Accepted Manuscript

Dengue drug discovery: Progress, challenges and outlook

Siew Pheng Lim

PII: S0166-3542(18)30562-X

DOI: https://doi.org/10.1016/j.antiviral.2018.12.016

Reference: AVR 4440

To appear in: Antiviral Research

Received Date: 17 September 2018

Revised Date: 22 December 2018

Accepted Date: 25 December 2018

Please cite this article as: Lim, S.P., Dengue drug discovery: Progress, challenges and outlook, *Antiviral Research* (2019), doi: https://doi.org/10.1016/j.antiviral.2018.12.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Dengue drug discovery: progress, challenges and outlook
2	
3	Siew Pheng Lim
4	
5	Denka Life Innovation Research, 21 Biopolis Road, 03-21/22, Nucleos, Singapore 138567.
6	
7	Tel: +65 62652154; Email: siewpheng-lim@denka.com.sg
8	
9	
10	Keywords: Drug discovery; antiviral; dengue virus; flavivirus
11	
12	Abbreviations: ADME, absorption, distribution, metabolism, and excretion; C, capsid; CC ₅₀ ,
13	half maximal cytotoxic concentration; DAA, direct antiviral agent; DENV, dengue virus;
14	DHF/DSS, dengue hemorrhagic fever/dengue shock syndrome; DSF, differential scanning
15	fluorimetry; EC ₅₀ , half maximal effective concentration; HBV, hepatitis B virus; HCV, hepatitis
16	C virus; HIV, human immunodeficiency virus; HTS, high-throughput screening; IC ₅₀ , half
17	maximal inhibitory concentration; ITC, isothermal calorimetry; JEV, Japanese encephalitis virus;
18	M, membrane; MTS, medium throughput screening; MTase, methytransferase; NI, nucleoside
19	analog inhibitors; NNI, non-nucleoside inhibitor; NS, non-structural; PAHO, Pan American
20	Health Organization; PK, pharmacokinetics; RdRp, RNA-dependent RNA polymerase; SAR,
21	structure-activity relationship; S/B, signal-to-background noise; SPA, scintillation proximity
22	assay; TDR, Special Programme for Research and Training in Tropical Diseases; TI, therapeutic
23	index; WHO, World Health Organization; WNV, West Nile virus; YFV, yellow fever virus;
24	ZIKV, Zika virus.

1

25 Abstract

In the context of the only available vaccine (DENGVAXIA) that was marketed in several 26 countries, but poses higher risks to unexposed individuals, the development of antivirals for 27 dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here 28 recent progress in the field of DENV drug discovery made in academic laboratories and industry 29 is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific 30 immunopathology provoked by this acute viral infection, are first described. New chemical 31 32 classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In 33 particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus 34 specific inhibitors. Challenges and opportunities in lead identification activities as well as the 35 path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, 36 collaborative public-public partnerships and open-access resources will greatly benefit both the 37 38 DENV research community and DENV patients. 39 40

41

42 Contents

- 43 1. Dengue: a growing global health problem and unmet medical need
- 44 2. Feasibility and target product profile of dengue antiviral therapy
- 45 3. Preferred pharmacokinetics and pharmacodynamics profiles of a dengue drug
- 46 4. Approaches to find dengue virus inhibitors
- 47 4.1 Biochemical assays
- 48 4.2 Biophysical assays
- 49 4.3 Structure based drug discovery
- 50 4.4 Virtual screening
- 51 4.5 Cell-based assays
- 52 4.6 Polymerase nucleoside inhibitors
- 53 4.7 Viral RNA binding proteins
- 54 4.8 Host proteins involved in DENV replication
- 55 4.9 New host targets from omics approaches
- 56 5. Challenges in the path to clinical development of dengue drugs
- 57 6. Conclusions and Perspectives

Dengue: a growing global health problem and unmet medical need 58 1. DENV belongs to the family of Flaviviruses, which includes other disease-causing viruses 59 such as Zika virus (ZIKV), West Nile virus (WNV), Japanese encephalitis virus (JEV) and 60 yellow fever virus (YFV). The virus has a single stranded, plus-sense viral RNA genome of 61 approximately 11,000 nucleotides in length that encodes three structural (C, Env, M) and seven 62 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5; Lindenbach et al., 63 2007; Chambers et al., 1990). DENV infects host cells such as monocytes by first attaching to 64 65 cell surface receptors, followed by cell entry via a clathrin-dependent entry pathway (Fig. 1). After fusion of the virus envelope with endosomal membrane, the viral RNA is released into the 66 cytosol and translated on the rough endoplasmic reticulum (ER) membrane. Translated DENV 67 non-structural (NS) proteins re-organize the ER membrane to form replicative complexes within 68 double-membrane vesicles, where viral RNA replication and virus assembly is initiated (Chatel-69 70 Chaix and Bartenschlager, 2014).

71 Dengue virus-associated diseases are major causes of illness and death in the tropics and subtropics, with as many as 400 million people infected yearly (Bhatt et al., 2013; Brady et al., 72 2012; Shepard et al., 2016). Four serotypes of dengue viruses (DENV1-4), co-circulate in more 73 than 140 countries (Shepard et al., 2016). It is the tenth highest cause of both mortality and 74 morbidity in developing countries and the leading cause of death in children below 15 years old 75 in some South-East Asian countries (Global Health Data Exchange Results Tool, IHME, 2017). 76 Dengue is a worldwide problem due to increased territorial expansion of both dengue viruses and 77 its vector, the Aedes (Ae.) mosquitoes. With the current trends in human behaviour (population 78 growth, people movement, urbanization, ineffective vector control) and climate changes (due to 79 global warming), continual geographical spread of dengue diseases is anticipated (Halstead, 80 2008; WHO Fact sheet on dengue). 81

4

82	Co-circulation and frequent large outbreaks of dengue, chikungunya (CHIKV) as well as
83	other flaviviruses such as ZIKV, WNV, YFV in South-east Asia and/or the Americas, pose
84	further public health challenges (Paixao et al., 2018; WHO, 2016-2018, Disease Outbreak news).
85	Patients with these diseases present very similar initial clinical symptoms (flu-like symptoms,
86	high fever, headache, nausea, rash, body pain) with slow and long convalescence phases. Dengue
87	diseases result in approximately 500,000 annual hospitalisations, with increased risks of dengue
88	hemorrhagic/shock syndrome (DHF/DSS) during secondary infections (WHO Fact sheet on
89	dengue). The Pan American Health Organization (PAHO) and WHO recently published
90	guidelines for clinical diagnosis to differentiate between these febrile viral diseases and for the
91	clinical management of infected patients (Tool for the Diagnosis and Care of Patients with
92	Suspected Arboviral Diseases. March-2017, PAHO). In the absence of effective prophylactic and
93	therapeutic measures against DENV, patient management is focused on supportive therapy and
94	the control of onward transmission (WHO Global Strategy for dengue prevention and control,
95	2012-2020). The economic burden of dengue diseases is estimated at 1.9 million DALYs in
96	developing countries (Global Health Data Exchange Results Tool, IHME, 2017).
97	Extensive research efforts from a large number of public and private institutions have
98	provided insights into the epidemiology, evolution (Sims and Hibbard, 2016; Holmes and
99	Twiddy, 2003) and molecular biology (Lescar et al., 2018; Barrows et al., 2018; Apte-Sengupta
100	et al., 2014) of dengue virus. Similarly, investigations into virus-host interactions (Perera et al.,
101	2017; Acosta et al., 2014) and the immune response to dengue has enabled better understanding
102	of virus pathology (Mathews, 2018; Rivio, 2018; Diamond et al., 2015; Simmons et al., 2015).
103	These knowledge have cumulated in significant undertakings in dengue vaccine development
104	(Silva et al., 2018) and drug discovery (reviewed in Hernandez-Morales et al., 2018; Whitehorn
105	et al., 2014; Lim et al, 2013a; Noble et al, 2010). Nevertheless, there are still much that we do

106	not know and need to work towards, if we are to deliver safe and effective dengue vaccines
107	(Halstead 2018; Silva et al., 2018) and therapeutics (Lim et al., 2013a).
108	Previously, we reviewed the progress in dengue drug discovery made at the Novartis
109	Institute of Tropical Diseases (NITD) as well as the major discoveries made by academia and
110	other companies (Lim et al., 2013a). This review examines the advancements made in this field
111	since 2013, the opportunities and continued challenges that exist and provides perspectives on
112	future directions. Preferred pharmacokinetics and pharmacodynamics profiles of a DENV drug
113	and recommendations for compound progression in the different phases of DENV drug
114	discovery, from hit identification to preclinical testing, as well as challenges in the path to
115	clinical dvelopment of dengue drugs, are also discussed. Where applicable, excellent reviews on
116	specific topics will be highlighted and readers are strongly encouraged to refer to these for in-
117	depth study.
118	
119	2. Feasibility and target product profile of dengue antiviral therapy
120	Key challenges to the success of dengue therapeutics are the rapid decline in patient
121	viremia (<1 week duration) during the febrile phase (Libraty et al., 2002a, b; Nguyen et al.,

122 2013) and reluctance (difficulty?) in patients seeking early medical attention. The latter may

become less of an issue when an effective antiviral becomes available and necessary

124 infrastructure for drug distribution are put in place. To identify and treat patients early, low-cost,

125 rapid and sensitive diagnostics are critical, especially to discriminate between dengue, and other

- 126 endemic febrile-causing infectious agents such as malaria, CHIKV and ZIKV. Current
- 127 commercial immuno-detection assays (rapid lateral flow assays and ELISA for NS1 and anti-
- dengue envelope antibody detection) and nucleic acid detection technologies (NAT) such as
- 129 reverse transcription (RT)-qPCR do not meet these requirements for field diagnosis, arguing for

- the development of more innovative rapid and sensitive diagnostics and identification of 130 predictive biomarkers, especially for assessing progression into DHF/DSS (Nhi et al., 2016; John 131 132 et al., 2015; reviewed in Low et al., 2018). Whilst serological IgG/IgM immuno- detection assays are fast and relatively affordable, 133 they have lower sensitivities and are cross-reactive amongst Flaviviruses, making them 134 unsuitable for evaluating individuals with prior flaviviral infections and/or vaccination. 135 Additionally, anti-DENV antibodies are more reliably detected during the later stage of 136 137 fever/symptom onset as the adaptive immune system takes time to generate humoral response. Although NS1 antigen immuno-detection assays can be used at early infection stages, they suffer 138 from lower sensitivity and variability, depending on the serotype and patient immune status 139 (Chung et al., 2015). Current DENV NAT assays are mainly laboratory-based and are expensive 140 and not rapid (reviewed in Goncalves et al., 2018). That severe dengue diseases is linked to 141 higher viremia levels, supports the hypothesis that reducing viremia early will lower the risks of 142 developing DHF/DSS (Saroch et al., 2017; Lim et al., 2013a). This is also supported by studies 143 that show reduction of virus levels and suppressed inflammatory responses after treatment of 144 DENV infected mice with small molecules against viral (Schul et al., 2007) or host factors 145 (Morrison et al., 2017; Pinto et al., 2015). Nevertheless, the validation of this proposition in a 146 clinical setting will be challenging as <1 % of dengue patients develop into DHF/DSS (as 147 discussed in Lim et al., 2013a). 148

Requisite key characteristics of a dengue drug (target product profile) have been described previously (Hernandez-Morales et al., 2018; Whitehorn et al., 2014; Lim et al., 2013a; Keller et al., 2006). An ideal DENV drug should be fast-acting (due to rapid viremia decline), equally active against the four DENV serotypes, lessen disease symptoms, shorten days of illness and reduce the risks of disease severity. In terms of drug development, fewer synthesis steps would

be advantageous (to reduce the cost of goods for developing countries), as well as oral 154 155 administration and a long shelf-life, with stability at high temperature and relative humidity (up 156 to 40 °C and 75 %, respectively) to facilitate distribution and storage (WHO Technical 62 Report Series). The drug may act via inhibition of either a DENV or host target, but must possess a good 157 safety window (ideally suitable for dosing in young children, pregnant women and elderly) with 158 a low propensity for drug-drug interaction (suitable for combination therapy and for individuals 159 with other health complications). Since DENV is an acute infection, it is envisaged that dosing 160 161 will not exceed one week. However, this may change, if the drug is shown clinically to be capable of reducing severe DENV diseases or have prophylactic utility. 162 Emergence of viral resistance to direct acting anti-DENV drugs (DAAs) should be low, 163 when short-term treatment is given. Nevertheless, poor patient compliance or management may 164 still contribute to drug resistance or selection of pre-existing variant strains with drug resistant or 165 compensatory mutant epitopes (Alexander et al., 2012; Guedi et al., 2010). On this note, the use 166 of new technologies such as next-generation sequencing to study the genetic diversity of virus 167 populations or virus dynamics under selective drug pressure, should shed some light on this area, 168 as is being evaluated for HIV, HCV, Ebola and influenza (Brumme and Poon, 2017; Leung et al., 169 2017). Likewise, careful consideration of a DENV drug for prophylactic use (i.e. pre-exposure 170 prophylaxis) is important, as a sub-optimal dosing regime may also lead to resistant virus 171 development. 172

Due to the lack of proof-reading function in dengue virus NS5 polymerase, its nucleotide incorporation error rate is estimated to be around 10^{-5} mutations per nucleotide per replication cycle (Jin et al., 2011; Castro et al., 2005). The resultant virus quasispecies present within the host and also at the population level, can induce the emergence of drug-resistant virus strains following DAA therapy. The actual frequency of inhibitor-resistant mutants is dependent on (i)

the number of amino acid substitutions required for resistance, (ii) the genetic barrier (number
and type of mutations needed for the amino acid substitutions), and (iii) the fitness cost that the
mutations entail. Resistance to inhibitors often requires one or a few mutations, and there are
potentially multiple, alternative mutations that can confer resistance to a drug, residing directly
in the viral drug target or its interacting viral protein partner(s) (Domingo et al., 2012). To
safeguard against escape virus mutants, combination drug therapy that either target different viral
proteins (e.g. NS2/3 protease and NS5 polymerase) or host (e.g. alpha-glucosidase) and viral
proteins are necessary. This strategy has been shown to be effective, as exemplified by the
current treatment of HCV infections. The most recently approved HCV DAA regimens are pan-
genotype (GT), once-daily, all-oral DAA combinations of Glecaprevir/pibrentasvir (anti-
NS5A/NS4A/3 protease) and sofosbuvir/velpatasvir/voxilaprevir (anti-NS5B
(NI)/NS5A/NS4A/3 protease) (reviewed in Couchet et al., 2018; Vermehren et al., 2018).
Finally, whilst the ideal DENV DAA should be equally effective across all four DENV
serotypes, this may be somewhat challenging due to serotype amino acid sequence dissimilarity
in the viral structural and non-structural proteins (e.g. NS4B sequence is 78-85% identical in
DENV1-4; Lindenbach et al., 2007). This scenario has been observed for HCV DAAs. In the
case of the anti-NS5A drug, Daclatasvir (formerly BMS-790052), EC ₅₀ values in HCV replicon
assays for GT-1a and -1b, were 50 pM and 9 pM, respectively, but ranged from pM to low nM
for replicons with NS5A derived from GT-2a, -3a, -4a, and -5a (Gao et al., 2010). Similarly,
EC ₅₀ values of HCV polymerase NI, SOVALDI® (Sofosbuvir; formerly PSI-7977) in HCV
genotypes 1a, 1b, 2a, 2b, 3a, 4a, 5a or 6a replicon assays, ranged from 0.014 to 0.11 μ M (Hebner
et al., 2012; SOVALDI® prescription data sheet, Gilead Sciences, Inc). Such divergence in
genotypic or serotypic inhibition in DAA treatment argues for virus typing during clinical
diagnosis and the application of combination therapy to ensure better treatment outcomes.

202

3. Pharmacokinetics and pharmacodynamics profiles of a dengue drug

In terms of its pharmacokinetics (PK) profile, a good DENV drug candidate should possess 203 204 sufficient solubility and stability in the gastro-intestinal tract and liver, and be well-absorbed (good permeability), to permit systematically distribution (since DENV has been shown to have 205 wide cell tropism). The physicochemical properties of the drug greatly influence these factors 206 and a good oral drug is based on a balance of these features (Lipinski rule of 5; Lipinski et al., 207 1997). Limited drug absorption via the gut, early biotransformation and elimination in the liver 208 209 and kidney can significantly reduce the amount of orally administered drug that enters the systemic circulation. Other preferred PK parameters include good bioavailability and volume of 210 distribution, medium to long half-life, medium to low clearance, to (ideally) enable once a day 211 oral dosing (to facilitate easy patient compliance). Once absorbed systemically, the drug in the 212 blood may be protein or lipid bound or exist in a free soluble form. Only the free soluble form of 213 the drug is taken up by target organs and cells, as well by the kidney for elimination. Similarly, 214 within a cell, it is the unbound fraction of a drug that exerts therapeutic effect on its target. 215 An ideal DENV drug should possess a wide therapeutic window (or good safety margin) 216 between the efficacious the dose range and the toxic dose. Drug efficacy is initially determined 217 from *in vitro* assays (e.g. EC₉₉, EC₉₀, EC₅₀ and IC₅₀ values) and next, in animal models and 218 human patients. However, *in vitro* biochemical and cell-based assays are typically 'closed' or 219 isolated systems where the provided drug and target concentrations are in equilibrium during the 220 221 course of the experiment. In vivo systems, on the other hand, are "open" systems, where drug and target concentrations fluctuate with time. Both in vitro and in vivo efficacy outcomes are 222 strongly influenced by drug-target interactions such as the binding affinity and specificity of the 223 drug to its target (K_a , K_d). For *in vivo* efficacy, drugs with longer residence time (t_R) have been 224 shown to have better biological efficacy (Lu and Tonge, 2010). Improving drug-target residence 225

time (measured as $1/k_{\text{off}}$, the reciprocal of the dissociation rate constant, k_{off}) is a key driver 226 during drug discovery to achieve in vivo success (reviewed in Copeland, 2016). Other important 227 factors that influence drug efficacy include the highest (C_{max}), and lowest (C_{min} , C_{trough}) drug 228 plasma concentrations achieved after dosing as well as the time (T_{max}) to attain these parameters. 229 To retain pharmacological effects, the free drug plasma concentration should be well-above the 230 EC_{50} value, and ideally above the EC_{90} or EC_{99} values during the entire course of each dosage 231 (trough free drug concentration). This reduces the likelihood that remaining virus attains drug 232 resistance mutations during subsequent rounds of replication (Drusano et al., 2001). 233 In the absence of an orally bioavailable drug, intravenous drug administration in hospitals 234 or settings that allow patient monitoring should not be ruled out. PK profiles of drug candidates 235 are typically assessed during pre-clinical studies on animal species and in phase I clinical trials 236 on healthy human volunteers. In some developing countries, DENV patient populations may be 237 238 under-nourished or have other health issues. This may result in changes in drug absorption, distribution, or elimination. Thus, DENV drug dosing regimes in phase II/III clinical trials to 239 determine efficacy ought to consider these possible variance. DENV is not reported to cause in 240 utero infection nor is considered a non-neurotropic virus (Li et al., 2017). Dengue drugs, thus 241 need not be specifically designed to pass the blood-brain barrier nor cross the placenta, which 242 243 may present additional development hurdles.

