as a poten-
tial therapy to promote liver regeneration in patients with
advanced liver diseases.

Supplementary Material Q

Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2018.09.039.
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Supplementary Methods

Zebrafish Strains
Embryos and adult fish were raised and maintained under

standard laboratory conditions.1 We used hdac1b382,
sox9bfh313, fbxw7vu56, notch3fh332, and kdm1ait627 mutant lines
and the following transgenic lines: Tg(fabp10a:rasGFP)s942,
Tg(Tp1:VenusPEST)s940, Tg(Tp1:H2B-mCherry)s939, Tg(fabp10a:
CFP-NTR)s931, and Tg(hs:N3ICD)co17. Their full names and
references are listed in Supplementary Table 1.

Genotyping of hdac1, sox9b, fbxw7, notch3,
and kdm1a Mutants

For sox9b genotyping, genomic DNA was amplified with
either wild-type allele– (50-AGACCAGTCGTAGCCCTT-30) or
mutant allele–specific (50-AGACCAGTCGTAGCCCTA-30)
reverse primer and a common forward primer (50-
TGAGTGTGTCCGGAGCTCCGA-30). For notch3 genotyping,
genomic DNA was amplified with either wild-type allele–
(50-CATGATCCCTACTGCTAT-30) or mutant allele–specific
(50-CATGATCCCTACTGCTAG-30) forward primer and a
common reverse primer (50-CAGTTCTTACCCACCCATCC-30).
For hdac1 genotyping, genomic DNA was amplified with a
forward (50-CGTAGGGGAGGATTGTCCTGTC-30) and a
reverse (50-TGAGCAGCTCCAGAATGGCCAG-30) primer pair;
its 294-base pair (bp) PCR products were digested with
EcoRI, which cut the mutant but not wild-type allele. For
fbxw7 genotyping, genomic DNA was amplified with a for-
ward (50-TGTGTCAATGTGTTTCGGTTGAGA-30) and a
reverse (50-CGAAGGGATTTCTCTCACCA-30) primer pair; its
656-bp PCR products were digested with BamHI, which cut
the wild-type, but not mutant, allele. kdm1a genotyping was
performed as previously described.2

Chemical Screening
To identify epigenetic regulators that regulate BEC-

driven liver regeneration, we screened small molecules
from an epigenetic compound library (Cayman Chemical).
We also tested additional compounds that inhibit epigenetic
regulators but are not present in the library. The working
concentration of each compound (total of 41 compounds)
was determined by treating larvae in a 96-well plate (3
larvae/well) with various concentrations; the maximum
tolerated concentration was used for the screening. The
names and working concentrations of the screened com-
pounds are listed in Supplementary Table 2. Hepatocyte
ablation was performed by treating Tg(fabp10a:CFP-
NTR);Tg(fabp10a:rasGFP);Tg(Tp1:H2B-mCherry) larvae with
10 mmol/L Mtz in egg water supplemented with 0.2%
DMSO and 0.2 mmol/L 1-phenyl-2-thiourea from 3.5 to 5
dpf for 36 hours. The larvae in a 12-well plate (15 larvae/
well) were treated with the selected compounds from A20h
to R24h and harvested at R24h for subsequent whole-
mount immunostaining with anti-Bhmt. The expression
levels of fabp10a:rasGFP, Tp1:H2B-mCherry, and Bhmt in
regenerating livers were shown by a Zeiss LSM700 confocal
microscope.

MS-275, Senexin A, OG-L002, and
LY411575 Treatment

For MS-275 (Selleckchem) treatment, depending on
mutant backgrounds and phenotypes of interest, 1.5, 5, 10,
or 25 mmol/L was used for the final concentration. For
senexin A (Tocris), LY411575 (Cayman Chemical), and OG-
L002 (Selleckchem) treatments, 3, 0.1, and 100 mmol/L
were used, respectively.

