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TAK-733, a Selective MEK Inhibitor, Enhances
Voreloxin-induced Apoptosis in Myeloid Leukemia Cells
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Abstract. Background/Aim: MEK inhibitors are new
promising anticancer drugs. The aim of this study was to
investigate the effect of the combination treatment of voreloxin
with the MEK inhibitor TAK-733 on HL60 myeloid leukemia
cells. Materials and Methods: MAPK activity, cell viability,
apoptosis, oxidative stress induction and AIF (apoptosis-
inducing factor) distribution were assessed in HL60 cells
cultured with each drug alone or with both drugs. Results:
TAK-733 alone at 5 uM significantly reduced MAPK activity
and did not influence viability and apoptosis in HL60 cells.
Voreloxin at concentration of 0.03-0.48 uM reduced cell
viability and increased apoptosis rate. Incubation with both
drugs caused further inhibition of cell viability and increased
apoptosis associated with generation of reactive oxygen species
(ROS) and nuclear translocation of AIF. Conclusion:
Combination of TAK-733 and voreloxin can exert a synergistic
anticancer effect in myeloid leukemia cells.

The Ras/Raf/mitogen-activated protein kinase (MEK)/
extracellular signal-regulated kinase (ERK) pathway is a key
signaling cascade that regulates diverse cellular functions
including cell proliferation, differentiation, survival and
apoptosis. Dysregulated signaling through this pathway is
often found in hematopoietic malignancies including acute
myeloid leukemia (AML) (1-5). Recently, advances in the
understanding of the biology of AML have led to new
treatment strategies focused on targeting key effectors of the
Ras/Raf/MEK/ERK pathway (6-8).

TAK-733 is a potent and selective MEK allosteric site
inhibitor, which exerts anti-proliferative and pro-apoptotic
effects in various cell lines and animal models for a wide
range of malignancies including leukemias. In addition,
several early-phase clinical trials involving TAK-733 as an
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oral MEK inhibitor are now underway in cancer patients (9-
13). Furthermore, TAK-733 has been found to enhance
antitumor effects when used in combination with other
chemotherapeutic agents in various cancer types (11).
Moreover, in the same study the authors demonstrated
antileukemic effects when TAK-733 was wused in
combination with bortezomib and AMD3100, the antagonist
of the CXCR4 chemokine receptor.

Voreloxin is a first-in-class quinolone-based drug which
intercalates DNA and inhibits topoisomerase II, resulting in
replication-dependent, site-selective DNA damage, G, arrest
and apoptosis (14, 15). It has been investigated for the
treatment of AML as a single agent and in combination with
other targeted drugs (15-17). Unlike anthracyclines, which
are also topoisomerase II inhibitors, voreloxin has
demonstrated only limited cardiotoxicity, what makes it an
attractive therapeutic compound for cancer therapy (14, 18).

In search of a more effective approach for the treatment
of AML, new strategies have been recently proposed,
including a combination of drugs targeting two different
signaling pathways (7, 19, 20).

To our knowledge, the potential efficacy of the
combination of MEK inhibitors and voreloxin in the
treatment of AML is unknown. We, therefore, investigated
the effect of TAK-733 combined with voreloxin on HL60
myeloid leukemia cells.

Materials and Methods

Drugs. TAK-733 and voreloxin were purchased form Selleck
Chemicals (Selleckchem, Houston, TX, USA). Stock solutions of
drugs were aliquoted and kept frozen at —20°C.

Cell culture. HL60 cells (Sigma-Aldrich, St Louis, CA, USA) were
maintained in RPMI-1640 GlutaMax medium supplemented with
10% fetal bovine serum (FBS) containing 100 U/ml penicillin, and
100 pg/ml streptomycin (all reagents from Life Technologies,
Carlsbad, CA, USA). Cells were cultured at 37°C in a humidified
5% CO, atmosphere.

Cell viability assay. The trypan blue exclusion method was used to

assess cell viability. HL60 cells were incubated with trypan blue
solution (0.2% in PBS; Sigma) and the viability was estimated using
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a hemocytometer. Cell viability was expressed as the percentage of
the control (100%).