244

245 4. Approaches to find dengue virus inhibitors

Hit finding approaches to obtain new chemical starting points for DENV targets include
the use of biochemical, biophysical and cell-based assays to screen compound libraries, either
with diverse chemical scaffolds or target-focused compounds (focused library). Aided by
available X-ray crystal structures of a number of DENV proteins, researchers utilized

computational sreening approaches, such as *in silico* compound docking (virtual screening) and
rational, structure-based drug design (SBBD) to identify potential inhibitors. These latter
methodologies have yielded successful drug candidates, in other infectious diseases, such as
HCV and HIV. SBBD may also be applied to the design of new drugs to overcome viral
resistance, through mapping resistant epitopes to the X-ray structure of the target proteins, like
HIV-1 and HCV protease (Yilmaz et al., 2016) and influenza neuraminidase (Prachanronarong et al., 2016).

The following sections highlight recent discoveries made by researchers (since 2013) using these different methodologies in the quest to identify novel DENV inhibitors (Sections 4.1-4.9) and the extent the hits are validated (Tables 1-6). Criteria and methodologies for compound progression from hit-to-lead, lead optimization, and candidate drug selection that are relevant to DENV drug discovery, are described in the Supplementary Materials.

262

263 4.1. Biochemical assays

Over the years, DENV enzymes, NS2B/3 protease (Erbel et al., 2006; Li et al., 2005; 264 Leung et al., 2001; Yusof et al., 2000), NS3 helicase/NTPase/RTPase (Basavannacharya and 265 Vasudevan, 2014; Wang et al., 2009; Benarroch et al., 2004), NS5 methyl-transferase (Barral et 266 al., 2013; Lim et al., 2013b, 2011, 2008; Chung et al., 2010) and NS5 polymerase 267 (Niyomrattanakit et al., 2015, 2010; Selisko et al., 2006; Nomaguchi et al., 2003) were 268 269 systematically studied. Biochemical assays for these proteins, based on fluorescence or radioactive nucleotide incorporation were developed and used for inhibitor identification. DENV 270 enzyme functional and structural characterization, inhibitor identification and profiling in 271 biochemical, binding or cell based assays, have been discussed in-depth for NS2B/3 protease 272 (Leonel et al., 2018; Nitsche, 2018; Luo et al., 2015; Lim et al., 2013a, Noble et al., 2010), NS3 273

helicase/NTPase/RTPase (Luo et al., 2015; Lim et al., 2013a), NS5 methyl-transferase (MTase)
and NS5 polymerase (Lim et al., 2015, 2013a; Bollati et al., 2010).

276 Different in-house libraries and commercial compound libraries have been interrogated for new chemical starting points with DENV biochemical assays. The compound library sizes 277 ranged from a few hundred to a million compounds (Table 1). More recent screening campaigns 278 have yielded potent inhibitors for NS2B/3 protease (Beesetti et al., 2018; Weng et al., 2017; 279 Balasubramanian et al., 2016; Wu et al., 2015) and NS3 helicase (Sweeney et al., 2015) with 280 281 activity in DENV cell-based assays. More detailed descriptions of NS2B/3 protease inhibitors have been reviewed by Leonel et al. (2018) and Nitsche (2018). Finding good starting points for 282 NS5 MTase and polymerase from compound screening with in vitro enzyme have thus far been 283 less fruitful. This may be due to the absence of suitable starting points in the compound libraries 284 and also the highly intractable nature of these protein targets. For example, majority of marketed 285 drugs that against viral DNA (from HSV, HCMV, VZV) and RNA polymerases (from HIV, 286 HBV, HCV, RSV) are nucleoside inhibitors (De Clercq and Li, 2016). Many of the hits 287 identified from the Novartis compound library bound in or near the RNA tunnel in the apo-NS5 288 polymerase (Smith et al., 2014b; Noble et al., 2013; Niyomrattanakit, 2011; Yin et al., 2009). 289 Subsequent medicinal chemistry follow-ups to generate SAR and improve potency were often 290 challenging due to weak binding affinities, as well as high MWs and lipophilicity of the hits. 291 Using the NS5 de novo initiation assay, Pelliccia et al. (2017) and Benmansour et al. (2016) 292 293 identified new promising scaffolds, with low micromolar activities in the enzyme and cell-based assays. One frequent trend that occurs from biochemical studies is the lack of hit validation with 294 biophysical assays and confirmation of on-target inhibition in cell-based assays (refer to Table 295 1). With further compound characterisation and medicinal investigation, recently identified hits 296

- can hopefully be ascertained to interact specifically with their respective viral enzyme targetsand translate into amenable leads.
- 299

300 4.2. Biophysical assays

A number of biophysical assays such as fluorescence quenching, SPR (surface plasmon 301 resonance), ITC (isothermal calorimetry), DSF (differential scanning fluorimetry or thermal 302 303 shift), X-ray crystallography, NMR (nuclear magnetic resonance) have been established for 304 DENV NS3 (reviewed in Luo et al., 2015; Noble et al., 2010; Bodenreider et al., 2009) and NS5 (reviewed in Lim et al., 2015). These binding assays are useful tools to validate hits from high 305 throughput screening and for hit-to-lead activities. They have also been used successfully for 306 compound screening (Table 2). Both in-house libraries and commercial compound libraries have 307 been employed for identification of new chemical starting points, with library sizes ranging from 308 a few hundred to several hundred thousand compounds (Table 2). Binding assays to identify 309 310 inhibitors that prevent protein-protein interaction have also been developed for DENV proteins. Using alphascreen technology, inhibitors have been found for envelope protein (Lian et al., 311 2018) and NS5 (Tay et al., 2013) which have good potency in DENV cell-based assays. A report 312 by Yao et al. (2018) described the identification of a quinazolinone derivative, Q63, that inhibits 313 NS5 RdRp, following compound screening by SPR. Q63 shows good DENV-1, -2, -4 inhibition 314 in cells with EC_{50} values ranging from 1.7–2.1 μ M. In addition, researchers have used 315 316 competitive ligand binding assays to screen for inhibitors. Stahla-Beek et al. (2012) used a fluorescent-labeled GTP (GTP-bodipy) to screen for inhibitors to NS5 MTase and identified BG-317 323. By generating a A125C NS2B/3 protease mutant, Yildiz et al. (2013) used cysteine reactive 318 probes to develop a screen which can be used to identify protease inhibitors. 319

320	Fragment-based drug discovery (FBDD) by X-ray crystallography has recently been
321	successfully used to develop potent cellular active inhibitors against NS5 polymerase (reviewed
322	in Lim et al., 2018). Starting from a hit, JF-31-MG46, that binds weakly to a novel pocket in
323	DENV3 RdRp and is inactive in DENV cell-based assays (DENV1-4 RdRp K_d and dn I IC ₅₀
324	value = 610 and 734 μ M, respectively; DENV1-4 EC ₅₀ >50 μ M), the most active derivatives
325	(compound 27, 29, 29i) inhibited DENV1-4 infection at low-to-high micromolar concentrations
326	(Table 2). Fragment based screening by DSF with NS5 MTase and NS3 helicase have also been
327	performed. Whilst no hits were obtained for helicase, seven hits were found for NS5 MTase
328	(Coutard et al., 2014). By linking two fragments, the group was able to further improve inhibitor
329	potency Benmansour et al., 2017). One advantage of using fragments as a starting points is that
330	they often have higher ligand efficiencies and binding is driven by hydrogen bond interactions.
331	This increases the likelihood that the final optimized ligand will not be too hydrophobic (log P <
332	5). To date, eighteen drug candidates discovered by FBDD have advanced to clinical trials so far
333	(Erlanson et al., 2016; Velvadapu et al., 2015). There are two FDA-approved drugs derived from
334	fragment-based approaches, Zelboraf® (vemurafenib, PLX4032; targets B-Raf-V600E mutant
335	enzyme, for treatment of late-stage melanoma; Bollag et al., 2012) and Venclexta (Venetoclax;
336	targets B-cell lymphoma-2 (BCL-2) for treatment of chronic lymphocytic leukemia (CLL) and
337	small lymphocytic lymphoma (SLL); Scheffold et al., 2018). Nevertheless, due to the need for
338	strong computational and medicinal support in FBDD, some groups may be hesitant to embark
339	on this approach.

340

341 **4.3.** Structure based drug discovery

In general, structure based drug discovery (SBDD) for DENV has mainly been used to
pursue peptidiomimetics against NS2B/3 protease (Table 3). These have resulted in peptidic

344	inhibitors with submicromolar activities in in vitro protease assays and high micromolar
345	activities in DENV cell-based assays (Lin et al., 2017, 2016; Nitsche et al., 2017, Takagi et al.,
346	2017). Whilst the focus is on targeting the P1-P4 sites in the NS2B/3 protease (Nitsche et al.,
347	2017, Takagi et al., 2017; Behnam et al., 2015), Lin et al. (2017, 2016) reported success in
348	targeting the P' sites with cyclic peptides, to inhibit this enzyme. To date, the most potent
349	peptide inhibitor, 103 , was described by Behnam et al. (2015), with DENV2 $K_i = 18$ nM; EC ₅₀ =
350	3.4 μ M. The compound library size described by researchers using the SBDD approach, are
351	typically smaller (<100) as each peptidic inhibitor is custom synthesized. Rational design
352	approaches have also been attempted for DENV capsid (Faustino et al., 2015a, b, 2014), NS5
353	RdRp (Xu et al., 2016) and MTase (Lim et al., 2011). DMB220, an RdRp inhibitor, showed
354	encouraging pan-DENV1-4 inhibition in both biochemical and cell-based assays (Xu et al.,
355	2016; Table 3). Comprehensive reviews of the DENV envelope peptide inhibitors that block
356	virus entry (Chew et al., 2017) and NS2B/3 (Nitsche, 2018; Chew et al., 2017; Lim et al., 2013a)
357	peptide inhibitors have previously been undertaken and readers are encouraged to refer to them
358	for more details.

359

360 4.4. Virtual screening

Many groups have conducted in silico compound docking to screen for molecules that bind to DENV envelope, NS2B/3 protease, NS3 helicase, NS5 MTase and NS5 RdRp. However, these virtual hits were not always validated further by biochemical or biophysical assays. Table 4 lists the recent in silico docking hits that were further assessed by DENV biochemical and cellbased assays for inhibitory activities, although the confirmation of on-target effect in cells was not reported. If compound resistant DENV replicons or viruses could be raised, it will certainly help to support the lead optimisation phase. Majority of the compounds used for virtual

368	screening originated from commercial or public sources, with library sizes ranging from
369	thousands to millions of compounds. Brecher et al. (2017) reported a highly potent allosteric
370	NS2B/3 protease inhibitor, NSC135618, that has good activity in the biochemical and cell-based
371	assays (DENV2 IC ₅₀ = 1.8 μ M; EC ₅₀ = 0.81 μ M). Similarly, active NS2B/3 protease inhibitors
372	were also identified by docking into the open form of DENV2 NS2B/3 protease (Pelliccia et al.,
373	2017; Cabaracas-Montalvo et al., 2016; Li et al., 2015; Table 4). By docking compounds into
374	the DENV envelope octyl β -glucoside binding pocket, Leal et al. (2017) identified compounds
375	with low micromolar inhibitory activities in DENV cell-based assay. Vincetti et al., 2015
376	performed virtual docking into the allosteric site (cavity B) of DENV3 NS5 RdRp and identified
377	a compound, 16i, that may inhibit NS3-NS5 interaction (Table 4). Using an in-house library of
378	HCV NS5B inhibitors, Taratino et al. (2016) discovered different classes of DENV RdRp
379	inhibitors that showed low to submicro-molar IC_{50} values in the RdRp dnI assay. Whilst
380	compound 8 was inactive in DENV cell-based assays, HeE1-2Tyr was inhibited DENV1-4
381	replication. X-ray crystallography data shows that HeE1-2Tyr binds in the same region as NITD-
382	107 (Noble et al., 2013) and forms self-interactions.

383

384 4.5. Cell-based assays

Phenotypic screens with diverse compound libraries against three different types of DENV cell-based assays (subgenomic luciferase reporter replicon, whole virus infection followed by IFA or cytopathic readouts) have together, yielded a variety of inhibitor classes that act on both viral and host targets (Table 5). Library sizes ranged from a few hundred to more than a million compounds from both commercial and proprietary sources. Earlier hit finding outcomes (till 2013) were extensively discussed in Lim et al., 2013a and will not be revisited here. Some newly identified host targets that impact DENV replication in cells, include protein tyrosine kinase

392 (Abl, fyn, AXL; de Wispelaere et al., 2018), mitogen-activated protein kinase (Smith et al.,

2014a) and TRIF-dependent signalling cascade (Pryke et al., 2017; Table 5).

394 More recent explorations discovered inhibitors to viral targets such as capsid (Smith et al.,

2018, Scaturro et al., 2014), envelope (Chu and Yang, 2007), NS4A (Nobori et al., 2018), as well

as protease (Lu et al., 2018; Yang et al., 2014). No inhibitors to DENV NS5MTase or

397 polymerase have been identified from phenotypic screens. On the other hand, new chemical

entities that act on DENV NS4B continue to be found (Bardiot et al., 2018; Hernandez-Morales

et al., 2017, Wang et al., 2015; Zou et al., 2015; Table 5), making it the most frequent hit in

400 screening campaigns (reviewed in Xie at al., 2015). Notably, NS4B residue T108I and the

401 double P104L/A119T mutation conferred resistance to inhibitor, JNJ-1A (DENV1-4 $EC_{50} =$

402 0.7 μM, Hernandez-Morales et al., 2017), indicating that like 2DM25N (van Cleef et al., 2013),

403 it targets the same region as NITD-618 (Xie et al., 2011).

Nevertheless, further development of JNJ-1A is challenging as it exhibits suboptimal 404 physicochemical properties, inhibits cytochrome enzyme activities and has in vitro mitchondrial 405 toxicity (Hernandez-Morales et al., 2017). Unfavourable physicochemical properties (low 406 solubility, high lipophilicity, instability and short half-lives) were also observed in other NS4B 407 compounds (12a, 14a, NITD-618) including compound 29, derived by by scaffold morphing 408 (Kounde et al., 2017). This is not surprising, given that NS4B is a membrane protein, and forms 409 extensive interactions with itself and other viral proteins such as NS4A and NS2B-NS3 (Xie et 410 411 al., 2015). Nevertheless, through chemical derivatization of compound **12a**, Bardiot et al. (2018) have obtained a more stable analog, **100a**, with better stability and solubility and oral 412 bioavailability of 64%. This report indicates that given time and perseverance, physicochemical 413 and PK challenges in NS4B inhibitors can be overcome, as has been seen for the development of 414 HCV NS5A inhibitors (Kohler etal., 2014). 415

416 4.6. NS5 nucleoside analogs

Nucleos(t)ide analogs or inhibitors (NIs) are effective anti-virals, as evinced in the 417 standard treatment of HSV, HCV, HBV and HIV-1. Whilst NIs offer the advantage of broad 418 spectrum activity against different virus genotypes and strains, development of this class of 419 inhibitors presents many challenges. NIs must be delivered to the right host compartments, and 420 be adequately converted by host enzymes (cellular kinases) in the target cell types, to their active 421 triphosphate forms, to exert inhibitory effects. In vivo toxicity of NIs, is often a big hurdle, and is 422 423 not readily predictable. Tissue- and cell-specific toxicity has been strongly correlated with the inhibition of host cell enzymes such as host polymerases, particularly the mitochondrial 424 enzymes, DNA polymerase (Pol) y (Johnson et al., 2001) and RNA Pol (Fenauz et al., 2016; 425 Feng et al., 2016; Arnold et al., 2012a). Moreoever, Pol beta (Brown et al., 2011) and PrimPol 426 (Mislak and Anderson, 2015) have been shown to localise to the mitochondria and to incorporate 427 nucleoside analog reverse-transcriptase inhibitors (NRTIs). Toxicity caused by NIs may also be 428 due to induction of mitochondrial electron transport chain dysfunction, increase in oxidative 429 stress (NRTIs, Smith et al., 2017; Lund and Wallace, 2004), and reduction in levels of natural 430 NTPs. These effects can be due to interaction with nucleos(t)ide-binding enzymes such as 431 432 thymidine kinase (AZT, Lynx et al., 2006), inosine MP dehydrogenase (ribavirin; Graci et al., 2006) and nucleoside transporters (HSV and HIV-1 NIs; Koczor et al., 2012). Nevertheless, in 433 vitro assays for DNA and RNA Pols, cytotoxicity assays have been developed to mitigate NI 434 toxicity (Jin et al., 2017; Young, 2017; Chen et al., 2015; reviewed in Feng, 2018). Structural 435 data of NIs bound to polymerase γ (Szymanski et al., 2015) or RNA Pol (Arnold et al., 2012b), 436 can provide additional guidance. 437

438 NIs that have anti-DENV effects are summarised in Table 6. Early NIs were previously
439 described in Chen et al. (2015) and in vivo toxicity manifested by many of these NIs, may be

19

440	partly attributed to inhibition of mitochondrial RNA Pol. A recent paper by Wang et al. (2018)
441	described the anti-DENV activities of a series of 2'-substituted uridine phosphoramidate
442	prodrugs (Table 6) and their in vitro toxicity profile. Both 2'-fluoro-2'-C-methyl uridine-
443	triphosphate (the HCV NI, sofosbuvir-triphosphate) and the most active anti-DENV compound,
444	2'-C-ethynyl-4'-F-uridine (37 ; $IC_{50} = 0.65 \ \mu M$), are poor substrates for mitochondria RNA Pol,
445	did not affect mitochondria protein synthesis and did not show cytotoxicity in three different cell
446	lines tested (CC_{50} >50 µM in HepG2, K562, MT-4). However, sofosbuvir-triphosphate is a poor
447	inhibitor of DENV RdRp (IC ₅₀ = 15-18 μ M; Table 6). As previously noted in Potisopon et al.
448	(2017), the presence dengue DENV (and ZIKV) RdRp, unlike HCV, are inhibited by NI
449	substitutions in the order : 2'-C-Me> 2'-C-Me-2'-F, unlike HCV RdRp. Lin et al. (2018) studied
450	the effects of nucleobases as alternative starting points for DENV inhibition. Instead of utilising
451	host kinases to generate monophosphates of the NIs, nucleobases are converted by 5-
452	phosphoribosyl-1-pyrophosphate to give the corresponding nucleoside-5'-monophosphate.
453	Unfortunately, most of the nucleobases tested were either weakly active or rather cytotoxic in
454	Huh7 cells. Trityl containing uridine analogs were also tested for anti-DENV activity, with
455	several compounds showing low micromolar inhibitory activities. biological activity (Table 6).
456	Whilst trityl moieties are generally added as protective groups during chemical synthesis, there
457	have been a few reports indicating that they possess biological activity (Palasz and Ciez, 2014).
458	

459 4.7. Viral RNA binding proteins

A number of host pathogen recognition recptors (PRRs) such as RIG-I, MDA-5, TLR-3
have been reported to restrict DENV replication (Liang et al., 2011; Nasirudeen et al., 2011).
DENV RNA synthesis occurs in the viral replicative complex within ER-associated doublemembrane vesicles in the cytoplasm (reviewed in Lescar et al., 2018). A number of host proteins

have been shown to regulate viral RNA cap formation (e.g. EIF4E), replication (stress granule
proteins, P-body proteins), as well as translation (e.g. PABP, EIF4F, ribosomes), viral RNA
encapsidation (e.g. DDX6, NONO and hnRNPM). Some of these host factors positively regulate
DENV replication, whilst others are repressive (reviewed in Bidet and Garcia-Blanco, 2018).
Identification of small molecules that influence activities of some of these host factors could be
one way of modulating DENV replication.