Whole-Mount In Situ Hybridization
and Immunostaining

Whole-mount in situ hybridization was performed as
previously described.3 cDNA from 24-hours-postfertilization
embryos or 5-dpf livers was used as a template for PCR to
amplify genes of interest; PCR products were used to make
in situ probes. The primers used for the probe synthesis are
listed in Supplementary Table 3. Whole-mount immuno-
staining was performed as previously described4 with the
following antibodies: goat anti-Hnf4a (1:50; Santa Cruz
Biotechnology), mouse anti-Bhmt (1:400; gift from Jinrong
Peng at Zhejiang University), mouse anti-Alcam (Zn5, 1:10;
ZIRC Q29), rat anti-mCherry (1:400; Allele Biotechnology), rabbit
anti-Hdac1 (1:200; GeneTex), and Alexa Fluor 488-, 568-,
and 647-conjugated secondary antibodies (1:500; Life
Technologies).

EdU Q30and Terminal Deoxynucleotidyl Transferase–
Mediated Deoxyuridine Triphosphate
Nick-End Labeling

EdU labeling was performed according to the protocol
outlined in the Click-iT EdU Alexa Fluor 647 Imaging Kit (Life
Technologies). Larvae were treated with egg water containing
10 mmol/L EdU and 1% DMSO for 5 hours. After the 5-hour
EdU treatment, the larvae were harvested for subsequent
analysis. Terminal deoxynucleotidyl transferase–mediated
deoxyuridine triphosphate nick-end labeling (TUNEL) was
performed as described in the protocol of the In Situ Cell
Death Detection Kit, TMR red (Roche).

Image Acquisition, Processing, and
Statistical Analysis

Zeiss LSM700 confocal and Leica M205 FA epifluor-
escence microscopes were used to obtain image data.
Confocal stacks were analyzed using the Zen 2009 software.
All figures, labels, arrows, scale bars, and outlines were
assembled or drawn using the Adobe Illustrator software.
For analyses concerning only 2 groups, a 2-tailed Student t
test was performed, with P < .05 considered significant. For
analyses concerning more than 2 groups, a 1-way analysis of
variance test was performed, with P < .05 considered sig-
nificant. Quantitative data were shown as mean ± standard
error of the mean.

Heat-Shock Condition
Tg(hs:N3ICD) larvae were heat-shocked by transferring

them into egg water prewarmed to 37�C and kept at this
temperature for 20 minutes, as previously described.5
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qPCR
Total RNA was extracted from 100 dissected livers using

the RNeasy Mini Kit (Qiagen); cDNA was synthesized from
the RNA using the SuperScript III First-Strand Synthesis
SuperMix (Life Technologies) according to the kit protocols.
qPCR was performed as previously described,6 using the
Bio-Rad iQ5 qPCR machine with the iQ SYBR Green Super-
mix (Bio-Rad). eef1a1l1 was used for normalization, as
previously described.7 At least 3 independent experiments
were performed. The primers used for qPCR are listed in
Supplementary Table 4.

Quantification of BEC Number Per Area
A confocal projection image consisting of 10 optical-

section images, with 1-mm intervals, was used to manually
count BECs; the total BEC number was divided by the entire
liver area calculated by ImageJ software (National Institutes
of Health).

Adult Zebrafish Studies
Four-month-old Tg(fabp10a:CFP-NTR) adult fish were

treated with 5 mmol/L Mtz in system water supplemented
with 0.5% DMSO for 5 hours. At 19 hours after Mtz washout
(R19h), the fish were treated with 25 mmol/L MS-275 or
DMSO in system water until they were killed for analysis.
Compound solution was replaced with fresh solution every
other day.