MAPK activity assay. The Muse MAPK Activation Dual Detection
Kit (Merck Millipore, Billerica, MA, USA), including phospho-
specific anti-phospho-ERK1/2 (Thr202/Tyr204, Thr185/Tyr187)-
Phycoerythrin and anti-ERK 1/2-PECy5-conjugated antibodies, was
used to measure MAPK activity in HL60 cells. Briefly, 5x105 cells
were washed with PBS and fixed in Fixation buffer for 5 min on
ice. Then, the cells were treated with permeabilization buffer for 5
min on ice and incubated with a solution of antibodies for 30 min
at room temperature in the dark. MAPK activity was determined as
the percentage of phosphorylated MAPK to the total MAPK
expression in cell population using Muse Cell Analyzer and Muse
analysis software.

Apoptosis assay. Apoptotic cells were analyzed using Muse Annexin
V and Dead Cell Kit (Merck Millipore) according to a previously
described protocol (21). This assay utilizes Annexin V to detect
phosphatidylserine on the external membrane leaflet of apoptotic cells
and dead cell marker, 7-AAD, as an indicator of cell membrane
integrity. Briefly, 5x105 cells were resuspended in culture medium
containing 1% FBS and incubated with Muse Annexin V and Dead
Cell Reagent for 20 min at room temperature in the dark. Cells were
quantified using Muse Cell Analyzer and Muse analysis software.

Oxidative stress assay. Cell population undergoing oxidative stress
was measured using Muse™ Oxidative Stress kit (Merck Millipore)
according to manufacturer’s instructions. Briefly, 5x105 cells were
resuspended in Muse™ Oxidative Stress working solution
containing dihydroethidium (DHE) and incubated for 30 min at
37°C. DHE is cell permeable and reacts with superoxide anions,
thus undergoing oxidation upon binding to DNA. Cells were
quantified using Muse Cell Analyzer and the relative percentage of
ROS positive and ROS negative cells was estimated by Muse
analysis software.

Subcellular distribution of AIF analyzed by immunostaining and
confocal microscopy. Control and treated cells were collected and
cytospin smears were prepared. Cells were then fixed with 4%
buffered paraformaldehyde for 5 min at room temperature. Following
a triple rinse with PBS, cells were pre-incubated in primary antibody
dilutor (PAD) comprising 10% normal goat serum, 0.1% bovine serum
albumin, 0.1% Triton X-100, 0.05% thimerosal and 0.01% NaN3 (all
reagents from Sigma) for 30 min at room temperature. Primary rabbit
anti-AIF polyclonal antibody (Santa Cruz Biotechnology, CA, USA;
diluted 1:200 in PAD) was applied for an overnight incubation at room
temperature. Then, cells were washed three times with PBS and
incubated with secondary Cy3-conjugated goat anti-rabbit IgG
antibody (Jackson ImmunoResearch, West Grove, PA, USA; diluted
1:500 in PAD) for 1 h in the dark. Cells were rinsed three times with
PBS, stained with Hoechst 33342 (Sigma; 2.5 pug/ml in PBS) for 5 min
and mounted in glycerol/PBS (2:1). Images of stained cells were
obtained by confocal microscopy (Olympus FluoView 1200 on
inverted stand I1X83; Olympus, Tokyo, Japan). Sixty-times
magnification immersion objective (NA=1.4) was used and helium-
neonium laser (453 nm) and diode laser (405 nm) were applied to
excite red (Cy3) and blue (Hoechst) fluorescence, respectively. The
stacks of optical sections were acquired and further processed with
Olympus FV10 software.
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Statistical analysis. The results are expressed as meanzstandard
deviation (SD) of five independent experiments. Statistical analysis
was performed by Mann—Whitney test. p<0.05 was considered
statistically significant. Data were analyzed using the Prism 5.0
software (GraphPad, La Jolla, CA, USA).