470

471 **4.8.** Host proteins involved in DENV replication.

Several host pathways related to lipid metabolism (reviewed in Martin-Acebes et al., 2016; 472 Krishnan and Garcia-Blanco, 2014), ER-golgi trafficking (Miller et al., 2018; Caputo et al., 473 2018), autophagy and unfolded protein response (Choi et al., 2018) have been shown to be 474 important for DENV life cycle (during entry, replication and maturation) as well as for viral 475 evasion from host immune response. Thus, besides direct anti-virals (NS5 NI, Balapiravir), 476 DENV clinical trials encompassed inhibitors to host proteins (e..g. alpha-glycosidase inhibitors, 477 Celgosivir and UV-4B) to effect DENV inhibition (reviewed in Low et al., 2018; Whitehorn et 478 al., 2014). In the dearth of DAAs, researchers have focused on repurposing approved drugs that 479 affect the above-mentioned host pathways for anti-DENV therapy (reviewed in Botta et al., 480 2018; Low et al., 2018; Lim et al., 2013a). 481

Increasingly, kinase inhibitors have been shown to impact DENV replication (Table 5, de Wispelaere et al., 2018, Smith et al., 2014; 2013; Clark et al., 2016; Chu and Yang, 2007). A recent report by Bekerman et al. (2017) revealed that DENV, HCV and Ebola virus exploit two kinases, AAK1 and GAK, that regulate host adaptor proteins AP1 and AP2, for entry and virus production. Treatment with two anti-cancer drugs, sunitinib and erlotinib, protected DENVinfected mice against morbidity and mortality (Pu et al., 2018; Bekerman et al., 2017). The

488	researchers subsequently synthesized highly specific GAK inhibitors that inhibited DENV
489	replication, after optimising a isothiazolo[4,3 $\Box b$]pyridine derivative from a small library screen
490	against GAK (150 novel druglike compounds were tested in the KINOMEscan screening
491	platform; Kovackova et al., 2015). The analogue with the best SI, 12r, showed EC_{50}/CC_{50} values
492	of 0.82/>25 μ M and 3.54/>20 μ M in Huh7 and human monocyte-derived dendritic cells,
493	respectively (Pu et al., 2018b).
494	
495	4.9. New host targets from omics approaches

With the advent of new technologies, additional mechanisms by which DENV engage host
machinery continue to be elucidated. Proteomics, transcriptomics and genome-scale KO screens
are powerful approaches to uncover host factors essential for DENV replication and
pathogenesis, providing new candidate targets for antiviral drug development as well as potential
biomarkers for prediction of disease severity.

Researchers have utlised different proteomic approaches such as yeast-two-hybrid assays, 501 co-IP or tandem affinity purification followed by MS, stable isotope labeling by/with amino 502 acids in cell culture (SILAC) to map interactions of DENV proteins (envelope, NS3, NS4B, 503 504 NS5) within the viral RC and with host factors (reviewed in Gerold et al., 2017; Lum et al., 505 2016). Protein-protein interactions (PPIs) often have specific interfaces which may be targeted 506 for therapeutic intervention. Of note, Karyal et al. (2016) mined all publicly available literature 507 on dengue-human interactions into a searchable database called DenHunt ((http://proline.biochem.iisc.ernet.in/DenHunt/). A total of 682 direct interactions of human 508 509 proteins with dengue viral components, 382 indirect interactions and 4120 differentially 510 expressed human genes in dengue infected cell lines and patients were found. This collective information provides a rich resource for new anti-DENV strategies targeting host proteins. The 511

authors highlighted 20 host proteins that are critical for DENV replication and have beencommercially validated as drug targets.

514 Another comprehensive endeavour was conducted by Dey and Mukhopadhyay (2017) who curated published papers as well as virus databases such as VirHostNet and VirusMentha, to 515 compile the free DenvInt database (https://denvint. 000webhostapp.com). The database lists 516 517 both dengue-human and dengue-mosquito protein interactions and will be updated montly to incorporate new reports. As of 2017, the total Dengue-human PPI comprised 784 unique 518 519 interactions, including 535 non-redundant interactions between 335 different human proteins and 10 dengue proteins as well as 249 non-redundant interactions between 140 different mosquito 520 proteins and 10 dengue proteins. Amongst these, 535 dengue-human and 249 dengue-mosquito 521 interaction were studies conducted with DENV2 whilst only about 10 % of dengue-human PPI 522 were serotype independent. 523

Whilst target protein-protein interactions (PPI) may be challenging, drugs that target PPIs 524 525 are beginning to enter the market and a number of others are undergoing clinical trials (Scott et al., 2016). Some examples of such marketed drugs are Tirofiban (an antiplatelet drug which 526 inhibits interaction between fibrinogen and the platelet integrin receptor GP IIb/IIIa; Hartzman et 527 al., 1992) and Lifitegrast (for dry eye treatment by inhibiting interaction between lymphocyte 528 function-associated antigen 1(LFA-1) and intercellular adhesion molecule 1 (ICAM-1); Tauber, 529 2015). Compounds in clinical trials include Idasanutlin (phase III trial; for anti-cancer 530 531 application by inhibit MDM2-p53 interaction; Ding et al., 2013) and AZD5991 (in phase I trials for hematologic cancers by inhibiting interaction between Mcl-1 and Bak; Tron et al., 2018). 532 Transcriptomic approaches such as DNA microarrays have also enabled the dissection of 533 host genes that are altered by DENV infection as well as uncovered potential new biomarkers for 534 profiling disease severity ((Banerjee et al., 2017; Becker et al., 2015; Sun et al., 2013). More 535

536	recently, two independent genome-scale genetic KO screens determined that genes involved in
537	ER-translocation, protein degradation (ERAD), N-linked glycosylation were necessary for the
538	proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles
539	(reviewed in Puschnik et al., 2017). In particular, signal peptidase complex genes (SPCS-1, -2
540	and -3; Zhang et al., 2016), the oligosaccharyltransferase (OST) complex, and translocon-
541	associated protein (TRAP) complex (Marceau et al., 2016), were found to be important for
542	infectious virus production. These host genes could be investigated as targets for anti-DENV
543	therapy. As a proof-of-concept, the researchers used the oligosaccharyl-transferase inhibitor
544	NGI-1, to inhibit to DENV2 replication (EC ₅₀ /CC ₅₀ = $0.85/34.9 \mu$ M) and the other three DENV
545	serotypes (Puschnik et al., 2017).
546	
547	5. Challenges in the path to clinical development of dengue drugs
548	The goal of the drug discovery process is to perform clinical studies to determine the
549	safety and efficacy of a drug, administered at a particular dose to a specific human target
549 550	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP).
549 550 551	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP). Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) for
549 550 551 552	safety and efficacy of a drug, administered at a particular dose to a specific human targetpopulation with acceptable risk /benefit ratios, as specified in the target product profile (TPP).Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) forthe drug candidate whereby defined endpoints (measurables) are met and can be used to obtain
549 550 551 552 553	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP). Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) for the drug candidate whereby defined endpoints (measurables) are met and can be used to obtain regulatory approval.
549 550 551 552 553 554	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP). Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) for the drug candidate whereby defined endpoints (measurables) are met and can be used to obtain regulatory approval. In the case of clinical development of dengue drugs, the trials conducted to-date use the
549 550 551 552 553 554 555	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP). Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) for the drug candidate whereby defined endpoints (measurables) are met and can be used to obtain regulatory approval. In the case of clinical development of dengue drugs, the trials conducted to-date use the following parameters as primary measures of drug efficacy: (i) time to fever resolution,
549 550 551 552 553 554 555 556	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP). Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) for the drug candidate whereby defined endpoints (measurables) are met and can be used to obtain regulatory approval. In the case of clinical development of dengue drugs, the trials conducted to-date use the following parameters as primary measures of drug efficacy: (i) time to fever resolution, resolution of or reduction in (ii) viremia, and (iii) NS1 antigenemia. However, none of these
549 550 551 552 553 554 555 556 556	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP). Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) for the drug candidate whereby defined endpoints (measurables) are met and can be used to obtain regulatory approval. In the case of clinical development of dengue drugs, the trials conducted to-date use the following parameters as primary measures of drug efficacy: (i) time to fever resolution, resolution of or reduction in (ii) viremia, and (iii) NS1 antigenemia. However, none of these trials have observed a significant difference in these measurables between drug-treated and
549 550 551 552 553 554 555 556 557 558	safety and efficacy of a drug, administered at a particular dose to a specific human target population with acceptable risk /benefit ratios, as specified in the target product profile (TPP). Ultimately, the aim is to achieve proof of safety (PoS), mechanism (PoM) and concept (PoC) for the drug candidate whereby defined endpoints (measurables) are met and can be used to obtain regulatory approval. In the case of clinical development of dengue drugs, the trials conducted to-date use the following parameters as primary measures of drug efficacy: (i) time to fever resolution, resolution of or reduction in (ii) viremia, and (iii) NS1 antigenemia. However, none of these trials have observed a significant difference in these measurables between drug-treated and control groups (reviewed in Low et al., 2018). There are several considerations and challenges in

560	DENV patients, it is important to recruit DENV patients for clinical trials at very early stages of
561	infection in order to initiate dosing as early as possible. Yet, there is an absence of rapid and
562	sensitive POC diagnostics which can discriminate between dengue, and other endemic febrile-
563	causing illnesses (discussed in Section 2). Moreover, current DENV IgM/IgG immuno-assays
564	cannot differentiate between an individual with a secondary DENV infection, and a vaccinee
565	who has primary infection. This may pose problems when stratifying patients during late-stage
566	clinical trials to determine drug efficacy and to measure additional secondary endpoints (such as
567	progression to severe disease, or cytokine responses).
568	Secondly, DENV patients exhibit a wide variance in plasma virus levels during the
569	course of their illness. Reports indicate that in both DF and DHF patients, virus levels were
570	about 6-log different within the first 5 days of illness (4-10 \log_{10} RNA copies/ml, Nguyen et al.,
571	2013; 2-9 \log_{10} RNA copies/mL, Guidarde et al., 2008). On the other hand, at >5 days post-
572	illness, the difference was less pronounced (about 3-logs different) but levels were also
573	substantially lower (1-5 log ₁₀ RNA copies/ml; Guidarde et al., 2008). This large divergence in
574	virus titres can make it difficult to confirm if a drug candidate is effective when comparing the
575	treated and control arms. Thus careful segregation of the cohorts are needed, as has been done in
576	a some dengue trials conducted (Nguyuen et al., 2013).

577 Thirdly, whilst DENV is known to infect immune cells, it is not clear what additional cell 578 types or tissues are infected in the host, and how they contribute to viral pathogenesis and the 579 spectrum of dengue diseases. Failure to adequately deliver the drug candidate to all the relevant 580 human tissues or compartments in a timely fashion will compromise the efficacy of a drug 581 candidate. This uncertainty can also pose challenges for PK/PD modeling, dose regime design, 582 and determining the therapeutic index. Although current mouse models have been reported to 583 show some signatures of DENV disease (cytokine induction, thrombocytopenia, and systemic

584	infection), they do not fully recapitulate the full spectrum of dengue diseases and may not be
585	suitable for addressing this issue nor for PK/PD evaluation (Chan et al., 2015). Thus,
586	establishment of better predictive pre-clinical models, such as with non-human primates (Omatsu
587	et al., 2012, 2011; Onlmoon et al., 2010) will be advantageous. Ultimately, the use of human
588	challenge studies with DENV vaccine strains may be a way forward to profile clinical drug
589	candidates, post-phase I trials. In vitro, compound testing in a wide panel of cell types
590	(particularly in human primary cells) with different clinical DENV1-4 strains should be
591	conducted to build better dose-inhibition relationships.
592	Besides the lack of efficacy, lack of safety is another common cause of attrition during
593	drug development (Kola and Landis, 2004) and in clinical trials (Harrison, 2016). This latter
594	property is of particular concern in dengue drug development for several reasons: firstly,
595	majority of the target patient population in many South-east Asian countries are young children
596	(< 15 years old) and secondly, adult patients with severe DENV diseases often present with
597	comorbidities. Thirdly, differing physiology and immune status of patients with severe DENV
598	disease compared to those with mild, or intermediate DENV disease (See WHO Dengue
599	classification and levels of severity, 2009), may influence the PD/PK properties of the drug
600	candidate and hence, alter its safety and efficacy profiles. Hence, careful monitoring of drug
601	concentrations in DENV patients and patient stratification during clinical trials will most likely
602	be required to better understand efficacy outcomes (or lack thereof) and safety issues.
603	In general, drug-induced toxicities in liver, heart, kidney, and brain currently account for
604	more than 70% of drug attrition and withdrawal from the market (Wilke et al., 2007). Whilst
605	these may be mitigated by available in vitro safety profile panels (Supplementary Tables 3-5),
606	new in vitro techniques including cellular thermal shift assays (Molina and Nordlund, 2016;

Molina et al., 2013), and 3D organoids of liver, cardiac patch microtissues (Park et al., 2018) are
increasingly being utilized in the pharma industry to address safety concerns.

609

610 6. Conclusions and Perspectives

Intensive efforts from researchers in academia and industry have cumulated in significant 611 knowledge in the life cycle of DENV, its impact on the host and the consequent pathogenesis. A 612 613 large number of host targets are implicated in regulating the virus, some of which are 614 ubiquituous, whilst others are host (human, mosquito)- and cell-type specific. New technologies that utilise "omics" approaches (proteomics, transcriptomics and genomics-scale knockout 615 screens) can provide holistic views of the interactomes between DENV and its host, and have 616 revealed new potential targets (e.g. OST complex) for anti-DENV drug development. This 617 expands the opportunity to repurpose other known drugs, such as metformin (Htun et al., 2018, 618 Sofo-Acosta et al., 2017) besides ivermectin, Celgosivir, lovastatin, or HCV inhibitors, for 619 620 DENV therapy.

Targeting host factors offer the advantages of a significantly higher barrier to emergence of 621 resistance (compared with DAA), due to absence of genetic pathways to resistance as well as 622 pan-antiviral activities. It may also permit the inhibition of related members of the viral genus or 623 family due to conserved pathways in the virus life cycles. Its drawback is the potential of 624 undesirable drug-induced side effects, which may be off- and/or on-target (arising from its 625 626 physiological function) in nature. As severe dengue diseases significantly impact host physiology, targeting particular classes of host proteins may promote additional unpredicted 627 side-effects and will require close patient monitoring. This also calls for in-depth biological 628 understanding of the mechanism of action of the target gene in cells, in healthy and disease 629 settings, such as using iPSCs, human tissue biobanks and conducting genome editing studies. 630

631 Nevertheless, since dengue viruses cause acute diseases, these challenges should be

632 surmountable (previously mentioned in Lim et al., 2013a).

Increasingly, targeting PPIs is gaining success in different therapeutic areas, including in 633 infectious diseases, due to better knowledge about the druggability of the interfaces and better 634 screening methodologies (reviewed in Voter and Keck, 2018). New commercial focused 635 chemical libraries that have been designed specifically for PPI screening have also been 636 generated with the aim to overcome limitations of traditional compound libraries (e.g. from 637 638 Asinex, Chemdiv, Enamine). Thus, screening for inhibitors that block PPIs between DENV proteins or between DENV and host proteins could be a new endeavour for the identification of 639 novel DENV inhibitors. 640

For phenotypic screens, DENV whole virus infection assays and DENV subgenomic 641 replicon cells have yielded interesting hits to both viral and host proteins. NS4B inhibitors are 642 the most frequent DAAs identified from screening efforts with different diverse compound 643 644 libraries. Despite dissimilarity in compound structures, some inhibitor classes (JNJ-1A, 2DM25N, NITD-618) share virus resistance phenotypes, suggesting that they target the same 645 region in DENV2 NS4B. Due to differences in DENV1-4 NS4B amino acid sequences, not all 646 NS4B inhibitors exhibit pan-serotype inhibition. As researchers have mainly used DENV2 (in 647 particular, with NGC strain) for phenotypic screens, conducting screens with other DENV 648 serotypes may generate additional new chemical scaffolds for NS4B, or other DENV protein 649 650 targets.

Development of NS4B inhibitors have been hampered by unfavourable PK properties (due
to low solubility and stability). Whilst medicinal chemistry is focused on improving
physicochemical characteristics (i.e. adherence to Lipinski's Rule of 5), increasing evidence
point to success in developing drugs that fall beyond the rule of 5 (bRo5). These include HCV

NS5A and NS3/4A protease inhibitors, and HIV-1 protease inhibitor, ritonavir. Understanding drug development in the bRo5 space has provided some guidance to optimize cell permeability and solubility, to achieve oral bioavailability for compounds with MW>500 (reviewed in Poongavanam et al., 2018). This may be the way forward for DENV NS4B inhibitors. With continued efforts, it is highly plausible that orally available DENV NS4B inhibitors can be achieved, as shown by promising efforts in the optimization of acyl-indole derivatives (Bardiot et al., 2018).