ChIP-qPCR Assay
Freshly harvested and pooled livers (DMSO- and MS-

275–treated livers at R4d, n ¼ 30 per group) were finely
minced on ice and added to phosphate-buffered saline (PBS)
containing 1% formaldehyde, 0.1 mol/L phenyl-
methylsulfonylQ31 fluoride, 0.5 mol/L EDTA, and Halt inhibitor
cocktail (Thermo Fisher Scientific). Tissue was cross-linked
for 15 minutes on a rotator at room temperature, followed
by quenching with 0.125 mol/L glycine and rinsing with
cold PBS. Tissue was then homogenized in cold PBS plus
additives with a Wheaton overhead homogenizer. After
pelleting, cells from tissue were lysed in 5-mmol/L pipera-
zine-N,N0-bis(2-ethanesulfonic acid) (pH 8.0), 85 mmol/L
KCl, and 0.5% NP40 using a Dounce homogenizer and
incubated on ice for 15 minutes to release nuclei. Nuclei
were resuspended in 50 mmol/L Tris (pH 8.1), 10 mmol/L
EDTA, 1% sodium dodecyl sulfate, and inhibitors at 5 times
the cell volume and incubated on ice for 20 minutes, then
sonicated with a Bioruptor (Diagenode) at 15-minute in-
tervals until chromatin fragments were 200–500 bp in
length. At this point, 25 mL of the chromatin fragments was
removed and saved as an input. Chromatin aliquots were
diluted in IPQ32 dilution buffer and precleared with Protein G-
Sepharose beads (GE Healthcare) for 3 hours at 4�C. Su-
pernatants were incubated overnight at 4�C with 10 mg of
H3K9ac (Abcam, ab4729). Antibody-chromatin complexes
were recovered by incubation with Protein G-Sepharose for
3 hours at 4�C and then centrifuged. Additional IP buffer
was added to each sample, and then samples were loaded
onto a ChIP filtration column (CHIP-IT High Sensitivity Kit,

Active Motif) and gravity filtered, followed by washing and
elution by centrifugation. Samples were de-crosslinked by
incubation with proteinase K at 55�C for 30 minutes, fol-
lowed by 80�C for 2 hours, and then were purified with the
MiniElute kit (Qiagen). The resulting DNA fragments and
input controls were subjected to qPCR using primer sets
listed in Supplementary Table 5.

Initially, 14 genomic loci within the 3-kb region up-
stream of sox9b TSS (–3 kb to þ1) were randomly selected
to make 14 sets of primer pairs. Among the 14 sets, sets 1
and 4 exhibited the lowest cycle threshold value by qPCR
with input DNA. Thus, these 2 sets were further selected for
H3K9ac enrichment analysis. Results in Figure 4E represent
pooled samples from livers (n ¼ 30) per treatment group
assayed in triplicate. ChIP-qPCR data were normalized to
percent input for each sample to determine fold change.

Mouse Studies
Ctnnb1flox/flox;Rosa-stopflox/flox-EYFP reporter mice were

generated through breeding Ctnnb1flox/flox mice with Rosa-
stopflox/flox-EYFP mice (Jackson Laboratories). To delete
b-catenin in hepatocytes, 23–25-day-old Ctnnb1flox/flox;Rosa-
stopflox/flox-EYFP mice were injected intraperitoneally with
1 � 1012 genome copies of AAV8-TBG-Cre (Penn Vector
Core), followed by a 12-day washout period. For the liver
injury time point, 5-week-old AAV8-TBG-Cre–injected mice
were given a choline-deficient diet (Envigo Teklad Diets)
supplemented with 0.15% ethionine drinking water (Acros
Organics, #146170100) for 2 weeks. For recovery time
points, animals were switched back to normal chow diet,
and 20 mg/kg MS-275 or 25% DMSO in PBS (vehicle) was
intraperitoneally injected daily until they were killed for
analysis. The doses, route, and timing of administration
were based on a previous study8 and our pilot test showing
that increases in histone acetylation occurred 12 hours after
the MS-275 injection. Liver tissue and serum were har-
vested and stored at –80�C until further analyzed. Serum
biochemistry analysis was performed by automated
methods at the University of Pittsburgh Medical Center
clinical chemistry laboratory. All studies were performed
according to the guidelines of the National Institutes of
Health and the University of Pittsburgh Institutional Animal
Use and Care Committee.