Results

Effect of TAK-733 on cell viability and MAPK activity. HL60
cells were treated with increasing concentrations of TAK-733
(1.25 to 20 uM) for 24 h. Cell viability was decreased in a
dose-dependent manner starting from 2.5 pM (Figure 1A).
MAPK activity was also significantly reduced and reached the
lowest relative level at 20 uM (13.72%=3.97%). Concentration
of 5 uM TAK-733 was chosen for further studies, as the
highest concentration having a relatively low toxic effect on
cells (~15% decrease in viability). At that concentration MAPK
activity was reduced to approximately 80% (Figure 1B and C).

Effect of voreloxin on cell viability and apoptosis. HL60 cells
were exposed to increasing concentrations of voreloxin (0.03 uM
to 0.48 uM) for 24 h. The cell viability was decreased in a dose-
dependent manner (Figure 2A). The total apoptotic rate
(early and late apoptosis) increased from 6.83%=1.1% to
38.18%+5.78% at the highest concentration (Figure 2B and C).

Effects of combined TAK-733 and voreloxin treatment on MAPK
activity. HL60 cells were first treated with 5 uM TAK-733 for
24 h and then with 0.24 pM voreloxin for another 24 h. The
dose of voreloxin was selected to cause approximately 20%
reduction in cell viability. Voreloxin alone had no significant
effect on MAPK activity compared to control cells. Combined
treatment with TAK-733 followed by voreloxin showed exactly
the same effect (Figure 3A and B).

Effect of combined TAK-733 and voreloxin treatment on ROS
production in HL60 cells. TAK-733 and voreloxin alone had
no significant effect on the oxidative stress induction in cells
compared to untreated control. A significant increase in ROS
positive cells (~25% relative to the control) was observed
only after they were treated with both TAK-733 and
voreloxin (Figure 4A and B).

Effects of combined TAK-733 and voreloxin treatment on cell
apoptosis. TAK-733 alone did not significantly influence
apoptosis in HL60 cells, whereas voreloxin-induced
apoptosis was markedly potentiated after a combined
treatment with TAK-733 and the percentages of apoptotic
cells were about 3-fold higher compared to voreloxin alone
(Figure 5A and B).

Nuclear translocation of AIF determined by confocal
microscopy. In untreated control cells, AIF was found to be
mainly distributed in the cytoplasm, showing punctuated
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Figure 1. Effect of TAK-733 on cell viability (A) and MAPK activity (B and C) in HL60 cells. Representative dot plots and graph of MAPK activity
assay (B and C). TAK-733 decreased cell viability and lowered MAPK activity in a dose-dependent manner. Each value is the mean+SD of five
experiments. Significantly different from untreated (control) cells: *(p<0.05), **(p<0.01).
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Figure 2. Effect of voreloxin on cell viability (A) and apoptosis (B and C) of HL60 cells. Representative dot plots of Annexin V/7-AAD apoptotic

assay (B) and a graph showing the percentage of apoptotic cells (C). Voreloxin decreased cell viability and increased apoptosis in a dose-dependent
manner. Each value is the mean+SD of five experiments. Significantly different from untreated (control) cells: *(p<0.05), **(p<0.01).
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Figure 3. Effect of TAK-733 and voreloxin on MAPK activity in HL60 cells. Representative dot plots and graph of MAPK activity assay (A and B).
Each value is the mean+SD of 5 experiments. **Significantly different from untreated (control) cells (p<0.01).

immunofluorescence pattern. Cells treated with TAK-733 or
voreloxin alone showed predominantly cytoplasmic location of
AIF, although very weak immunostaining was observed also in
the nuclei. Translocation of AIF to the nuclei of HL60 cells
occurred after combined treatment with TAK-733 and voreloxin,
with only a weak signal remaining in the cytoplasm (Figure 6).