662 Amongst DENV enzymatic activities, NS5 RdRp is the most attractive drug target and also plausibly, the most feasible, based on experiences in anti-HCV and -HIV-1 drug approaches. A 663 significant effort was undertaken at NITD to find NS5 RdRp inhibitors. Whilst the previous NI, 664 NITD008 suffered from toxicity issues (Yin et al., 2009), incorporating counter assays in the NI 665 progression flowchart (Wang et al., 2018; Jin et al., 2017; Feng et al., 2016) can help to mitigate 666 this problem. Few amenable NS5 RdRp and MTase hits have been identified from biochemical 667 and phenotypic screens (reviewed in Lim et al., 2015). This may be due to the absence of 668 relevant chemical scaffolds in the libraries, and suggests that new chemical libraries may be 669 required to uncover starting points to these two enzyme activities. On the other hand, developing 670 DENV NS5 NNIs may, like NS4B inhibitors, fall into the category of bRo5 compounds, which 671 necessitate strong medicinal chemistry and PK support. To date, one of the most potent DENV 672 NS5 NNIs belong to the class of N-pocket inhibitors which were derived from FBS by X-ray 673 674 crystallography (reviewed in Lim et al., 2018). This holds promise in the application of FBS as a suitable hit-finding strategy for DENV protein targets. 675

Researchers typically employ DENV infection assays with immortalised cell lines. The
drawback is that these cells are genetically and metabolically altered. DENV is a complex
disease, whereby disease outcome is strongly influenced by the host response. Thus, the use of

physiologically relevant cells, such as PBMCs from acutely infected patients or convalescent 679 DENV patients, for compound screening, may provide new chemical entities and insights on 680 DENV-host cell interaction. Applying alternate methods for assay readout (e.g. cytokine 681 production, markers of immune cell activation as surrogate markers for anti-DENV response) 682 may also reveal novel findings. Notably, DENV patients frequently exhibit leukopenia, making it 683 difficult to obtain sufficient quantities of PBMCs for large scale compound or genetic screens. 684 To circumvent this issue, induced pluripotent stem cells (iPSCs) may be generated from somatic 685 686 cells from symptomatic DENV patients (stratified according to disease severity), and subsequently expanded and re-differentiated to immune cells for drug screening purposes or to 687 study virus pathogenesis. The availability of cells may also enable explorations into the use of 688 organoid differentiation, organ-on-chips, to model and study DENV disease. 689 The use of disease-relevant cell-types from patient-derived iPSCs have been successfully 690 applied in the fields of genetic and neurodegenerative diseases (Elitt et al., 2018; Hung et al., 691 2017). Recently, human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) have 692 been demonstrated to support the complete ZIKV replication cycle and the virus is inhibited by 693 7-deaza-2'-C-methyladenosine (Tricot et al., 2018). Significant differences in the innate immune 694 response against ZIKV and antiviral drug sensitivity were observed when comparing hPSC-695 HLCs and hepatoma cells. 696 DENV is the most important arthropod-borne viral disease in the world. In the last 20 697

997 bERVV is the most important atthopod bonic vital disease in the world. In the fast 20 998 years, anti-DENV drug discovery activities have yielded diverse hits against both viral and host 999 factors. Nevertheless, a number of hits, especially those derived from in silico docking exercises 900 from academic researchers, were not verified in DENV biochemical or cell-based assays. As 901 well, some hits identified from compound library screens are not fully characterized, perhaps due 902 to insufficient expertise in specific techniques or medicinal chemistry support. In some instances,

703 hits identified from biochemical screens with DENV enzymes were not confirmed by 704 biophysical or binding assays whilst DENV cell-active inhibitors are not checked for on-target 705 inhibition within cells. Thus potential inhibitors languish in the hit-finding phase, and are not pursued further for medicinal chemistry interrogation. The creation of an open-source database 706 for all reported anti-DENV hits would enable researchers to review and re-visit interesting hits. 707 In this regard, the proposal to have a DENV drug/vaccine consortium made up of private-708 public partnerships (PPP; Morales and van Loock 2018), would enable researchers to 709 710 collaborate, share resources and expertise, and to consolidate activities required for hit and lead characterisation. This can help to advance global DENV drug discovery efforts in a concerted 711 fashion. An effective PPP will hopefully, draw greater medicinal chemistry expertise to appraise 712 promising hits and conduct lead optimisation exercises. On this note, the collection of a set of 713 validated (such as NS3 protease and NS4B inhibitors, NITD008, NS5 RdRp N-pocket inhibitors) 714 and unvalidated compounds from anti-DENV screens, curated by a central respository, could be 715 a useful tool-box to researchers who are conducting new screening exercises for DENV or other 716 related Flaviviruses. Such compound collections have been generated for malaria and 717 successfully applied to drug discovery in other neglected tropical diseases (Duffy et al., 2017; 718 van Voorhis et al., 2016). 719

The formation of a virtual research organization dedicated to DENV drug discovery, which operates in an open-access format, can allow researchers to tap into an international network of expertise from both academia and industry. Besides benefiting the DENV drug discovery community, it can likely boost drug discovery efforts on other emerging flavi- and non-flaviviruses and enable rapid response in emergency outbreaks. Importantly, DENV patients will also be better served by such an initiative. Key stakeholders for a successful PPP are (i) publicsponsored organizations: governments, government sponsored organizations (e.g. CDC, NIH,

727	Pasteur Institute, INFECT-ERA), international health organizations (e.g. WHO, TDR) and
728	academia (e.g. Centre for Drug Design and Discovery (CD3) at the University of Leuven,
729	Belgium) (ii) for-profit: pharmaceutical industry, biotechnology companies (iii) not-for-profit
730	and philanthropic organizations (e.g. Gates foundation, Welcome Trust, DNDi, GHIT).
731	Given that DENV affects more than 140 countries worldwide, there is a strong vested
732	interest in the governments of these countries to join forces to combat this disease. For this to
733	come to fruition, strong leadership and committment from the afore mentioned stakeholders are
734	needed. To note, WHO, through the Special Programme for Research and Training in Tropical
735	Diseases (TDR), is exploring the possibility to host a pooled fund, raised by the WHO, to
736	support R&D for diseases primarily affecting low-to-middle-income countries (LMICs; type I-III
737	diseases). This fund is intended to support a Scientific Working Group (SWG) to establish
738	disease target product profiles (TPPs) and manage R&D project portfolios to accelerate the
739	development of diagnostics, vaccines and treatments for these diseases, through transparent,
740	efficient, non-political governance (WHO, TDR, 2016). Under WHO classification, DENV is a
741	type II disease, and therapeutic explorations for combating DENV could be hosted under this
742	framework.

743

744 Acknowledgements

I thank ex-colleagues who worked on dengue drug discovery at the Novartis Institute for
Tropical Diseases (Singapore), Novartis Institute for Biomedical Research (Basel, CH;

747 Cambridge, USA; Emeryville, USA), and the Genomics Institute of the Novartis Research

- Foundation (San Diego, USA), as well as ex-collaborators (Julien Lescar, Nanyang
- 749 Technological University, Singapore; Gottfried Otting, Australian National University,
- 750 Canberra, Australia) for invaluable discussions and insights.

751

752 **References**

753	1.	Acosta, E.G., Kumar, A., Bartenschlager, R., 2014. Revisiting dengue virus-host cell
754		interaction: new insights into molecular and cellular virology. Adv Virus Res. 88, 1-109.
755	2.	Ahmad, T., Yin, P., Saffitz, J., Pockros, P.J., Lalezari, J., Shiffman, M., Freilich, B.,
756		Zamparo, J., Brown, K., Dimitrova, D., Kumar, M., Manion, D., Heath-Chiozzi, M., Wolf,
757		R., Hughes, E., Muir, A.J., Hernandez, A.F., 2015. Cardiac dysfunction associated with a
758		nucleotide polymerase inhibitor for treatment of hepatitis C. Hepatology. 62, 409-16.
759	3.	Alexander, H.K., Bonhoeffer, S., 2012. Pre-existence and emergence of drug resistance in a
760		generalized model of intra-host viral dynamics. Epidemics. 4,187-202.
761	4.	Apte-Sengupta, S., Sirohi, D., Kuhn, R.J., 2014. Coupling of replication and assembly in
762		flaviviruses. Curr Opin Virol. 9, 134-42.
763	5.	Arnold, J.J., Sharma, S.D., Feng, J.Y., Ray, A.S., Smidansky, E.D., Kireeva, M.L., Cho,
764		A., Perry, J., Vela, J.E., Park, Y., Xu, Y., Tian, Y., Babusis, D., Barauskus, O., Peterson,
765		B.R., Gnatt, A., Kashlev, M., Zhong, W., Cameron, C.E., 2012a. Sensitivity of
766		mitochondrial transcription and resistance of RNA polymerase II dependent nuclear
767		transcription to antiviral ribonucleosides. PLoS Pathog. 8, e1003030.
768	6.	Arnold, J.J., Smidansky, E.D., Moustafa, I.M., Cameron, C.E., 2012b. Human
769		mitochondrial RNA polymerase: structure-function, mechanism and inhibition. Biochim
770		Biophys Acta. 1819, 948-60.
771	7.	Bardiot, D., Koukni, M., Smets, W., Carlens, G., Kaptein, S., Dallmeier, K., Chaltin, P.,
772		Neyts, J., Marchand, A., 2018. Discovery of Indole Derivatives as Novel and Potent

Dengue Virus Inhibitors. J Med Chem. 61, 8390-8401.

774	8.	Barral, K., Sallamand, C., Petzold, C., Coutard, B., Collet, A., Thillier, Y., Zimmermann,
775		J., Vasseur, J.J., Canard, B., Rohayem, J, Debart, F., Decroly, E., 2013. Development of
776		specific dengue virus 2'-O- and N7-methyltransferase assays for antiviral drug screening.
777		Antiviral Res. 292-300.
778	9.	Barrows, N.J., Campos, R.K., Liao, K.C., Prasanth, K.R., Soto-Acosta, R., Yeh, S.C.,
779		Schott-Lerner, G., Pompon, J., Sessions, O.M., Bradrick, S.S., Garcia-Blanco, M.A., 2018.
780		Biochemistry and Molecular Biology of Flaviviruses. Chem Rev. 118, 4448-4482.
781	10.	Balasubramanian, A., Manzano, M., Teramoto, T., Pilankatta, R., Padmanabhan, R., 2016.
782		High throughput screening for the identification of small-molecule inhibitors of the
783		flaviviral protease. Antivir Res. 134, 6–16.
784	11.	Banerjee, A., Shukla, S., Pandey, A.D., Goswami, S., Bandyopadhyay, B., Ramachandran,
785		V., Das, S., Malhotra, A., Agarwal, A., Adhikari, S., Rahman, M., Chatterjee, S.,
786		Bhattacharya, N., Basu, N., Pandey, P., Sood, V., Vrati, S., 2017. RNA-Seq analysis of
787		peripheral blood mononuclear cells reveals unique transcriptional signatures associated
788		with disease progression in dengue patients. Transl Res. 186, 62-78.e9.
789	12.	Basavannacharya, C., Vasudevan, S.G., 2014. Suramin inhibits helicase activity of NS3
790		protein of dengue virus in a fluorescence-based high throughput assay format. Biochem
791		Biophys Res Commun. 453, 539-44.
792	13.	Becker, M., De Bastiani, M.A., Parisi, M.M., Guma, F.T., Markoski, M.M., Castro, M.A.,
793		Kaplan, M.H., Barbé-Tuana, F.M., Klamt, F., 2015. Integrated Transcriptomics Establish
794		Macrophage Polarization Signatures and have Potential Applications for Clinical Health
795		and Disease. Sci Rep. 5, 13351.

796	14.	Beesetti, H., Tyagi, P., Medapi, B., Krishna, V.S., Sriram, D., Khanna, N., Swaminathan,
797		S., 2018. A quinoline compound inhibits the replication of dengue virus serotypes 1-4 in
798		Vero cells. Antivir Ther. 23, 385-394.
799	15.	Bekerman, E., Neveu, G., Shulla, A., Brannan, J., Pu, S.Y., Wang, S., Xiao, F., Barouch-
800		Bentov, R., Bakken, R.R., Mateo, R., Govero, J., Nagamine, C.M., Diamond, M.S., De
801		Jonghe, S., Herdewijn, P., Dye, J.M., Randall, G., Einav, S., 2017. Anticancer kinase
802		inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J
803		Clin Invest. 127,1338-1352.
804	16.	Behnam, M.A., Graf, D., Bartenschlager, R., Zlotos, D.P., Klein, C.D., 2015. Discovery of
805		nanomolar dengue and West Nile virus protease inhibitors containing a 4-
806		benzyloxyphenylglycine residue. J Med Chem. 58, 9354–9370.
807	17.	Benarroch, D., Selisko, B., Locatelli, G.A., Maga, G., Romette, J.L., Canard, B., 2004. The
808		RNA helicase, nucleotide 5'-triphosphatase, and RNA 5'-triphosphatase activities of
809		Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in
810		the helicase catalytic core. Virology. 328, 208-18.
811	18.	Benmansour, F., Trist, I., Coutard, B., Decroly, E., Querat, G., Brancale, A., Barral., K.,
812		2017. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors
813		by fragment-based drug design. Europ J Med Chem. 125, 865-880.
814	19.	Benmansour, F., Eydoux, C., Querat, G., de Lamballerie, X., Canard, B., Alvarez, K.,
815		Guillemot, J.C., Barral, K., 2016. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-
816		oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as
817		dengue virus inhibitors targeting NS5 polymerase Eur J Med Chem., 109, 146-156.
818	20.	Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake,
819		J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T.,
- 820 Wint, G.R., Simmons, C.P., Scott, T.W., Farrar, J.J., Hay, S.I., 2013. The global
- distribution and burden of dengue. Nature 496, 504-507.
- 822 21. Bidet, K., Gracia-Blanco, M.A., 2018. Flaviviral RNA Structures and Their Role
- in Replication and Immunity. Adv Exp Med Biol. 1062, 45-62.
- Bohnert, T., Gan, LS., 2013. Plasma protein binding: from discovery to development. J
 Pharm Sci. 102, 2953-94.
- 826 23. Bollag, G., Tsai, J., Zhang, J., Zhang, C., Ibrahim, P., Nolop, K., Hirth, P., 2012.
- 827 "Vemurafenib: the first drug approved for BRAF-mutant cancer". Nat Rev Drug Discov.
- 828 11, 873–86.

836

837

26.

- 829 24. Bollati, M., Alvarez, K., Assenberg, R., Baronti, C., Canard, B., Cook, S., Coutard, B.,
- B30 Decroly, E., de Lamballerie, X., Gould, E.A., Grard, G., Grimes, J.M., Hilgenfeld, R.,
- 331 Jansson, A.M., Malet, H., Mancini, E.J., Mastrangelo, E., Mattevi, A., Milani, M.,
- 832 Moureau, G., Neyts, J., Owens, R.J., Ren, J., Selisko, B., Speroni, S., Steuber, H., Stuart,
- 833D.I., Unge, T., Bolognesi, M., 2010. Structure and functionality in flavivirus NS-proteins:
- perspectives for drug design. Antiviral Res. 87, 125-148.
- 835 25. Botta, L., Rivara, M., Zuliani, V., Radi, M., 2018. Drug repurposing approaches to fight

Dengue virus infection and related diseases. Front Biosci (Landmark Ed). 23, 997-1019.

Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G. et al.,

- 838 2012. Refining the global spatial limits of dengue virus transmission by evidence-based
- consensus. PLoS Negl Trop Dis. 6, e1760.
- 840 27. Brown, J.A., Pack, L. R., Fowler, J.D., Suo, Z., 2011. Pre-steady-state kinetic analysis of
- the incorporation of anti-HIV nucleotide analogs catalyzed by human X- and Y-family
- B42 DNA polymerases. Antimicrob Agents Chemother. 55, 276–283.

843	28.	Brumme CJ, Poon AFY., 2017. Promises and pitfalls of Illumina sequencing for
844		HIV resistance genotyping. Virus Res. 239, 97-105.
845	29.	Byrd, C.M., Dai, D., Grosenbach, D.W., Berhanu, A., Jones, K.F., Cardwell, K.B.,
846		Schneider, C., Wineinger, K.A., Page, J.M., Harver, C., Stavale, E., Tyavanagimatt, S.,
847		Stone, M.A., Bartenschlager, R., Scaturro, P., Hruby, D.E., Jordan, R., 2013a. A novel
848		inhibitor of dengue virus replication that targets the capsid protein. Antimicrob Agents
849		Chemother 57, 15-25.
850	30.	Byrd, C.M., Grosenbach, D.W., Berhanu, A., Dai, D., Jones, K.F., Cardwell, K.B.,
851		Schneider, C., Yang, G., Tyavanagimatt, S., Harver, C., Wineinger, K.A., Page, J., Stavale,
852		E., Stone, M.A., Fuller, K.P., Lovejoy, C., Leeds, J.M., Hruby, D.E., Jordan, R., 2013b.
853		Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase.
854		Antimicrob Agents Chemother. 57, 1902-1912.
855	31.	Cabarcas-Montalvo, M., Maldonado-Rojas, W., Montes-Grajales, D., Bertel-Sevilla, A.,
856		Wagner-Döbler, I., Sztajer, H., Reck, M., Flechas-Alarcon, M., Ocazionez, R., Olivero-
857		Verbel, J., 2016. Discovery of antiviral molecules for dengue: In silico search and
858		biological evaluation. Eur J Med Chem. 110, 87-97.
859	32.	Cannalire, R., Tarantino, D., Astolfi, A., Barreca, M.L., Sabatini, S., Massari, S., Tabarrini,
860		O., Milani, M., Querat, G., Mastrangelo, E., Manfroni, G., Cecchetti, V., 2018.
861		Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-
862		dependent RNA polymerase. Eur J Med Chem. 143, 1667-1676.
863	33.	Caputo, A.T., Alonzi, D.S., Kiappes, J.L., Struwe, W.B., Cross, A., Basu, S., Darlot, B.,
864		Roversi, P., Zitzmann, N., 2018. Structural Insights into the Broad-Spectrum Antiviral

865Target Endoplasmic Reticulum Alpha-Glucosidase II. Adv Exp Med Biol. 1062, 265-276.

- Carocci, M., Hinshaw, S.M., Rodgers, M.A., Villareal, V.A., Burri, D.J., Pilankatta, R., 866 34. Maharaj, N.P., Gack, M.U., Stavale, E.J., Warfield, K.L., Yang, P.L., 2015. The bioactive 867 lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication. Antimicrob Agents 868 Chemother. 59, 85-95. 869 Castro C, Arnold, J.J., Cameron, C.E., 2005. Incorporation fidelity of the viral RNA-870 35. dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus 871 872 Res 107, 141-149. Chambers, T.J., Hahn, C.S., Galler, R., Rice, C.M., 1990. Flavivirus genome organization, 873 36. expression and replication. Annu Rev Microbiol. 44, 649-88. 874 Chan, K.W., Watanabe, S., Kavishna, R., Alonso, S., Vasudevan, S.G., 2015. Animal 875 37. models for studying dengue pathogenesis and therapy. Antiviral Res. 123, 5-14. 876 Chao, L.H., Jang, J., Johnson, A., Nguyen, A., Gray, N.S., Yang, P.L., Harrison, S.C., 38. 877 2018. How small-molecule inhibitors of dengue-virus infection interfere with viral 878 membrane fusion. Elife. 7, pii: e36461. 879 39. Chatel-Chaix, L., Bartenschlager, R., 2014. Dengue virus- and hepatitis C virus-induced 880 replication and assembly compartments: the enemy inside--caught in the web. J Virol. 88, 881 5907-5911. 882 40. Chatelain, G., Debing, Y., De Burghgraeve, T., Zmurko, J., Saudi, M., Rozenski, J., Neyts, 883 J., Van Aerschot, A., 2013. In search of flavivirus inhibitors: evaluation of different 884 tritylated nucleoside analogues. Eur J Med Chem. 65, 249-55. 885 41. Chew, M.F., Poh, K.S., Poh, C.L., 2017. Peptides as Therapeutic Agents for Dengue Virus. 886
- 887 Int J Med Sci. 14, 1342-1359.
- Ken, Y., Yokokawa, F., Shi., P-Y., 2015. The search for nucleoside/nucleotide analog
 inhibitors of dengue virus. Anti-viral Res. 122, 12-19.