Immunofluorescence With Mouse and Adult
Zebrafish Liver Tissue

Tissue samples were drop-fixed in 10% buffered
formalin overnight, cryopreserved in 30% sucrose in PBS
overnight, frozen in OCT compound (Sakura, #4583) and
stored at –80�C or, alternatively, were paraffin embedded
after formalin fixation. Cryopreserved samples were cut into
5-mm sections, allowed to air dry, and then washed in PBS.
Antigen retrieval was performed through pressure cooking
for 20 minutes with Dako Target Retrieval Solution (Dako,
S1699). After cooling, slides were washed with PBS and
permeabilized with 0.1% Triton X-100 in PBS for 20 mi-
nutes at room temperature. Samples were washed 3 times
with PBS and then blocked with 5% donkey serum in 0.1%
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TweenQ33 20 in PBS (antibody diluent) for 30 minutes at room
temperature. Antibodies were diluted as follows: b-catenin
(Abcam, ab32572; 1:50), Hnf4A (Santa Cruz Biotechnology,
sc-6556; 1:50), CK19 (DSHBQ34 , TROMA-III-s; 29 mg/mL),
PCNAQ35 (Santa Cruz Biotechnology, sc-56; 1:1000) in antibody
diluent and incubated at 4�C overnight. Samples were
washed 3 times in PBS and incubated with the proper
fluorescent secondary antibody (AlexaFluor 488/555/647,
Invitrogen) diluted 1:500 in antibody diluent for 2 hours at
room temperature. Samples were washed 3 times with PBS
and incubated with DAPI (Sigma, B2883) for 30 seconds.
Samples were washed 3 times with PBS and mounted with
ProLong Gold antifade reagent (Invitrogen, P10144). Images
were taken on a Nikon Eclipse Ti epifluorescence micro-
scope or a Zeiss LSM700 confocal microscope.

Immunohistochemistry With Mouse Liver Tissue
Tissue samples were drop fixed in 10% buffered

formalin for 48 hours before paraffin embedding. Samples
were cut into 4-mm sections, deparaffinized, and washed
with PBS. For antigen retrieval, samples were microwaved
for 12 minutes in pH 6 sodium citrate buffer (PanCK) or
were pressure cooked for 20 minutes in pH 6 sodium citrate
buffer (b-catenin). After cooling, samples were placed in 3%
H2O2 for 10 minutes to quench endogenous peroxide ac-
tivity. After washing with PBS, slides were blocked with
Super Block (ScyTek Laboratories, AAA500) for 10 minutes.
The primary antibodies were incubated at the following
concentrations in antibody diluent (PBS þ 1% bovine serum
albuminQ36 and 0.1% Tween 20): PanCK (Dako, Z0622; 1:200)
and b-catenin (Abcam, ab32572; 1:100) for 1 hour at room
temperature or at 4�C overnight. Samples were washed with
PBS 3 times and incubated with the appropriate biotinylated
secondary antibody (Vector Laboratories) diluted 1:500 in
antibody diluent for 30 minutes at room temperature.
Samples were washed with PBS 3 times and sensitized with
the Vectastain ABC kit (Vector Laboratories, PK-6101) for
30 minutes. After 3 washes with PBS, color was developed
with DAB Peroxidase Substrate Kit (Vector Laboratories, SK-
4100), followed by quenching in distilled water for 5 mi-
nutes. Slides were counterstained with hematoxylin
(Thermo Fisher Scientific, 7211) and dehydrated to xylene,
and coverslips applied with Cytoseal XYL (Thermo Fisher
Scientific, 8312-4). Images were taken on a Zeiss Axioskop
40 inverted microscope. Images for tiling were taken on a
Zeiss Axio Observer.Z1 microscope and assembled with ZEN
Imaging software.

Cell Quantification in Mice
To quantify the number of BEC-derived hepatocytes in

mice, liver samples were stained for b-catenin, CK19, and
HNF4A. For each sample, 5 images were taken with �200
magnification, and the total number of CK19–/b-cateninþ/
HNF4Aþ cells in the image was counted in a blinded fashion.
To quantify the levels of ductular reactions, panCKþ area
was measured using ImageJ. To quantify proliferation, the

number of b-cateninþ/HNF4Aþ/PCNAþ cells was manually
counted using the ImageJ cell counter program.