Discussion

Combination of drugs which target Ras/Raf/Mek/Erk
signaling pathway with traditional chemotherapeutics seems
to be an encouraging approach to anticancer treatment. In the
present study, preincubation of AML cells with MEK
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Figure 4. Effect of TAK-733 and voreloxin on ROS production in HL60 cells. Representative histograms of ROS negative (M1) and ROS positive
(M2) cells (A) and a graph showing the percentage of ROS positive cells (B). Each value is the mean+SD of 5 experiments. **Significantly different

from untreated (control) cells (p<0.01).

inhibitor TAK-733 for 24 h significantly potentiated
voreloxin-induced apoptosis. It has been shown that
constitutive MAPK phosphorylation is responsible for a poor
response to chemotherapy and shorter survival in AML
patients (22). In our study, untreated HL60 cells displayed a
high basal level of MAPK activity. According to the
literature, MAPK is strongly activated in AML cell lines
including HL60 cells (22, 23). We have found that TAK-733
significantly reduced MAPK expression in HL60 cells and
this effect was observed at a non-toxic concentration.
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Similarly, another study has reported that TAK-733 is highly
potent in suppressing MAPK activity in H929 multiple
myeloma cells (11).

Apoptosis is characterized by a series of biochemical and
morphological changes and one of the most significant
events in apoptosis is mitochondrial dysfunction and ROS
overproduction (24). As has mentioned earlier, high levels of
reactive oxygen species play an important role in cancer
therapy by inducing cell death through apoptosis (25). It was
previously shown that current standard AML chemotherapy
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Figure 5. Effect of PJ34 and vorinostat on apoptosis in HL60 cells. Representative dot plots of Annexin V/7-AAD apoptotic assay (A) and a graph
showing the percentage of apoptotic cells (B). Each value is the mean+SD of five experiments. Significantly different from untreated (control) cells:
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induces an increase in ROS level in AML cells as part of its
mechanism of cytotoxic action (26). We observed that
apoptotic cell death induced by combinatorial treatment with
both TAK-733 and voreloxin is related to enhanced ROS

production. Interestingly, TAK-733 and voreloxin alone did
not induce significant increase in ROS levels. Compared
with other topoisomerase II inhibitors doxorubicin and
mitoxantrone, voreloxin is less reactive quinolone-based
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Figure 6. Representative images of HL60 cells: untreated (control) and treated with TAK-733 or/and voreloxin. Cells were immunostained for AIF
(red fluorescence) and the nuclei were stained blue with Hoechst 33342. The lowermost row presents plots of fluorescence intensities for AIF and
Hoechst along the lines indicated in the uppermost row images. Bar=10 um.

structure, generating limited ROS levels (27, 28). It should
be noted that cell response to treatment with combination of
drugs can depend upon a variety of factors. In some cases,
potentiation of another drug action or sensitization of cells
to a drug is induced by ROS generation (29, 30). Although
cancer cells can regulate ROS levels by enhancing
endogenous antioxidant mechanisms, they may be more
prone to accumulation of ROS than normal cells.
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Consequently, it has been suggested that oxidative stress
increased by exogenous ROS generating agents has an effect
of selectively killing cancer cells without affecting normal
cells (31, 32). Moreover, the enhanced ROS production after
combined TAK-733 and voreloxin treatment might also
contribute to AIF nuclear translocation. We therefore
evaluated activation of AIF after treatment with TAK-733
and voreloxin. Confocal microscopy has revealed that
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translocation of AIF to the nuclei of HL60 cells was detected
only after combined treatment with both agents. It has been
reported that AIF-mediated apoptosis is a caspase-
independent event. AIF is released from mitochondria upon
death stimuli, subsequently translocates into the nucleus, and
causes nuclear condensation (33-35). As demonstrated in
other studies ROS and AIF are mostly associated with
caspase-independent pathway, moreover the increase of
intracellular ROS is required for AIF translocation and cell
death (36, 37).

In conclusion, TAK-733 and voreloxin combination
resulted in a synergistic effect through enhancing ROS
generation in HL60 cells, thereby inducing an increase in
AIF- induced apoptosis. We showed that MEK inhibition by
TAK-733 can sensitize HL60 cells to voreloxin. These data
provide a rationale for drug combination targeting of MEK
pathways for the treatment of AML.
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