- 43. Choi, Y., Bowman, J.W., Jung, J.U., 2018. Autophagy during viral infection- a doubleedged sword. Nat Reviews Microbiol. 16, 341-354.
- 44. Chu, J..J., Yang, P.L., 2007. c-Src protein kinase inhibitors block assembly and maturation
- 893of dengue virus. Proc Natl Acad Sci U S A. 104, 3520-5.
- 45. Chung, S.J., Krishnan, P.U., Leo, Y.S., 2015. Two Cases of False-Positive Dengue Non-
- 895 Structural Protein 1 (NS1) Antigen in Patients with Hematological Malignancies and a
- 896 Review of the Literature on the Use of NS1 for the Detection of Dengue Infection. Am. J.
- 897 Trop. Med. Hyg. 92, 367–369
- 46. Chung, K.Y., Dong, H., Chao, A.T., Shi, P.Y., Lescar, J., Lim, S.P., 2010. Higher catalytic
 efficiency of N-7-methylation is responsible for processive N-7 and 2'-O methyltransferase
- activity in dengue virus. Virology 402, 52-60.
- 47. Clark, M.J., Miduturu, C., Schmidt, A.G., Zhu, X., Pitts, J.D., Wang, J., Potisopon, S.,
- 902 Zhang, J., Wojciechowski, A., Hann Chu J.J., Gray, N.S., Yang, P.L., 2016. GNF-2 Inhibits
- 903 Dengue Virus by Targeting Abl Kinases and the Viral E Protein. Cell Chem Biol. 23, 443-
- 904 52.
- 48. Clas, S.D., Sanchez, R.I., Nofsinger, R., 2014. Chemistry-enabled drug delivery (prodrugs):
 recent progress and challenges. Drug Discov Today. 19, 79-87.
- 907 49. Copeland, R.A., 2016. The drug–target residence time model: a 10 gear retrospective. Nat
 908 Rev Drug Discov. 15, 87-95.
- 909 50. Crouchet, E., Wrensch, F., Schuster, C., Zeisel, M.B., Baumert, T.F., 2018. Host-targeting
- 910 therapies for hepatitis C virus infection: current developments and future applications.
- 911 Therap Adv Gastroenterol. 11, 1–15.
- 912 51. de Wispelaere, M., Lian, W., Potisopon S., Li, P.C., Jang, J., Ficarro, S.B., Clark, M.J.,
- 913 Zhu, X., Kaplan, J.B., Pitts, J.D., Wales, T.E., Wang, J., Engen, J.R., Marto, J.A., Gray,

- 914 N.S., Yang, P.L., 2018. Inhibition of Flaviviruses by Targeting a Conserved Pocket on the
- 915 Viral Envelope Protein. Cell Chem Biol. 25, 1006-1016.e8.
- 916 52. De Burghgraeve, T., Selisko, B., Kaptein, S., Chatelain, G., Leyssen, P., Debing, Y.,
- 917 Jacobs, M., Van Aerschot, A., Canard, B., Neyts, J., 2013. 3',5'Di-O-trityluridine inhibits in
- 918 vitro flavivirus replication. Antiviral Res. 98, 242-7
- 919 53. de Wispelaere, M., LaCroix, A.J., Yang, P.L., 2013 The small molecules AZD0530 and
 920 dasatinib inhibit dengue virus RNA replication via Fyn kinase. J Virol. 87, 7367-81.
- 921 54. Dey L., Mukhopadhyay A., 2017. DenvInt: A database of protein-protein interactions
- between dengue virus and its hosts. PLoS Negl Trop Dis. 11(10):e0005879.
- 55. Di, L., Kerns, E.H., Carter, G.T., 2009. Drug-like property concepts in pharmaceutical
 design. Curr Pharm Des. 15, 2184-94.
- 56. Diamond, M.S., Pierson, T.C., 2015. Molecular Insight into Dengue Virus Pathogenesis and
 Its Implications for Disease Control. Cell. 162, 488-92.
- 927 57. Ding, Q., Zhang, Z., Liu, J.J., Jiang, N., Zhang, J., Ross, T.M., Chu, X.J., Bartkovitz,
- 928 D., Podlaski, F., Janson, C., Tovar, C., Filipovic, Z.M., Higgins, B., Glenn, K., Packman,
- 929 K., Vassilev, L.T., Graves, B., 2013. Discovery of RG7388, a potent and selective p53-
- 930 MDM2 inhibitor in clinical development. J Med Chem. 56, 5979-5983
- 58. Domingo, E., Sheldon, J., Perales, C., 2012. Viral quasispecies evolution. Microbiol Mol
 Biol Rev. 76, 159-216.
- 933 59. Drusano, G.L., Moore, K.P., Kleim, J.P., Prince, W., Bye, A., 2002. Rational Dose
- 934 Selection for a Nonnucleoside Reverse Transcriptase Inhibitor through Use of Population
- 935 Pharmacokinetic Modeling and Monte Carlo Simulation. Antimicrob. Agents Chem. 46,
- 936 913-916.

937	60.	Duffy, S., Sykes, M.L., Jones, A.J., Shelper, T.B., Simpson, M., Lang, R., Poulsen,
938		S.A., Sleebs, B.E., Avery, V.M., 2017. Screening the Medicines for Malaria Venture
939		Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug
940		Discovery. Antimicrob Agents Chemother. 61, Pii, e00379-17.
941	61.	Einberg, P.A., Fischler, B., 2018. Successful antiviral therapy in patients with chronic
942		hepatitis C virus infection and severe associated disease. Acta Paediatr. In press.
943	62.	Erbel, P., Schiering, N., D'Arcy, A., Renatus, M., Kroemer, M., Lim, S., Yin, Z., Keller, T.,
944		Vasudevan, S., Hommel, U., 2006. Structural basis for the activation of flaviviral NS3
945		proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol. 13, 372-373.
946	63.	Erlanson, D.A., Fesik, S.W., Hubbard, R.E., Jahnke, W., Jhoti, H., 2016. Twenty years on:
947		The impact of fragments on drug discovery. Nature Reviews Drug Discovery. 15, 605-619.
948	64.	Faustino, A.F., Martins, I.C., Carvalho, F.A., Castanho, M.A., Maurer-Stroh, S., Santos,
949		N.C., 2015a. Understanding Dengue Virus Capsid Protein Interaction with Key Biological
950		Targets. 5, 10592.
951	65.	Faustino, A.F., Guerra, G.M., Huber, R.G., Hollmann, A., Domingues, M.M., Barbosa,
952		G.M., Enguita, F.J., Bond, P.J., Castanho, M.A., Da Poian, A.T., Almeida, F.C., Santos,
953		N.C., Martins, I.C., 2015b. Understanding dengue virus capsid protein disordered N-
954		Terminus and pep14-23-based inhibition. ACS Chem Biol. 10, 517-26.
955	66.	Faustino, A.F., Carvalho, F.A., Martins, I.C., Castanho, M.A., Mohana-Borges, R.,
956		Almeida, F.C., Da Poian, A.T., Santos, N.C., 2014 Dengue virus capsid protein interacts
957		specifically with very low-density lipoproteins. Nanomedicine. 10, 247-55.
958	67.	Fenaux, M., Lin, X., Yokokawa, F., Sweeney, Z., Saunders, O., Xie, L., Lim, S.P., Uteng,
959		M., Uehara, K., Warne, R., Gang, W., Jones, C., Yendluri, S., Gu, H., Mansfield, K.,
960		Boisclair, J., Heimbach, T., Catoire, A., Bracken, K., Weaver, M., Moser, H., Zhong, W.,
		11

- 961 2016. Antiviral nucleotide incorporation by recombinant human mitochondrial RNA
- 962 polymerase is predictive of increased in vivo mitochondrial toxicity risk. Antimicrob
- 963 Agents Chemother. 60, 7077–7085.
- 68. Feng, J.Y., 2018. Addressing the selectivity and toxicity of antiviral nucleosides. Antivir
- 965 Chem Chemother. 26, 2040206618758524.
- 966 69. Feng, J.Y., Xu, Y., Barauskas, O., Perry, J.K., Ahmadyar, S., Stepan, G., Yu, H., Babusis,
- 967 D., Park, Y., McCutcheon, K., Perron, M., Schultz, B.E., Sakowicz, R., Ray, A.S., 2016.
- 968 Role of mitochondrial RNA polymerase in the toxicity of nucleotide inhibitors of hepatitis
- 969 C virus. Antimicrob Agents Chemother 60, 806–817.
- 970 70. Fischer, M.A., Smith, J.L., Shum, D., Stein, D.A., Parkins, C., Bhinder, B., Radu, C.,
- 971 Hirsch, A.J., Djaballah, H., Nelson, J.A., Fruh, K., 2013. Flaviviruses are sensitive to
 972 inhibition of thymidine synthesis pathways J. Virol., 87, 9411-9419.
- 973 71. Fraser, J.E., Watanabe, S., Wang, C., Chan, W.K., Maher, B., Lopez-Denman, A., Hick, C.,
- 974 Wagstaff, K.M., Mackenzie, J.M., Sexton, P.M., Vasudevan, S.G., Jans, D.A., 2014. A
- 975 nuclear transport inhibitor that modulates the unfolded protein response and provides *in*
- *vivo* protection against lethal dengue virus infection. J Infect Dis, 210, 1780–1791.
- 977 72. Gao, M., Nettles, R., Belema, M., Snyder, L.B., Nguyen, V.N., Fridell, R.A., Serrano-Wu,
- 978 M.H., Langley, D.R., Sun, J.H., O'Boyle, D.R., 2nd, Lemm, J.A., Wang, C., Knipe, J.O.,
- 979 Chien, C., Colonno, R.J., Grasela, D.M., Meanwell, N.A., Hamann, L.G., 2010. Chemical
- 980 genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature.
- 981 465, 96–100.
- 982 73. Galiano, V., Garcia-Valtanen, P., Micol, V., Encinar, J.A., 2016. Looking for inhibitors of
- 983 the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking
- 984 approach. Drug Des Dev Ther. 10, 3163–3181.

985	74.	Gerold, G., Bruening, J., Weigel, B., Pietschmann, T., 2017. Protein Interactions during the						
986		Flavivirus and Hepacivirus Life Cycle. Mol Cell Proteomics. 16, S75-S91.						
987	75.	Goncalves, A., Peeling, R.W., Chu, M.C., Gubler, D.J., de Silva, A.M., Harris, E., Murtagh,						
988		M., Chua, A., Rodriguez, W., Kelly, C., Wilder-Smith, A., 2018. Innovative and New						
989		Approaches to Laboratory Diagnosis of Zika and Dengue: A Meeting Report. J Infect Dis.						
990		217, 1060-1068.						
991	76.	Graci, J.D., Cameron, C.E., 2006. Mechanisms of action of ribavirin against distinct						
992		viruses. Rev Med Virol. 16, 37–48.						
993	77.	Guedj, J., Neumann, A.U., 2010. Understanding hepatitis C viral dynamics with direct-						
994		acting antiviral agents due to the interplay between intracellular replication and cellular						
995		infection dynamics. J Theor Biol. 267, 330-40.						
996	78.	Guilarde, A.O., Turchi, M.D., Siqueira, J.B. Jr., Feres, V.C., Rocha, B., Levi, J.E., Souza,						
997		V.A., Boas, L.S., Pannuti, C.S., Martelli, C.M., 2008. Dengue and dengue hemorrhagic						
998		fever among adults: clinical outcomes related to viremia, serotypes, and antibody response.						
999		J Infect Dis. 197, 817-24.						
1000	79.	Halstead, S.B., 2018. Safety issues from a Phase 3 clinical trial of a live-attenuated						
1001		chimeric yellow fever tetravalent dengue vaccine Human Vaccines & Immunotherapeutics.						
1002		1-5.						

- 1003 80. Halstead,S., 200.8 Dengue Virus–Mosquito Interactions Annual Review of Entomology 53,
 1004 273-291.
- 1005 81. Harrison, R.K., 2016. Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov.15,
 1006 817–818.
- 1007 82. Hartman, G.D., Egbertson, M.S., Halczenko, W., Laswell, W.L., Duggan, M.E., Smith,
- 1008 R.L., Naylor, A.M., Manno, P.D., Lynch, R.J., Zhang, G., Chang, C. T.-C., Gould, R.J.,

- 1009 1992. Non-Peptide Fibrinogen Receptor Antagonists. 1. Discovery and Design of Exosite
 1010 Inhibitors. J Med Chem 35, 4640–4642.
- 1011 83. Hernandez-Morales, I., Van Loock, M., 2018. An Industry Perspective on Dengue Drug

1012 Discovery and Development. Adv Exp Med Biol. 1062, 333-353.

- 1013 84. Hernandez-Morales, I., Geluykens, P., Clynhens, M., Strijbos, R., Goethals, O., Megens, S.,
- 1014 Verheyen, N., Last, S., McGowan, D., Coesemans, E., De Boeck, B., Stoops, B.,
- 1015 Devogelaere, B., Pauwels, F., Vandyck, K., Berke, J.M., Raboisson, P., Simmen, K., Lory,
- 1016 P., Van Loock, M., 2017. Characterization of a dengue NS4B inhibitor originating from an
- 1017 HCV small molecule library. Antiviral Res. 147, 149-158.
- 1018 85. Holmes, E.C., Twiddy, S.S., 2003. The origin, emergence and evolutionary genetics of
 1019 dengue virus. Infect Genet Evol. 3, 19-28.
- 1020 86. Htun, H.L., Yeo, T.W., Tam, C.C., Pang, J., Leo, Y.S., Lye, D.C., 2018. Metformin Use
 1021 and Severe Dengue in Diabetic Adults. Sci Rep. 8, 3344.
- 1022 87. Institute for Health Metrics and Evaluation (IHME). Global Health Data Exchange (GHDx)
- 1023 [Internet]. GBD Results Tool. 2017 [cited 2017 Jun 21].
- 1024 http://www.healthdata.org/institute-health-metrics-and-evaluation.
- 1025 88. Jin, Z., Kinkade, A., Behera, I., Chaudhuri, S., Tucker, K., Dyatkina, N., Rajwanshi, V.K.,
- 1026 Wang, G., Jekle, A., Smith, D.B., Beigelman, L., Symons, J.A., Deval, J., 2017. Structure-
- 1027 activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside
- analogs. Antiviral Res. 143, 1–43.
- 1029 89. Jin, Z., Deval, J., Johnson, K.A., Swinney, D.C., 2011. Characterization of the elongation
- 1030 complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation,
- 1031 and fidelity. J Biol Chem. 286, 2067–2077.

- 1032 90. John, D.V., Lin, Y.S., Perng, G.C., 2015. Biomarkers of severe dengue disease a review. J
 1033 Biomed Sci. 14, 22:83.
- 1034 91. Johnson, A.A., Ray, A.S., Hanes, J., Suo, Z., Colacino, J.M., Anderson, K.S., Johnson,
- 1035 K.A., 2001. Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA
- 1036 polymerase. J Biol Chem. 276, 40847–40857.
- 1037 92. Karyala, P., Metri, R., Bathula, C., Yelamanchi, S.K., Sahoo, L., Arjunan, S., Sastri, N.P.,
- 1038 Chandra, N., 2016. DenHunt A Comprehensive Database of the Intricate Network of
- 1039 Dengue-Human Interactions. PLoS Negl Trop Dis. 10, e0004965.
- 1040 93. Keller, T.H., Chen, Y.L., Knox, J.E., Lim, S.P., Ma, N.L., Patel, S.J., Sampath, A., Wang,
- 1041 Q.Y., Yin, Z., Vasudevan, S.G., 2006. Finding new medicines for flaviviral targets.
- 1042 Novartis Found Symp. 2006; 277.
- 1043 94. Koczor, C.A., Torres, R.A., Lewis, W., 2012. The role of transporters in
- the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol. 8, 665-76.
- 1046 95. Koh-Stenta, X., Joy, J., Wang, S.F., Kwek, P.Z., Wee, J.L., Wan, K.F., Gayen, S., Chen,
- 1047 A.S., Kang, C., Lee, M.A., Poulsen, A., Vasudevan, S.G., Hill, J., Nacro, K., 2015.
- 1048Identification of covalent active site inhibitors of dengue virus protease. Drug Des Devel
- 1049 Ther 9, 6389–6399.
- 1050 96. Kohler, J.J., Nettles, J.H., Amblard, F., Hurwitz, S.J., Bassit, L., Stanton, R.A., Ehteshami,
- 1051 M., Schinazi, R.F., 2014. Approaches to hepatitis C treatment and cure using NS5A
- 1052 inhibitors. Infect Drug Resist. 5, 7:41-56.
- 1053 97. Kola, I. and Landis, J., 2004. Can the pharmaceutical industry reduce attrition rates? Nat.
- 1054 Rev. Drug Discov. 3, 711–716.

- 1055 98. Kovackova, S., Chang, L., Bekerman, E., Neveu, G., BarouchBentov, R., Chaikuad, A.,
- 1056 Heroven, C., Šála, M., De Jonghe, S., Knapp, S., Einav, S., Herdewijn, P., 2015. Selective
- 1057Inhibitors of Cyclin G Associated Kinase (GAK) as Anti- Hepatitis C Agents. J Med Chem.
- **1058 58**, 3393–3410.
- 1059 99. Krishnan, M.N., Garcia-Blanco, M.A., 2014. Targeting host factors to treat West Nile and
 1060 Dengue viral infections. Virus 6, 683–708.
- 1061 100. Leal, E.S., Aucar, M.G., Gebhard, L.G., Iglesias, N.G., Pascual, M.J., Casal, J.J., Gamarnik,
- 1062 A.V., Cavasotto, C.N., Bollini, M., 2017. Discovery of novel dengue virus entry inhibitors
- 1063 via a structure-based approach. Bioorg Med Chem Lett. 27, 3851-3855.
- 1064 101. Lee, J.C., Tseng, C.K., Wu, Y.H., Kaushik-Basu, N., Lin, C.K., Chen, W.C., Wu, H.N.,
- 2015. Characterization of the activity of 2'-C methylcytidine against dengue virus
 replication. Antiviral Res. 116, 1-9.
- 1067 102. Leonel, C.A., Lima, W.G., Dos Santos, M., Ferraz, A.C., Taranto, A.G., de Magalhães, J.C.,
- 1068 Dos Santos, L.L., Ferreira, J.M.S., 2018. Pharmacophoric characteristics of dengue virus
- 1069 NS2B/NS3pro inhibitors: a systematic review of the most promising compounds. Arch
 1070 Virol. 163, 575-586.
- 1071 103. Lescar, J., Soh, S., Lee, L.T., Vasudevan, S.G., Kang, C., Lim, S.P., 2018. The Dengue
- 1072 Virus Replication Complex: From RNA Replication to Protein-Protein Interactions to

1073 Evasion of Innate Immunity. Adv Exp Med Biol. 1062, 115-129.

- 1074 104. Leung, D., Schroder, K., White, H., Fang, N.X., Stoermer, M.J., Abbenante, G., Martin,
- 1075 J.L., Young, P.R., Fairlie, D.P., 2001. Activity of recombinant dengue 2 virus NS3 protease
- 1076 in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J
- 1077 Biol Chem. 76, 45762-71.