Western Blotting
To extract proteins, whole liver tissue was homogenized

in radioimmunoprecipitation Q37assay buffer as previously
described.9 Protein was separated on precast 4%–20% or
7.5% polyacrylamide gels (Bio-Rad) and transferred to a
nitrocellulose membrane using the Trans-Blot Turbo
Transfer System (Bio-Rad). Membranes were blocked for 90
minutes with 5% skim milk (LabScientific, M0841) and
incubated with primary antibodies at 4�C overnight at the
following concentrations: b-catenin (BD Biosciences,
610154; 1:1000), H3K9ac, (Abcam, ab4729; 1:10,000),
H3K27ac (Millipore, 06-942, 1:5000), Histone H3 (Cell
Signaling Technology, CS971; 1: 500,000), SOX9 (Abcam,
ab5535; 1:1000), HDAC1 (Cell Signaling Technology,
CS34859; 1:1000), and GAPDH (Santa Cruz, sc-25778;
1:1000). Membranes were washed in Blotto buffer and
incubated with the appropriate horseradish Q38peroxidase–
conjugated secondary antibody for 2 hours at room tem-
perature. Membranes were washed with Blotto buffer, and
bands were developed with SuperSignal West Pico Chemi-
luminescent Substrate (Thermo Fisher Scientific, #34080)
and visualized by autoradiography.

Human Studies
Fifteen cirrhotic liver tissue specimens were collected in

Beijing You’an Hospital, Capital Medical University. Among
them, 3 were HBV-associated compensated cirrhosis, 6
decompensated cirrhosis (4 with HBV infection and 2 with
alcoholic hepatitis), and 6 were ACLF (3 with HBV infection
and 3 with alcoholic hepatitis). The tissue specimens of
compensated cirrhotic patients were obtained through liver
biopsy, whereas large liver tissues were collected when
decompensated cirrhotic and ACLF patients received liver
transplantation. The study protocol was approved by the
Ethics Committees of Beijing You’an Hospital, Capital Medical
University. Written informed consent was obtained from pa-
tients or their representatives. For immunohistochemistry,
liver tissues were fixed in 4% formaldehyde and embedded in
paraffin for 4-mm sectioning. The slides were deparaffinized in
xylene and rehydrated in a dilution series of graded ethanol to
distilled water. Antigen retrieval was performed by micro-
wave treatment in EDTA buffer (1 mmol/L, pH 8.0) for 10
minutes. The slides were incubated with 3% H2O2 for 30
minutes at room temperature. After washing with PBS 3
times, slides were incubated with primary antibodies against
SOX9 (Sigma-Aldrich, HPA001758; 1:100) or HDAC1 (Santa
Cruz Biotechnology, Sc-81598; 1:50) at 4�C overnight. The
next day, the slides were washed with PBS 3 times, followed
by incubating with EnVision peroxidase-labeled secondary
antibodies (Dako) for 1 hour at room temperature. Peroxidase
activity was detected with diaminobenzidine. The slides were
counterstained with hematoxylin. Immunoreactivity was
visualized under light microscopy.
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Supplementary Figure 1. hdac1 and kdm1a are highly up-regulated during BEC-driven liver regeneration. (A) Single-optical
section images showing the expression of fabp10a:CFP-NTR (grey), Tp1:H2B-mCherry (red), and Hdac1 (green) in unin-
jured or regenerating livers. White arrows point to BECs. Scale bar, 100 mm. (B) Graphs showing the expression levels of hdac1
and kdm1a among uninjured and regenerating livers at designated time points. These data were generated using the previ-
ously described RNA sequencing results.10 FPKM, for fragments per kilo base of exon per million fragments mapped.
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Supplementary Figure 2. The continuous treatment of MS-275 impairs LPC-to-hepatocyte differentiation during regeneration.
(A) Single-optical section images showing the expression of Bhmt (green), fabp10a:rasGFP (gray), and Tp1:H2B-mCherry (red)
in regenerating livers at R48h. (B) Single-optical section images showing the expression of Bhmt (green), fabp10a:CFP-NTR
(red), and Tp1:H2B-mCherry (gray) in regenerating livers at R24h. Quantification of the percentage of Bhmtþ hepatocytes
among BEC-derived cells is shown. Scale bars, 100 mm; error bars show ± standard error of the mean.
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Supplementary Figure 3. The effect of MS-275 treatment on the proliferation and cell death of BEC-derived cells during BEC-
driven liver regeneration. (A) Single-optical section images showing Tp1:H2B-mCherry expression (red) and EdU labeling
(green) in regenerating livers at R6h. EdU was treated for 5 hours from R1h. Arrows point to EdU/H2B-mCherry double-positive
cells; arrowheads point to H2B-mCherry single-positive cells. Quantification of the percentage of EdUþ cells among H2B-
mCherryþ cells is shown. (B) Single-optical section images showing Tp1:H2B-mCherry (red) and Tp1:VenusPEST (gray)
expression and EdU labeling (green) in regenerating livers at R24h. EdU was treated for 5 hours from R19h. Arrowheads point
to EdU-positive BECs; arrows point to EdU-positive non-BECs. (C) Quantification of BEC number per area, as shown in B. (D)
Quantification of the percentage of EdUþ cells among H2B-mCherryþ cells, as shown in B. (E) Quantification of the percentage
of EdUþ cells among BECs, as shown in B. (F) Confocal projection images showing Tp1:H2B-mCherry expression (red) and
TUNEL labeling (green) in regenerating livers at R12h. Arrows point to TUNEL-positive, BEC-derived cells. Quantification of the
percentage of TUNELþ cells among H2B-mCherryþ cells is shown. Quantification of the total number of TUNELþ BEC-derived
cells in the whole liver is also shown. (G) Single-optical section images showing Tp1:H2B-mCherry expression in regenerating
livers (dashed lines) at R0h. Quantification of the number of Tp1:H2B-mCherryþ BEC-derived cells is shown. Scale bars, 100
mm; error bars show ± standard error of the mean. ns, not significant.
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Supplementary Figure 4. BEC-driven liver regeneration in sox9b mutants. (A) Single-optical section images showing the
expression of Bhmt (red), fabp10a:CFP-NTR (red), and Tp1:H2B-mCherry (gray) in regenerating livers at R24h. Numbers
indicate the proportion of larvae exhibiting the representative expression shown. (B) Confocal projection images showing
Alcam (green) and Tp1:H2B-mCherry (red) expression in regenerating livers at R24h. Dashed lines outline regenerating livers.
Quantification of BEC number per area is shown. (C) Quantification of BEC number per area in regenerating livers at R24h.
Scale bars, 100 mm; error bars show ± standard error of the mean. het, heterogeneous; M, mol/L; ns, not significant; WT, wild
type.
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Supplementary Figure 5. Hdac1 regulates LPC-to-BEC differentiation via Cdk8 and Fbxw7. (A, B) Confocal projection images
showing the expression of Alcam (gray), Tp1:VenusPEST (green), and Tp1:H2B-mCherry (red) in regenerating livers at R24h.
Dashed lines outline regenerating livers. Scale bars, 100 mm. M, mol/L; WT, wild type.
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Supplementary Figure 6. BEC-driven liver regeneration in notch3 mutants. (A) Confocal projection images showing the
expression of Alcam (gray), Tp1:VenusPEST (green), and Tp1:H2B-mCherry (red) in regenerating livers (dashed lines) at R24h.
(B) Single-optical section images showing Bhmt (red) and fabp10a:CFP-NTR (green) expression in regenerating livers at R24h.
Numbers indicate the proportion of larvae exhibiting the representative expression shown. Scale bars, 100 mm. M, mol/L; WT,
wild type.
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Supplementary Figure 7.MS-275 administration does not exacerbate liver damage in the KO mice fed a CDE diet. (A) Graph
showing the tracking of body weight (normalized with starting body weight) during the entire experimental procedure. (B–E)
Graphs showing (B) liver weight/body weight ratio and the serum levels of (C) alkaline phosphatase (ALP), (D) alanine
aminotransferase (ALT), and (E) aspartate aminotransferase (AST) between DMSO- and MS-275–injected regenerating livers at
R7d. BW, body weight; IP, intraperitoneal; LW, liver weight.
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Supplementary Table 1.Transgenic and Mutant Zebrafish Lines Used in This Study