- 1078 105. Leung, P., Eltahla, A.A., Lloyd, A.R., Bull, R.A., Luciani, F., 2017. Understanding the
- 1079 complex evolution of rapidly mutating viruses with deep sequencing: Beyond the analysis
- 1080 of viral diversity. Virus Res. 239, 43-54.
- 1081 106. Li, G.H., Ning, Z.J., Liu, Y.M., Li, X.H., 2017. Neurological Manifestations
- 1082 of Dengue Infection. Front Cell Infect Microbiol. 25, 7:449.
- 1083 107. Li, J., Lim, S.P., Beer, D., Patel, V., Wen, D., Tumanut, C., Tully, D.C., Williams, J.A.,
- 1084 Jiricek, J., Priestle, J.P., Harris, J.L., Vasudevan, S.G., 2005. Functional profiling of
- 1085 recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and
- 1086 octapeptide substrate libraries. J Biol Chem. 280, 28766-28774.
- 1087 108. Li L., Basavannacharya, C., Chan, K.W., Shang, L., Vasudevan, S.G., Yin, Z., 2015.
- Structure-guided Discovery of a Novel Non-peptide Inhibitor of Dengue Virus NS2B-NS3
 Protease. Chem Biol Drug Des. 86, 255-64.
- 1090 109. Lian, W., Jang, J., Potisopon, S., Li, P.C., Rahmeh, A., Wang, J., Kwiatkowski, N.P., Gray,
- 1091 N.S., Yang, P.L., 2018. Discovery of Immunologically Inspired Small Molecules that
- 1092 Target the Viral Envelope Protein. ACS Infect Dis. 4, 1395-1406.
- 1093 110. Liang, Z., Wu, S., Li, Y., He, L., Wu, M., Jiang, L., Feng, L., Zhang, P., Huang, X., 2011.
- 1094 Activation of toll-like receptor 3 impairs the dengue virus serotype 2 replication through
- induction of IFN-beta in cultured hepatoma cells. PLoS One 6, e23346.
- 1096 111. Libraty, D.H., Endy, T.P., Houng, H.S., Green, S., Kalayanarooj, S., Suntayakorn, S.,
- 1097 Chansiriwongs, W., Vaughn, D.W., Nisalak, A., Ennis, F.A., Rothman, A.L., 2002a.
- 1098 Differing influences of virus burden and immune activation on disease severity in
- secondary dengue-3 virus infections. J Infect Dis. 185, 1213-1221.
- 1100 112. Libraty, D.H., Young, P.R., Pickering, D., Endy, T.P., Kalayanarooj, S., Green, S., Vaughn,
- 1101 D.W., Nisalak, A., Ennis, F.A., Rothman, A.L., 2002b. High circulating levels of the

- dengue virus nonstructural protein NS1 early in dengue illness correlate with the
- development of dengue hemorrhagic fever. J Infect Dis. 186, 1165-1168.
- 1104 113. Lim, S.P., Noble, C.G., Nilar, S., Shi, P.Y., Yokokawa, F., 2018. Adv Exp Med Biol. 1062,
 1105 187-198.
- 1106 114. Lim, S.P., Noble, C.G., Seh, C.C., Soh, T.S., El Sahili, A., Chan, G.K., Lescar, J., Arora,
- 1107 R., Benson, T., Nilar, S., Manjunatha, U., Wan, K.F., Dong, H., Xie, X., Shi, P.Y.,
- 1108 Yokokawa, F., 2016. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors:
- 1109 Mechanism of Action and Resistance Profiling. PLoS Pathog 12, e1005737.
- 1110 115. Lim, S.P., Noble, C.G., Shi, P.Y., 2015. The dengue virus NS5 protein as a target for drug
- discovery. Antiviral Res. 119, 57-67.
- 1112 116. Lim, S.P., Wang, Q-Y., Noble, C.G., Chen, Y-L., Dong, H., Zou, B., Yokokawa, F., Nilar,
- S., Smith, P., Beer, D., Lescar, J., Shi, P.Y., 2013a. Ten years of dengue drug discovery:
 progress and prospects. Antivir Res. 100, 500–519.
- 1115 117. Lim, S.P., Bodenreider, C., Shi, P.Y., 2013b. Detection and quantification of flavivirus NS5
 1116 methyl-transferase activities. Methods Mol Biol. 1030, 249-68.
- 1117 118. Lim, S.P., Sonntag, L.S., Noble, C., Nilar, S.H., Ng, R.H., Zou, G., Monaghan, P., Chung,
- 1118 K.Y., Dong, H., Liu, B., Bodenreider, C., Lee, G., Ding, M., Chan, W.L., Wang, G., Jian,
- 1119 Y.L., Chao, A.T., Lescar, J., Yin, Z., Vedananda, T.R., Keller, T.H., Shi, P.Y., 2011. Small
- molecule inhibitors that selectively block dengue virus methyltransferase. J Biol Chem 286,6233-6240.
- 1122 119. Lim, S.P., Wen, D., Yap, T.L., Yan, C.K., Lescar, J., Vasudevan, S.G., 2008. A scintillation
- 1123 proximity assay for dengue virus NS5 2'-O-methyltransferase-kinetic and inhibition
- analyses. Antiviral Res 80, 360-369.

- 1125 120. Lin, K.H., Ali, A., Rusere, L., Soumana, D.I., Kurt Yilmaz. N., Schiffer, C.A., 2017.
- Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side. J Virol. 91,
 e00045-17
- 1128 121. Lin, K.H., Nalivaika, E.A., Prachanronarong, K.L., Yilmaz, N.K., Schiffer, C.A., 2016.
- Dengue protease substrate recognition: binding of the prime side. ACS Infect Dis. 2, 734-743.
- 1131 122. Lindenbach, B.D., Thiel, H.-J., Rice, C.M., 2007. Flaviviridae: The Virus and Their
- 1132 Replication, p. 1101-1152. In D.M. Knipe and P.M. Howley (ed), Fields virology, 5th., vol.
- 1133 1. Lippincott William & Wilkins, Philadelphia, Pa.
- 1134 123. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 1997. Experimental and
- computational approaches to estimate solubility and permeability in drug discovery anddevelopment settings. Adv Drug Deliv Rev. 23, 3-25.
- 1137 124. Liu, H., Wu, R., Sun, Y., Ye, Y., Chen, J., Luo, X., Shen, X., Liu, H., 2014. Identification
- 1138 of novel thiadiazoloacrylamide analogues as inhibitors of dengue-2 virus NS2B/NS3
- 1139 protease. Bioorg Med Chem. 22, 6344-52.
- 1140 125. Liu, X., Chen, C., Hop, C.E., 2011. Do we need to optimize plasma protein and
- tissue binding in drug discovery? Curr Top Med Chem. 11, 450-66.
- 1142 126. Low, J.G., Gatsinga, R., Vasudeva, S.G., Sampath, A., 2018. Adv Exp Med Biol. 1062,
 1143 319-332.
- 1144 127. Lu, D., Liu, J., Zhang, Y., Liu, F., Zeng, L., Peng, R., Yang, L., Ying, H., Tang, W., Chen,
- 1145 W., Zuo, J., Tong, X., Liu, T., Hu, Y., 2018. Discovery and optimization of phthalazinone
- derivatives as a new class of potent dengue virus inhibitors. Eur J Med Chem. 145, 328-337.
- 1147 128. Lu, H., Tonge, P.J., 2010. Drug-target residence time: critical information for lead
- 1148 optimization. Curr Opin Chem Biol. 14, 467-74.

- 1149 129. Lum, K. K., and Cristea, I.M., 2016. Proteomic approaches to uncovering virus-host protein
- interactions during the progression of viral infection. Expert Rev. Proteomics 13, 325–340.
- 1151 130. Lund, K.C., Wallace, K.B., 2004. Direct, DNA pol-gamma-independent effects of
- 1152 nucleoside reverse transcriptase inhibitors on mitochondrial bioenergetics. Cardiovasc

1153 Toxicol. 4, 217-28.

- 131. Luo, D., Vasudevan, S.G., Lescar, J., 2015. The flavivirus NS2B-NS3 protease-helicase as
 a target for antiviral drug development. Antiviral Res. 118, 148-58.
- 1156 132. Lynx, M.D, McKee, E.E., 2006. 3'-Azido-3'-deoxythymidine (AZT) is a competitive
- inhibitor of thymidine phosphorylation in isolated rat heart and liver mitochondria.
- Biochem Pharmacol 72, 239–243.
- 1159 133. Marceau, C.D., Puschnik, A.S., Majzoub, K., Ooi, Y.S., Brewer, S.M., Fuchs, G.,
- 1160 Swaminathan, K., Mata, M.A., Elias, J.E., Sarnow, P., Carette, J.E., 2016 A Small-
- 1161 Molecule Oligosaccharyltransferase Inhibitor with Pan-flaviviral Activity. Nature. 535,
- 1162 159-63.
- 1163 134. Martins, I.C., Gomes-Neto, F., Faustino, A.F., Carvalho, F.A., Carneiro, F.A., Bozza, P.T.,
- 1164 Mohana-Borges., R., Castanho, M.A., Almeida, F.C., Santos, N.C., Da Poian, A.T., 2012.
- 1165 The disordered N-terminal region of dengue virus capsid protein contains a drug targetable
- lipid droplet-binding motif. Biochem J, 444, 405-415.
- 1167 135. Martín-Acebes, M.A., Vázquez-Calvo, Á., Saiz, J.C., 2016. Lipids and flaviviruses, present
- and future perspectives for the control of dengue, Zika, and West Nile viruses. Prog LipidRes. 64, 123-137.
- 1170 136. Mathew, A., 2018. Regulation and Function of NK and T Cells During Dengue Virus
- 1171 Infection and Vaccination. Adv Exp Med Biol. 1062, 251-264.

1172	137. Mastrangelo, E., Pezzullo, M., De Burghgraeve, T., Kaptein, S., Pastorino, B., Dallmeier,
1173	K., de Lamballerie, X., Neyts, J., Hanson, A.M., Frick, D.N., Bolognesi, M., Milani, M.,
1174	2012. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3
1175	helicase activity: new prospects for an old drug. J Antimicrob Chemother. 67, 1884-94.
1176	138. Miller, J.L., Tyrell, B.E., Ziitzmann, N., 2018. Mechanisms of Antiviral Activity of
1177	Iminosugars Against Dengue Virus. Adv Exp Med Biol. 1062, 277-301.
1178	139. Mislak, A.C., Anderson, K.S., 2015. Insights into the molecular mechanism of
1179	polymerization and nucleoside reverse transcriptase inhibitor incorporation by human
1180	PrimPol. Antimicrob. Agents Chemother. 60, 561–569.
1181	140. Molina, M., Nordlund., P., 2015. The Cellular Thermal Shift Assay: A Novel Biophysical
1182	Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annu Rev
1183	Pharmacol Toxicol. 56, 141-161.
1184	141. Molina, M., Jafari , R., Ignatushchenko, M., Seki, T., Larsson, E.A., Dan, C., Sreekumar, L.,
1185	Cao, Y., Nordlund, P., 2013. Monitoring drug target engagement in cells and tissues using
1186	the cellular thermalshift assay. Science. 341, 84-87.
1187	142. Morison, J., Rathore, A.P.S., Mantri, C.K., Aman, S.A.B., Nishida, A., St. John, A.L., 2017.
1188	Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a
1189	Dengue Disease Model. J Virol. 91, pii: e00617-17.
1190	143. Nasirudeen, A.M., Wong, H.H., Thien, P., Xu, S., Lam, K.P., Liu, D.X., 2011. RIG-I,
1191	MDA5 and TLR3 synergistically play an important role in restriction of dengue virus
1192	infection. PLoS Negl Trop Dis. 5, e926.
1193	144. Ndjomou, J., Kolli, R., Mukherjee, S., Shadrick, W. R., Hanson, A. M., Sweeney, N. L.,
1194	Bartczak, D., Li, K., Frankowski, K. J., Schoenen, F. J., and Frick, D. N., 2012. Fluorescent

- 1195 primuline derivatives inhibit hepatitis C virus NS3-catalyzed RNA unwinding, peptide
- hydrolysis and viral replicase formation. Antiviral Res. 96, 245–255.
- 1197 145. Ng, C.Y., Gu, F., Phong, W.Y., Chen, Y.L., Lim, S.P., Davidson, A., Vasudevan, S.G.,
- 1198 2007. Construction and characterization of a stable subgenomic dengue virus type 2
- replicon system for antiviral compound and siRNA testing. Antiviral Res. 76, 222-231.
- 1200 146. Nguyen, N.M., Tran, C.N., Phung, L.K., Duong, K.T., Huynh Hle, A., Farrar, J., Nguyen,
- 1201 Q.T., Tran, H.T., Nguyen, C.V., Merson, L., Hoang, L.T., Hibberd, M.L., Aw, P.P., Wilm,
- 1202 A., Nagarajan, N., Nguyen, D.T., Pham, M.P., Nguyen, T.T., Javanbakht, H., Klumpp, K.,
- Hammond, J., Petric, R., Wolbers, M., Nguyen, C.T., Simmons, C.P., 2013. A randomized,
- 1204 double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue
- 1205 patients. J Infect Dis. 207, 1442-1450.
- 1206 147. Nhi, D.M., Huy, N.T., Ohyama, K., Kimura, D., Lan, N.T., Uchida, L., Thuong, N.V.,
- 1207 Nhon, C.T., Phuc le, H., Mai, N.T., Mizukami, S., Bao, L.Q., Doan, N.N., Binh, N.V.,
- 1208 Quang, L.C., Karbwang, J., Yui, K., Morita, K., Huong, V.T., Hirayama, K., 2016. A
- 1209 Proteomic Approach Identifies Candidate Early Biomarkers to Predict Severe Dengue in
- 1210 Children. PLoS Negl Trop Dis. 10, e0004435.
- 1211 148. Nitsche, C., 2018. Strategies Towards Protease Inhibitors for Emerging Flaviviruses.
- 1212 Advances in Experimental Medicine and Biology 1062, 175-186.
- 1213 149. Nitsche, C., Zhang, L., Weigel, L.F., Schilz, J., Graf, D., Bartenschlager, R., Hilgenfeld, R.,
- 1214 Klein, C.D., 2017. Peptide-Boronic Acid Inhibitors of Flaviviral Proteases: Medicinal
- 1215 Chemistry and Structural Biology. J Med Chem. 60, 511-516.
- 1216 150. Niyomrattanakit, P., Wan, K.F., Chung, K.Y., Abas, S.N., Seh, C.C., Dong, H., Lim, C.C.,
- 1217 Chao, A.T., Lee, C.B., Nilar, S., Lescar, J., Shi, P.Y., Beer, D., Lim, S.P., 2015.

- Stabilization of dengue virus polymerase in de novo initiation assay provides advantagesfor compound screening. Antiviral Res. 119, 36-46.
- 1220 151. Niyomrattanakit, P., Abas, S.N., Lim, C.C., Beer, D., Shi, P.Y., Chen, Y.L., 2011. A
- 1221 fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of
- 1222 inhibitors of dengue virus RNA-dependent RNA polymerase. J Biomol Screen. 16, 201–

1223 210.

- 1224 152. Niyomrattanakit, P., Chen, Y.L., Dong, H., Yin, Z., Qing, M., Glickman, J.F., Lin, K.,
- 1225 Mueller, D., Voshol, H., Lim, J.Y., Nilar, S., Keller, T.H., Shi, P.Y., 2010. Inhibition of
- dengue virus polymerase by blocking of the RNA tunnel. J Virol 84, 5678-5686.
- 1227 153. Noble, C.G., Lim, S.P., Arora, R., Yokokawa, F., Nilar, S., Seh, C.C., Wright,
- S.K., Benson, T.E., Smith, P.W., Shi, P.Y., 2016. A Conserved Pocket in the Dengue Virus
 Polymerase Identified through Fragment-based Screening. J Biol Chem. 291, 8541-8.
- 1230 154. Noble, C.G., Lim, S.P., Chen, Y.L., Liew, C.W., Yap, L., Lescar, J., Shi, P.Y., 2013.
- 1231 Conformational flexibility of the dengue virus RNA-dependent RNA polymerase revealed
 1232 by a complex with an inhibitor. J Virol. 87, 5291–5295.
- 1233 155. Noble, C.G., Chen, Y.L., Dong, H., Gu, F., Lim, S.P., Schul, W., Wang, Q.Y., Shi, P.Y.,
- 1234 2010. Strategies for development of Dengue virus inhibitors. Antiviral Res 85, 450-462.
- 1235 156. Nomaguchi, M., Ackermann, M., Yon, C., You, S., Padmanabhan, R., 2003. De novo
- synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in
 vitro: nucleotide, primer, and template parameters. J Virol. 77, 8831-42.
- 1238 157. Neufeldt, C.J., Cortese, M⁺, Acosta, E.G., Bartenschlager, R., 2018. Rewiring cellular
- networks by members of the Flaviviridae family. Nat Rev Microbiol. 16, 125-142.
- 1240 158. Olsen, D.B., Eldrup, A.B., Bartholomew, L., Bhat, B., Bosserman, M.R., Ceccacci, A.,
- 1241 Colwell, L.F., Fay, J.F., Flores, O.A., Getty, K.L., Grobler, J.A., Lafemina, R.L., Markel,

- 1242 E.J., Migliaccio, G., Prhavc, M., Stahlhut, M.W., Tomassini, J.E., Maccoss, M., Hazuda,
- 1243 D.J., Carroll, S.S., 2004. A 7-deaza-adenosine analog is a potent and selective inhibitor of
- 1244 hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob Agents
- 1245 Chemother. 48, 3944–3953.
- 1246 159. Omatsu, T., Moi, M.L., Takasaki, T., Nakamura, S., Katakai, Y., Tajima, S., Ito, M.,
- Yoshida, T., Saito, A., Akari, H., Kurane, I., 2012. Changes in hematological and serum
 biochemical parameters in common marmosets (Callithrix jacchus) after inoculation with
- dengue virus. J Med Primatol. 41, 289-296.
- 1250 160. Omatsu, T., Moi, M.L., Hirayama, T., Takasaki, T., Nakamura, S., Tajima, S., Ito, M.,
- 1251 Yoshida, T., Saito, A., Katakai, Y., Akari, H., Kurane, I., 2011. Common marmoset
- 1252 (Callithrix jacchus) as a primate model of dengue virus infection: development of high
- levels of viraemia and demonstration of protective immunity. J Gen Virol. 92, 2272-2280.
- 1254 161. Onlamoon, N., Noisakran, S., Hsiao, H.M., Duncan, A., Villinger, F., Ansari,
- A.A., Perng, G.C., 2010. Dengue virus-induced hemorrhage in a nonhuman primate model.
 Blood. 115, 1823-34.
- 1257 162. Paixão, E.S., Teixeira, M.G., Rodrigues, L.C., 2018. Zika, chikungunya and dengue: the
- 1258 causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health. 3,
- 1259 e000530.
- 1260 163. Pałasz, A., Cież, D., 2015. In search of uracil derivatives as bioactive agents. Uracils and
- fused uracils: Synthesis, biological activity and applications. Eur J Med Chem. 97, 582-611.
- 1262 164. Pambudi, S., Kawashita, N., Phanthanawiboon, S., Omokoko, M.D., Masrinoul, P.,
- 1263 Yamashita, A., Limkittikul, K., Yasunaga, T., Takagi, T., Ikuta, K., Kurosu, T., 2013. A
- small compound targeting the interaction between nonstructural proteins 2B and 3 inhibits
- dengue virus replication. Biochem Biophys Res Commun. 440, 393-8.