Names Used in This Study Official Names (ZFIN Database) Allele No. Reference

Tg(Tp1:VenusPEST) Tg(EPV.Tp1-Mmu.Hbb:Venus-Mmu.Odc1) s940 11
Tg(Tp1:H2B-mCherry) Tg(EPV.Tp1-Mmu.Hbb:hist2h2l-mCherry) s939 11
Tg(fabp10a:rasGFP) Tg(-2.8fabp10a:CAAX-EGFP) s942 12
Tg(fabp10a:CFP-NTR) Tg(fabp10a:CFP-NTR) s931 13
Tg(hs:N3ICD) Tg(hsp70l:canotch3-EGFP) co17 14
hdac1 hdac1 b382 15
sox9b sox9b fh313 16
fbxw7 fbxw7 vu56 17
notch3 notch3 fh332 18
kdm1a kdm1a it627 2
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Supplementary Table 2.List of Compounds Used for Chemical Screening

Chemical Pathway Concentration (mmol/L)

Phthalazinone pyrazole Aurora A kinase inhibitor 30
Gemcitabine GADD45A inhibitor 30
CPTH2 GCN5 inhibitor 3
UNC0224 G9A inhibitor 30
3-Deazaneplanocin A EZH2 inhibitor 3
AMI-1 PRMT inhibitor 20
UNC1999 EZH2 inhibitor 20
Chaetocin HMT inhibitor 20
Sirtinol SIRT1/2 inhibitor 25
F-amidine PAD4 inhibitor 15
WDR5-0103 WDR5 inhibitor 15
PD 173074 FGF R2-5 inhibitor 15
IOX1 2OG oxygenase inhibitor 25
Lomeguatrib MGMT inhibitor 25
Tenovin-6 p53 activator 5
UNC1215 L3MBTL3 inhibitor 25
trans-Resveratrol COX-1 inhibitor 25
DMOG HIF-PH inhibitor 1
ZM 447439 Aurora B kinase inhibitor 25
C646 p300 inhibitor 0.5
I-CBP112 CBP/EP30 inhibitor 100
Sinefungin SET domain-containing methyltransferase inhibitor 30
GSK-J4 JMJD3 inhibitor 50
Mirin MRN inhibitor 100
BSI-201 PARP1 inhibitor 5
Ellagic acid CARM1 inhibitor 30
(�)-Neplanocin A SAH hydrolase inhibitor 30
PFI-3 SMARCA inhibitor 30
TSA Pan HDAC inhibitor 0.5
MS-275 Class1 HDAC inhibitor 25
5-Azacytidine DNMT inhibitor 100
OG-L002a KDM1a inhibitor 100
Mdivia DNM1 inhibitor 100
Bafilomycin A1a Autophagy inhibitor 0.01
LY294002a PI3K inhibitor 40
U0126a MEK inhibitor 100
XAV939a WNT inhibitor 1
LG100754a RXR inhibitor 5
GW501516a PPARd activator 3
AG1478a EGF receptor inhibitor 1
Calcitriola VDR activator 5

aNot included in the epigenetic compound library.

Supplementary Table 3.Sequences of Primers Used for In Situ Probe Synthesis

Gene Primer Nucleotide sequence (50 to 30)

hdac1 forward TGAGTCCTATGAAGCCATATTCAA
hdac1 reverse CTTCTCCATCCTTCTCTTCTTCAG
kdm1a forward TGTACACTATGCCACGCCAG
kdm1a reverse TAATACGACTCACTATAGGGATGGGTTGGGTAGGCAGTTG
fbxw7 forward GGCCCAGAGGTTCGATCTTT
fbxw7 reverse TAATACGACTCACTATAGGGAAGGACTGTGTGTGAACCCC
cdk8 forward CGGCATCCACTATTTGCACG
cdk8 reverse TAATACGACTCACTATAGGGGCGGATTGGGTCCATGGTAA
skp1 forward CCGACCATTAAACTGCAGAGC
skp1 reverse TAATACGACTCACTATAGGGTGATCATGTTCGCAACCGTC

NOTE. Underlining indicates T7 primer sequences.
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Supplementary Table 4.Sequences of Primers Used for
qPCR

Gene Primer Nucleotide Sequence (50 to 30)

eef1a1l1 forward CTGGAGGCCAGCTCAAACAT
eef1a1l1 reverse ATCAAGAAGAGTAGTACCGCTAGCATTAC
hdac1 forward AGGGGAGGATTGTCCTGTCT
hdac1 reverse CCTTGCCTGCACCAATATCT
kdm1a forward TCATACTCGTACGTCGCAGC
kdm1a reverse TCCCAGGAACTGATCGGCTA
fabp10a forward GCAGGTTTACGCTCAGGAGA
fabp10a reverse TCCTGATCATGGTGGTTCCT
hnf4a forward GCCGACACTACAGAGCATCA
hnf4a reverse TGGTAGGTTGAGGGATGGAG
bhmt forward CTGATCGCTGAGTACTTTG
bhmt reverse CAATGAAGCCCTGGCAGC
sox9b forward CAGAAACACCCGACTCCAG
sox9b reverse CACACCGGCAGATCTGTTT
foxa1 forward CACAAGAGGTCTATTCTCCCA
foxa1 reverse GGACATGCCCATGTAACTG
foxa2 forward AGAGCCTGAGTGTTACACC
foxa2 reverse GACATAGTCATGTAAGTGTTCATGG
foxa3 forward TGAAATTCCGGAGTGGAATC
foxa3 reverse GCTGGGATAGCCCATATTCA
epcam forward CTTGTTTGTTGTGGCATTGG
epcam reverse TTGACGCACCAGCATACTTC
prox1 forward AGCTTTTCCGTGCTCTCAAC
prox1 reverse GGCATTGAAAAACTCCCGTA
fbxw7 forward GGCCCAGAGGTTCGATCTTT
fbxw7 reverse AAGGACTGTGTGTGAACCCC
skp1 forward CCGACCATTAAACTGCAGAGC
skp1 reverse TGATCATGTTCGCAACCGTC
cdk8 forward CGGCATCCACTATTTGCACG
cdk8 reverse GCGGATTGGGTCCATGGTAA
her9 forward AATGCCAGCGAGCATAGAAAGTC
her9 reverse TGCCCAAGGCTCTCGTTGATTC
her2 forward AGCAATGGCACCAACTGTCTGC
her2 reverse CCACCACCGGTTTCCTCAGTTTAG
her15.1 forward AACGTCTCCAGCAAGAAGCTCAG
her15.1 reverse TGCTTGATGTGTGTGTGCTGCTG

Supplementary Table 5.Sequences of Primers Used for
ChIP-qPCR

Site Primer Nucleotide Sequence (50 to 30)

#1 forward AAGAATGCTGGACGCCTGTT
#1 reverse GGAATGTTGGAAAGCGGTCAC
#4 forward GCTGCCATTGAGCAGTGTTT
#4 reverse GCTGGCTTCCACACTCATCT
Control forward GCTTGCAGAACAACATGCAAC
Control reverse CAACGCATGAGGAAAGCCAT

Supplementary Table 6.Expression of SOX9 and HDAC1 in Patient Livers With Advanced Liver Diseases

Protein

Cirrhosis Decompensated cirrhosis ACLF

HBV (n ¼ 3) HBV (n ¼ 4) Alcohol (n ¼ 2) HBV (n ¼ 3) Alcohol (n ¼ 3)

SOX9 3 4 2 3 3
HDAC1 3 4 0 0 0
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