- 1266 165. Pan American Health Organization, Tool for the Diagnosis and Care of Patients with
- 1267 Suspected Arboviral Diseases. March-2017.
- 1268 http://iris.paho.org/xmlui/handle/123456789/33895
- 1269 166. Park, J., Wetzel, I., Dreau, D., Cho, H., 2018. 3D Miniaturization of Human Organs
- 1270 for Drug Discovery. Adv Healthc Mater. In press.
- 1271 167. Pelliccia, S., Wu, Y.H., Coluccia, A., La Regina, G., Tseng, C.K., Famiglini, V., Masci, D.,
- 1272 Hiscott, J., Lee, J.C., Silvestri, R., 2017. Inhibition of dengue virus replication by novel
- 1273 inhibitors of RNA-dependent RNA polymerase and protease activities. J Enzyme Inhib
- 1274 Med Chem. 32, 1091-1101.
- 1275 168. Perera, N., Miller, J.L., Zitzmann, N., 2017. The role of the unfolded protein response in
 1276 dengue virus pathogenesis. Cell Microbiol. 19, 5.
- 1277 169. Pinto A.K., Brien, J.D., Lam, C.Y., Johnson, S., Chiang, C., Hiscott, J., Sarathy, V.V.,
- 1278 Barrett, A.D., Shretsa, S., Diamond, M.S., 2016. Defining New Therapeutics Using a More
- 1279 Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection. MBio. 6,1280 e01316-15.
- 1281 170. Poongavanam, V., Doak, B.C., Kihlberg, J., 2018. Opportunities and guidelines for
- discovery of orally absorbed drugs in beyond rule of 5 space. Curr Opin Chem Biol. 44, 23-29.
- 1284 171. Potisopon, S., Ferron, F., Fattorini, V., Selisko, B., Canard B., 2017. Substrate selectivity of
 1285 Dengue and Zika virus NS5 polymerase towards 2'-modified nucleotide analogues. Anti-
- 1286 viral Res. 140, 25-36.
- 1287 172. Powers, C.N., Setzer, W.N., 2016. An In-Silico investigation of phytochemicals as antiviral
 1288 agents against dengue fever. Comb. Chem. High Throughput Screen. 19, 516–53.

1289	173. Prachanronarong, K.L., Özen, A., Thayer, K.M., Yilmaz, L.S., Zeldovich, K.B., Bolon,
1290	D.N., Kowalik, T.F., Jensen, J.D., Finberg, R.W., Wang, J.P., Kurt-Yilmaz, N., Schiffer,
1291	C.A., 2016. Molecular Basis for Differential Patterns of Drug Resistance in Influenza N1
1292	and N2 Neuraminidase.J Chem Theory Comput. 12, 6098-6108
1293	174. Pryke, K.M., Abraham, J., Sali, T.M., Gall, B.J., Archer, I., Liu, A., Bambina, S., Baird, J.,
1294	Gough, M., Chakhtoura, M., Haddad, E.K., Kirby, I.T., Nilsen, A., Streblow, D.N., Hirsch,
1295	A.J., Smith, J.L., DeFilippis, V.R., 2017. A Novel Agonist of the TRIF Pathway Induces a
1296	Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio.
1297	8, e00452-17.
1298	175. Pu, S.Y., Xiao, F., Schor, S., Bekerman, E., Zanini, F., Barouch-Bentov, R., Nagamine,
1299	C.M., Einav, S., 2018a. Feasibility and biological rationale of repurposing sunitinib and
1300	erlotinib for dengue treatment. Antiviral Res. 155, 67-75.
1301	176. Pu, S.Y., Wouters, R., Schor, S., Rozenski, J., Barouch-Bentov, R., Prugar, L.I., O'Brien,
1302	C.M., Brannan, J.M., Dye, J.M., Herdewijn, P., De Jonghe, S., Einav, S., 2018b.
1303	Optimization of Isothiazolo[4,3-b]pyridine-Based Inhibitors of Cyclin G Associated
1304	Kinase (GAK) with Broad-Spectrum Antiviral Activity. J Med Chem. 61, 6178-6192.
1305	177. Puschnik, A.S., Marceau, C.D., Ooi, Y.S., Majzoub, K., Rinis, N., Contessa, J.N., Carette,
1306	J.E., 2017. A Small-Molecule Oligosaccharyltransferase Inhibitor with Pan-flaviviral
1307	Activity. Cell Rep. 21, 3032-3039.
1308	178. Rausch, K., Hackett, B.A., Weinbren, N.L., Reeder, S,M., Sadovsky, Y., Hunter, C.A.,
1309	Schultz, D.C., Coyne, C.B., Cherry, S., 2017. Screening Bioactives Reveals
1310	Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus. Cell Rep. 18,
1311	804-815.

- 1312 179. Rivino, L., 2018. Understanding the Human T Cell Response to Dengue Virus. Adv Exp
 1313 Med Biol. 1062, 241-250.
- 1314 180. Saroch, A., Arya, V., Sinha, N., Taneja, R.S., Sahai, P., Mahajan, R.K., 2017. Clinical and
- 1315 laboratory factors associated with mortality in dengue. Trop Doct. 47, 141-145.
- 1316 181. Saudi, M., Zmurko, J., Kaptein, S., Rozenski, J., Gadakh, B., Chaltin, P., Marchand, A.,
- 1317 Neyts, J., Van Aerschot, A., 2016. Synthetic strategy and antiviral evaluation of diamide
- 1318 containing heterocycles targeting dengue and yellow fever virus. Eur J Med Chem. 121,
- 1319 158-168.
- 1320 182. Saudi, M., Zmurko, J., Kaptein, S., Rozenski, J., Neyts, J., Van Aerschot, A., 2014a.
- 1321Synthesis and evaluation of imidazole-4,5- and pyrazine-2,3-dicarboxamides targeting
- dengue and yellow fever virus. Eur J Med Chem. 87, 529-39.
- 1323 183. Saudi, M., Zmurko, J., Kaptein, S., Rozenski, J., Neyts, J., Van Aerschot, A., 2014b. In
 1324 search of Flavivirus inhibitors part 2: tritylated, diphenylmethylated and other alkylated
- nucleoside analogues. Eur J Med Chem. 76, 98-109.
- 1326 184. Scaturro, P., Trist, I.M., Paul, D., Kumar, A., Acosta, E.G., Byrd, C.M., Jordan, R.,
- Brancale, A., Bartenschlager, R., 2014. Characterization of the mode of action of a potent
 dengue virus capsid inhibitor. J Virol. 88, 11540-55.
- 1329 185. Scheffold, A., Jebaraj, B.M.C., Stilgenbauer, S., 2018. Venetoclax: Targeting BCL2 in
 1330 Hematological Cancers. Recent Results Cancer Res. 212, 215-242.
- 1331 186. Schmidt, A.G., Lee, K., Yang, P.L., Harrison, S.C., 2012. Small-molecule inhibitors of
 1332 dengue-virus entry. 1406. PLoS Pathog 8, e1002627
- 1333 187. Schmidt, A.G., Yang, P.L., Harrison, S.C., 2010. Peptide inhibitors of flavivirus entry
 1334 derived from the E protein stem. J Virol 84, 12549–12554.

1335	188. Schul, W., Liu, W., Xu, H.Y., Flamand, M., Vasudevan, S.G., 2007. A dengue fever
1336	viremia model in mice shows reduction in viral replication and suppression of the
1337	inflammatory response after treatment with antiviral drugs. J Infect Dis. 195, 665-74.
1338	189. Scott, D.E., Bayly, A.R., Abell, C., Skidmore, J., 2016. Small molecules, big
1339	targets: drug discovery faces the protein-proteininteraction challenge. Nat
1340	Rev Drug Discov. 15, 533-50.
1341	190. Selisko, B., Dutartre, H., Guillemot, J.C., Debarnot, C., Benarroch, D., Khromykh, A.,
1342	Desprès, P., Egloff, M.P., Canard, B., 2006. Comparative mechanistic studies of de novo
1343	RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology. 351, 145-58
1344	191. Shepard, D.S., Undurraga, E.A., Halasa, Y.A., Stanaway, J.D., 2016. The global economic
1345	burden of dengue: a systematic analysis. Lancet Infect Dis 16, 935–941.
1346	192. Shum, D., Smith, J.L. Hirsch, A.J., Bhinder, B., Radu, C., Stein, D.A., Nelson, J.A., Fruh,
1347	K., Djaballah, H., 2010. High-content assay to identify inhibitors of dengue virus infection.
1348	Assay drug Dev. Technol., 8, 553-570.
1349	193. Silva, J.V.J., Jr, Lopes, T.R.R., Oliveira-Filho, E.F., Oliveira, R.A.S., Durães-Carvalho, R.,
1350	Gil, L.H.V.G., 2018. Current status, challenges and perspectives in the development of
1351	vaccines against yellow fever, dengue, Zika and chikungunya viruses, Acta Trop. 182, 257-

- 1352 263.
- 1353 194. Sim, S., Hibbaerd, M., 2016. Genomic approaches for understanding dengue: insights from
 1354 the virus, vector, and host. Genome Biol. 2, 17:38.
- 1355 195. Simmons, C.P., McPherson, K., Van Vinh Chau, N., Hoai Tam, D.T., Young, P.,
- 1356 Mackenzie, J., Wills, B., 2015. Recent advances in dengue pathogenesis and clinical
- 1357 management. Vaccine. 33, 7061-8.

- 1358 196. Smith, J.L., Sheridan, K., Parkins, C.J., Frueh, L., Jemison, A.L., Strode, K., Dow, G.,
- 1359 Nilsen, A., Hirsch, A.J., 2018. Characterization and structure-activity relationship analysis
- 1360 of a class of antiviral compounds that directly bind dengue virus capsid protein and are
- incorporated into virions. Antiviral Res. 155, 12-19.
- 1362 197. Smith, R.L., Tan, J.M.E., Jonker, M.J., Jongejan, A., Buissink, T., Veldhuijzen, S., van
- 1363 Kampen, A.H.C., Brul, S., van der Spek, H., 2017. Beyond the polymerase-y theory:
- Production of ROS as a mode of NRTI-induced mitochondrial toxicity. PLoS One. 12,e0187424.
- 1366 198. Smith, J.L., Stein, D.A., Shum, D., Fischer, M.A., Radu, C., Bhinder, B., Djaballah, H.,
- 1367 Nelson, J.A. Fruh, K. Hirsch, A.J., 2014a. Inhibition of dengue virus replication by a class
- of small-molecule compounds that antagonize dopamine receptor d4 and downstream
 mitogen-activated protein kinase signaling. J. Virol. 88, 5533-5542.
- 1370 199. Smith, T.M., Lim, S.P., Yue, K., Busby, S.A., Arora, R., Seh, C.C., Wright, S.K., Nutiu, R.,
- 1371 Niyomrattanakit, P., Wan, K.F., Beer, D., Shi, P.Y., Benson, T.E., 2014b. Identifying
- 1372 initiation and elongation inhibitors of dengue virus RNA polymerase in a high-throughput
- 1373 lead-finding campaign. J Biomol Screen. 20, 153-63.
- 1374 200. Soto-Acosta, R., Bautista-Carbajal, P., Cervantes-Salazar, M., Angel-Ambrocio, A.H., Del
- 1375 Angel, R.M., 2017. DENV up-regulates the HMG-CoA reductase activity through the
- 1376 impairment of AMPK phosphorylation: A potential antiviral target. PLoS Pathog. 13,1377 e1006257.
- 1378 201. SOVALDI®, Sofosbuvir prescription sheet (Nov/2017), Gilead Sciences, Inc.
- 1379 <u>http://www.gilead.com/~/media/Files/pdfs/medicines/liver-disease/sovaldi/sovaldi_pi.pdf</u>
- 1380 202. Stranix, B., Beaulieu, F., Bouchard, J-E., Milot, G., Wang, Z., Ruel, R., 2009. HIV
- integrase inhibitors from pyridoxine. US patent US8742123B2.

- 1382 203. Sun, P., García, J., Comach, G., Vahey, M.T., Wang, Z., Forshey, B.M., Morrison,
- 1383 A.C., Sierra, G., Bazan, I., Rocha, C., Vilcarromero, S., Blair, P.J., Scott, T.W., Camacho,
- 1384 D.E., Ockenhouse, C.F., Halsey, E.S., Kochel, T.J., 2013. Sequential waves of gene
- 1385 expression in patients with clinically defined dengueillnesses reveal subtle disease phases
- and predict disease severity. PLoS Negl Trop Dis. 7, e2298.
- 1387 204. Sweeney, N.L., Hanson, A.M, Mukherjee, S., Ndjomou, J., Geiss, B.J., Steel, J.J.,
- 1388 Frankowski, K.J., Li, K., Schoenen, F.J., Frick, D.N., 2015. Benzothiazole and Pyrrolone
- 1389 Flavivirus Inhibitors Targeting the Viral Helicase. ACS Infect Dis. 1, 140-148.
- 1390 205. Szymanski, M.R., Kuznetsov, V.B., Shumate, C., Meng, Q., Lee, Y.S., Patel, G., Patel, S.,
- 1391 Yin, Y.W., 2015. Structural basis for processivity and antiviral drug toxicity in human
- 1392 mitochondrial DNA replicase. EMBO J. 34, 1959-70.
- 1393 206. Tarantino, D., Cannalire, R., Mastrangelo, E., Croci, R., Querat, G., Barreca,
- 1394 M.L., Bolognesi, M., Manfroni, G., Cecchetti, V., Milani M., 2016. Targeting flavivirus
- 1395 RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor Antivir.
- 1396 Res., 134, 226-235.
- 1397 207. Tauber, J., 2015. Lifitegrast Ophthalmic Solution 5.0% versus Placebo for Treatment of
- Dry Eye Disease: Results of the Randomized Phase III OPUS-2 Study. Ophthalmology. 122,
 2423–31.
- 1400 208. Tay, M.Y., Fraser, J.E., Chan, W.K., Moreland, N.J., Rathore, A.P., Wang, C., Vasudevan,
- 1401 S.G., Jans, D.A., 2013. Nuclear localization of dengue virus (DENV) 1-4 non-structural
- 1402 protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral
- 1403 Res. 99, 301-6.

1404	209. Tomlinson, S,M.,Watowich, S.J., 2012 Use of parallel validation high-throughput screens
1405	to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors. Antiviral
1406	Res. 93, 245-52.
1407	210. Tomlinson, S.M., Watowich, S.J., 2011. Anthracene-based inhibitors of dengue virus
1408	NS2B-NS3 protease. Antiviral Res. 89, 127-35.
1409	211. Tomlinson, S.M., Malmstrom, R.D., Russo, A., Mueller, N., Pang, Y.P., Watowich, S.J.,
1410	2009. Structure-based discovery of dengue virus protease inhibitors. Antiviral Res. 82, 110-
1411	4.
1412	212. Tricot, T., Helsen, N., Kapstein, S.J.F., Neyts, J., Verfaille, C.M., 2018. Human stem cell-
1413	derived hepatocyte-like cells support Zika virus replication and provide a relevant model to
1414	assess the efficacy of potential antivirals. PLoS One. 13, e0209097.
1415	213. Tron, A.E., Belmonte, M.A., Adam, A., Aquila, B.M., Boise, L.H., Chiarparin, E., Cidado,
1416	J., Embrey, K.J., Gangl, E., Gibbons, F.D., Gregory, G.P., Hargreaves, D., Hendricks, J.A.,
1417	Johannes, J.W., Johnstone, R.W., Kazmirski, S.L., Kettle, J.G., Lamb, M.L., Matulis, S.M.,
1418	Nooka, A.K., Packer, M.J., Peng, B., Rawlins, P.B., Robbins, D.W., Schuller, A.G., Su, N.,
1419	Yang, W., Ye, Q., Zheng, X., Secrist, J.P., Clark, E.A., Wilson, D.M., Fawell, S.E., Hird,
1420	A.W., 2018. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in
1421	multiple myeloma and acute myeloid leukemia. Nat Commun. 9, 5341.
1422	214.van Cleef, K.W., Overheul, G.J., Thomassen, M.C., Kaptein, S.J., Davidson, A.D., Jacobs,
1423	M., Neyts, J., van Kuppeveld, F.J., van Rij, R.P., 2013. Identification of a new dengue virus
1424	inhibitor that targets the viral NS4B protein and restricts genomic RNA replication.
1425	Antiviral Res. 99, 165-71.

1426	215. Van Voorhis, W.C. et al. 2016. Open Source Drug Discovery with
1427	the Malaria Box CompoundCollection for Neglected Diseases and Beyond. PLoS Pathog.
1428	12, e1005763.
1429	216. Velvadapu, V., Farmer, B.T., Reitz, A.B., 2015. Chapter 7 - Fragment-Based Drug
1430	Discovery. The Practice of Medicinal Chemistry, 4 th Edition. Pages 161-180. Edited by
1431	Wermuth et al. Elservier Ltd.
1432	217. Venkatesham, A., Saudi, M., Kaptein, S., Neyts, J., Rozenski, J., Froeyen, M.,
1433	Van Aerschot, A., 2017. Aminopurine and aminoquinazoline scaffolds for development of
1434	potential dengue virus inhibitors. Eur J Med Chem. 126, 101-109.
1435	218. Vermehren, J., Park, J.S., Jacobson, I., Zeuzem, S., 2018. Challenges and perspectives of
1436	direct antivirals for the treatment of hepatitis C virus infection. J Hepatol. 10. Pii, S0168-
1437	8278(18)32181-0.
1438	219. Vincetti, P., Caporuscio, F., Kaptein, S., Gioiello, A., Mancino, V., Suzuki, Y., Yamamoto,
1439	N., Crespan, E., Lossani, A., Maga, G., Rastelli, G., Castagnolo, D., Neyts, J., Leyssen, P.,
1440	Costantino, G., Radi, M., 2015. Discovery of Multitarget Antivirals Acting on Both the
1441	Dengue Virus NS5-NS3 Interaction and the Host Src/Fyn Kinases. J Med Chem. 58, 4964-
1442	75.
1443	220. Viswanathan, U., Tomlinson, S.M., Fonner, J.M., Mock, S.A., Watowich, S.J., 2014
1444	Identification of a novel inhibitor of dengue virus protease through use of a virtual
1445	screening drug discovery Web portal. J Chem Inf Model. 54, 2816-25
1446	221.Voter, A.F., Keck, J.L., 2018. Development of Protein-Protein Interaction Inhibitors for the
1447	Treatment of Infectious Diseases. Adv Protein Chem Struct Biol. 111, 197-222.

1448	222. Wagstaff, K.M., Rawlinson, S.M., Hearps, A.C., Jans, D.A., 2011. An AlphaScreen(R)-
1449	based assay for high-throughput screening for specific inhibitors of nuclear import. J.
1450	Biomol. Screen. 16, 192-200.
1451	223. Wang, C.C., Huang, Z.S., Chiang, P.L., Chen, C.T., Wu, H.N., 2009. Analysis of the
1452	nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of
1453	the helicase domain of dengue virus NS3 protein. FEBS Lett. 583, 691-6.
1454	224.Wang, G., Lim, S.P., Chen, Y.L., Hunziker, J., Rao, R., Gu, F., She, C.C., Ghafar, N.A.,
1455	Xu, H., Chan, K., Lin, X., Saunders, O.L., Fenaux, M., Zhong, W., Shi, P.Y., Yokokawa,
1456	F., 2018. Structure-activity relationship of uridine-based nucleoside phosphoramidate
1457	prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorg Med
1458	Chem Lett. 28, 2324-2327.
1459	225.Wang, Q.Y., Dong, H., Zou, B., Karuna, R., Wan, K.F., Zou, J., Susila, A., Yip, A., Shan,
1460	C., Yeo, K.L., Xu, H., Ding, M., Chan, W.L., Gu, F., Seah, P.G., Liu, W., Lakshminarayana
1461	S.B., Kang, C., Lescar, J., Blasco, F., Smith, P.W., Shi, P.Y., 2015. Discovery
1462	of Dengue Virus NS4B Inhibitors. J Virol. 89, 8233-44.
1463	226.Wang, Q.Y., Bushell, S., Qing, M., Xu, H.Y., Bonavia, A., Nunes, S., Zhou, J., Poh, M.K.,
1464	Florez de Sessions, P., Niyomrattanakit, P., Dong, H., Hoffmaster, K., Goh, A., Nilar, S.,
1465	Schul, W., Jones, S., Kramer, L., Compton, T., Shi, P.Y., 2011a. Inhibition of dengue virus
1466	through suppression of host pyrimidine biosynthesis. J Virol. 85, 6548-6556.
1467	227.Wang, Q.Y., Kondreddi, R.R., Xie, X., Rao, R., Nilar, S., Xu, H.Y., Qing, M., Chang, D.,
1468	Dong, H., Yokokawa, F., Lakshminarayana, S.B., Goh, A., Schul, W., Kramer, L., Keller,
1469	T.H., Shi, P.Y., 2011b. A translation inhibitor that suppresses dengue virus in vitro and in

1470 vivo. Antimicrob Agents Chemother. 55, 4072-4080.

- 1471 228.Weng, Z., Shao, X., Graf, D., Wang, C., Klein, C.D., Wang, J., Zhou, G.C., 2016.
- 1472 Identification of fused bicyclic derivatives of pyrrolidine and imidazolidinone as dengue
- 1473 virus-2 NS2B-NS3 protease inhibitors. Eur J Med Chem. 125, 751–759.
- 1474 229. Whitehorn, J., Yacoub, S., Anders, K.L., Macareo, L.R., Cassetti, M.C., Nguyen Van, V.C.,
- 1475 Shi, P.Y., Wills, B., Simmons, C.P., 2014. Dengue therapeutics, chemoprophylaxis, and
- allied tools: state of the art and future directions. PLoS Negl Trop Dis. 8, e3025
- 1477 230.WHO, Special Programme for Research and Training in Tropical Diseases (TDR), Health
- 1478 product research & development fund: a proposal for financing and operation, 2016.
- 1479 231.WHO, 2016-2018, Disease Outbreak news (DON) http://www.who.int/csr/don/en.
- 1480 232.WHO Fact sheet on dengue. http://www.who.int/en/news-room/fact-sheets/detail/dengue-
- 1481 and-severe-dengue.
- 1482 233.WHO, Global Strategy for dengue prevention and control, 2012-2020.
- 1483 234.WHO, WHO Technical 62 Report Series, Stability testing of active pharmaceutical
- 1484 ingredients and finished pharmaceutical products,
- 1485 http://www.who.int/medicines/areas/quality_safety/quality_assurance/StabilityAPIsandFPP
- 1486 S-QAS16-694Rev1-26072017.pdf
- 1487 235. WHO, Dengue guidelines for diagnosis, tretment, prevention and control, 2009.

1488 <u>https://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf</u>

- 1489 236. Wilke, R.A., Lin, D.W., Roden, D.M., Watkins, P.B., Flockhart, D., Zineh, I., Giacomini,
- 1490 K.M., Krauss, R.M., 2007. Identifying genetic risk factors for serious adverse drug
- reactions: current progress and challenges. Nat Rev Drug Discov. 6, 904-916.
- 1492 237.Xie, X., Zou, J., Wang, Q.Y., Shi, P.Y., 2015. Targeting dengue virus NS4B protein for
- drug discovery. Antiviral Res. 118, 39-45.

- 1494 238.Xu, H,T., Colby-Germinario, S.P., Hassounah, S.A., Fogarty, C., Osman, N., Palanisamy,
- 1495 N., Han, Y., Oliveira, M., Quan, Y., Wainberg, M.A., 2017. Evaluation of Sofosbuvir (β-D-
- 1496 2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine) as an inhibitor of Dengue virus replication. Sci
 1497 Rep. 7, 6345.
- 1498 239.Xu, H.T., Colby-Germinario, S.P., Hassounah, S., Quashie, P,K., Han, Y., Oliveira, M.,
- 1499 Stranix, B.R., Wainberg, M.A., 2016. Identification of a Pyridoxine-Derived Small-
- 1500 Molecule Inhibitor Targeting Dengue Virus RNA-Dependent RNA Polymerase.
- 1501 Antimicrob Agents Chemother. 60, 600-8.
- 1502 240. Yang, C.C., Hu, H.S., Wu, R.H., Wu, S.H., Lee, S.J., Jiaang, W.T., Chern, J.H., Huang,
- 1503 Z.S., Wu, H.N., Chang, C.M., Yueh, A., 2014. A novel dengue virus inhibitor, BP13944,
- discovered by high-throughput screening with dengue virus replicon cells selects for
 resistance in the viral NS2B/NS3 protease. Antimicrob Agents Chemother. 58, 110-9.
- 1506 241. Yang. C-C., Hsieh. Y-C., Lee. S-J., Wu, S.H., Liao, C.L., Tsao, C.H., Chao, Y.S., Chern,
- 1507 J.H., Wu, C.P., Yueh, A., 2011. Novel dengue virus specific NS2B/NS3 protease inhibitor,
- BP2109, discovered by a high-throughput screening assay. Antimicrob Agents Chemother.
 55, 229–238.
- 1510 242. Yao, X., Guo, S., Wu, W., Wang, J., Wu, S., He, S., Wan, H., Nandakumar, K.S., Chen, X,
- 1511 Ning, S., Zhu, Q., Liu, S., 2018. Q63, a novel DENV2 RdRp non-nucleoside inhibitor,
- 1512 inhibited DENV2 replication and infection. J. Pharm. Sci. 138, 247-256.
- 1513 243. Yildiz, M., Ghosh, S., Bell, J.A., Sherman, W., Hardy, J.A., 2013. Allosteric inhibition of
 1514 the NS2B-NS3 protease from dengue virus. ACS Chem Biol. 8, 2744-52.
- 1515 244. Yilmaz, K.N., Swanstrom, R, Schiffer, C.A., 2016. Improving Viral Protease Inhibitors to
 1516 Counter Drug Resistance. Trends Microbiol. 24, 547-557.

- 245. Yin, Z., Chen, Y.L., Kondreddi, R.R., Chan, W.L., Wang, G., Ng, R.H., Lim, J.Y., Lee, 1517 1518 W.Y., Jeyaraj, D.A., Niyomrattanakit, P., Wen, D., Chao, A., Glickman, J.F., Voshol, H., 1519 Mueller, D., Spanka, C., Dressler, S., Nilar, S., Vasudevan, S.G., Shi, P.Y., Keller, T.H., 2009. N-sulfonylanthranilic acid derivatives as allosteric inhibitors of dengue viral RNA-1520 dependent RNA polymerase. J Med Chem. 52, 7934-7. 1521 246. Yokokawa, F., Nilar, S., Noble, C.G., Lim, S.P., Rao, R., Tania, S., Wang, G., Lee, G., 1522 Hunziker, J., Karuna, R., Manjunatha, U., Shi, P.Y., Smith, P.W., 2016. Discovery of 1523 1524 potent non- nucleoside inhibitors of dengue viral RNA-dependent RNA polymerase from a fragment hit using structure- based drug design. J Med Chem 59, 3935–3952. 1525 247. Young, M.J., 2017. Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA 1526 Maintenance. Front Mol Biosci. 4, 74. 1527 248. Yusof, R., Clum, S., Wetzel, M., Murthy, H.M., Padmanabhan, R., 2000. Purified 1528 NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for 1529 1530 cleavage of substrates with dibasic amino acids in vitro. J Biol Chem. 275, 9963-9. 249.Zhang, R., Miner, J.J., Gorman, M.J., Rausch, K., Ramage, H., White, J.P., Zuiani, A., 1531 1532 Zhang, P., Fernandez, E., Zhang, Q., Dowd, K.A., Pierson, T.C., Cherry, S., Diamond, M.S.,
- 1533 2016. A CRISPR screen defines a signal peptide processing pathway required by
- 1534 flaviviruses. Nature. 535, 164-8.
- 1535 250.Zhou, G.C., Weng, Z., Shao, X., Liu, F., Nie, X., Liu, J., Wang, D., Wang, C., Guo, K.,
- 1536 2013. Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-
- 1537 NS3 protease inhibitors. Bioorg Med Chem Lett. 23, 6549–6554
- 1538 251.Zou, B., Chan, W.L., Ding, M., Leong, S.Y., Nilar, S., Seah, P.G., Liu, W., Karuna, R.,
- 1539 Blasco, F., Yip, A., Chao, A., Susila, A., Dong, H., Wang, Q.Y., Xu, H.Y., Chan, K., Wan,
- 1540 K.F., Gu. F., Diagana, T.T., Wagner, T., Dix, I., Shi, P.Y., Smith, P.W., 2015. Lead

- 1541 optimization of spiropyrazolopyridones: a new and potent class of dengue virus inhibitors.
- 1542 ACS Med Chem Lett. 6, 344-8.
- 1543
- 1544 Figure legend.
- 1545 **Figure 1.** Dengue virus life cycle. DENV infects host cells such as monocytes by first attaching
- to cell surface receptors, followed by cell entry via a clathrin-dependent entry pathway (Fig. 1).
- 1547 After fusion of the virus envelope with endosomal membrane, the viral RNA is released into the
- 1548 cytosol and translated on the rough endoplasmic reticulum (ER) membrane. Translated DENV
- 1549 non-structural proteins re-organize the ER membrane to form replicative complexes within
- 1550 double-membrane vesicles, where viral RNA replication and virus assembly is initiated.
- 1551 Reproduced with permission from Neufeldt et al., 2018.
- 1552
- 1553

Inhibitors Type/Source	Library size	Screening Assay/Method	Most potent Inhibitor	DENV/Host Target	Reference
In-house library	2,000	in vitro DENV2 NS2B/3 protease assay; 384 well format	BT24 (quinoline derivative), IC ₅₀ = 5 μ M; inhibits DENV1-4 in cell-based assays	DENV NS2B/3 protease; binding to an allosteric site near active site of DENV-2 protease analyzed by in silico docking; no biophysical or genetic validation to confirm specificity.	Beesetti et al., 2018
In-house library of HCV NS5B inhibitors	18	In vitro screening with Dengue 3 NS5 RdRp de novo initiation assay with ssRNA polyC template	compounds 8 and 10 (2,2- dioxido-2,1-benzothiazine benzoates derivatives) with IC ₅₀ of 0.6 and 0.9 μ M; Compound 8 (non-competitive mode of inhibition), EC ₅₀ > 20 μ M; proposed to bind to RdRp N- pocket by molecular modelling.	DENV3 NS5 RdRp; inhibitory specificity confirmed by DLS and Triton-X-100 addition in RdRp assay. No biophysical or genetic validation to confirm specificity.	Cannalire et al., 2018
Pyrazole analogs	Not stated	DENV NS5 de novo initiation FAPA assay with 3'UTR viral RNA	Compounds 1-3 (pyrazole derivatives): NS5 Pol de novo initiation IC ₅₀ = 6-8 μ M, DENV2 cell-based RdRp and infection assays, EC ₅₀ = 6-12 μ M; compound 3 (10 mg/kg) protected mice from lethal dose of intracerebrally injected DENV.	DENV NS5 RdRp; no biophysical or genetic validation to confirm specificity.	Pelliccia et al., 2017
in-house library	not stated	in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Bz-Nle- Lys-Arg-Arg-MCA	Fused bicyclic derivatives of pyrrolidine and imidazolidinone, SAR conducted; compound 2 (DENV2 IC ₅₀ , K_i and EC ₅₀ = 1.2, 4.9 and 39.4 μ M)	DENV NS2B/3 protease; binding in protease active site analyzed by in silico docking; no biophysical or genetic validation to confirm specificity.	Weng et al., 2017

Table 1. Compound screening with *in vitro* DENV enzyme assays

		in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Bz-Nle- Lys-Arg-Arg-MCA	dipeptides of methionine–proline anilides, SAR conducted; compound 1 has DENV2 IC ₅₀ , K_i and EC ₅₀ = 1.2, 4.9 and 38.7 μ M (competitive inhibitor)	DENV NS2B/3 protease; binding in protease active site analyzed by in silico docking; no biophysical or genetic validation to confirm specificity.	Weng et al., 2017; Zhou et al., 2013
Asinex, TimTec, Biomol, Enamine, Chembridge, ChemDiv, Life Chemicals, Maybridge, MicroSource, NIH, NINDS, Prestwick, Sigma LOPAC, ICBG Fungal Extracts	≤ 120,000	in vitro DENV2 NS2B/3 protease assay; 384 well format; fluorescent peptide substrate, Bz-Nle-Lys-Arg- Arg-AMC	29 hits chosen for reconfirmation; DENV2 K_i , EC ₅₀ and CC ₅₀ values of 8 selected compounds (A-H) ranged from 0.22 - 6.9 μ M, 0.08 to >20 μ M (plaque assays and replicon) and 29->100 μ M.	DENV NS2B/3 protease; binding in protease active site analyzed by in silico docking; binding validated by competitive fluorescence quench assay with BPTI. No genetic validation.	Balasubramanian et al., 2016
French National Chemical Library	not stated	DENV2 NS5 RdRp de novo initiation assay with homopolymeric(U) RNA (picoGreen incorporation)	SAR conducted from hit, compound 1 (IC ₅₀ = 1.3 μ M). Analogues 18 , 27 , 33 and 34 (3- phenyl-5-[(E)-2-(thiophen2- yl)ethenyl]-1,2,4-oxadiazole and 5-phenyl2-[2-(2- thienyl)ethenyl]-1,3,4-oxadiazole derivatives), IC ₅₀ = 2-9 μ M; EC ₅₀ from 2-12 μ M; CC ₅₀ from 30- >100 μ M.	DENV2 NS5 RdRp; no biophysical or genetic validation to confirm specificity.	Benmansour et al., 2016
National Institutes of Health Molecular Libraries Small Molecule Repository	65,423	in vitro WNV NS2B/3 protease; fluorescent peptide substrate, Pyr-RTKR-AMC; 384 well format	compounds 1 and 2 (Pyrazole ester derivative), DENV $IC_{50} =$ 8.5 and 0.5 μ M	DENV NS2B/3 protease; binding validated by ESI- TOF MS and NMR with WT and S135A protease mutant, possibly via covalent interaction to active site; binding to DENV2 protease active site analyzed by in silico docking. No validation in DENV cell-based assays.	Koh-Stenta et al., 2015; Johnston et al., 2007.
focused helicase inhibitor library (ML283 analogues and other compounds)	253	DENV NS3 ATPase colorimetric assay with helicase domain in presence of poly(U)	HTS hit, ML283 (benzothiazole derivative); SAR conducted. Analogue 24 has DENV ATPase and helicase unwinding IC_{50} =500	DENV NS3 helicase/ATPase; no biophysical or genetic validation to confirm	Sweeney et al., 2015; Ndjomou et al., 2012

			nM and 1.5 μ M; EC ₅₀ = 7.1 μ M; SI = 17; active against HCV helicase. Second HTS hit class, pyrrolones; compounds b- 30 have weak DENV ATPase and cell- based activities, not active against HCV helicase.	specificity.	
In-house library	250	in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Boc–Gly– Arg–Arg–AMC; binding assay based on microscale thermophoresis (MST) technology	Compound 6 (benzothiazole derivatives); DENV2, 3 NS2B/3 protease assay, $IC_{50} = 4$ and 1 μ M respectively (noncompetitive inhibition); DENV2 $EC_{50} = 0.8$ μ M; DENV2 protease cell-based assay $EC_{50} = 3.2 \mu$ M.	DENV NS2B/3 protease; binding in allosteric site in protease analyzed by in silico docking; compound binding validated by MST; no genetic validation to confirm specificity.	Wu et al., 2015
Experimental Therapeutics Centre, Singapore	1600	In vitro fluorescent molecular beacon assay (DENV4 helicase unwinding activity); 384 well format	Suramin has K_i of 0.75 \pm 0.03 μ M (non-competitive inhibitor).	DENV NS3 helicase; no biophysical or genetic validation to confirm specificity.	Basavannacharyam and Vasudevan, 2014
Commercial (source not stated)	7000	in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Bz-Nle-Lys- Arg-Arg-AMC	Hit, compound 1 (thiadiazolopyrimidine) has DENV2 IC ₅₀ = 6.1 μ M. SAR conducted; compound 8b (thiadiazoloacrylamide derivative) has DENV2 IC ₅₀ =2.24 μ M	DENV NS2B/3 protease; binding in allosteric site in protease analyzed by in silico docking; compound binding validated by MST; no genetic validation.	Liu et al., 2014
Novartis	≤257,000	DENV4 NS5 RdRp (aa266- 900) fluorescent de novo initiation FAPA and LCMS detection assays	Various chemical scaffolds, NS5 RdRp IC ₅₀ <20 μ M, DENV2 replicon EC ₅₀ <30 μ M	DENV4 NS5 RdRp; biophysical validation with DSF. No genetic validation to confirm specificity.	Smith et al., 2014b

MicroSource Spectrum Collection (MicroSource Discovery Systems Inc., Gaylordsville, CT)	2000	in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Boc–Gly– Arg–Arg–AMC	Tyrothricin (DENV2 $K_i = 12 \mu$ M; competitive inhibition); Ivermectin (DENV2 $K_i = 79 \mu$ M; mixed non-competitive inhibition); Selamectin (DENV2 $K_i = 15 \mu$ M; mixed non- competitive inhibition)	DENV NS2B/3 protease; counter-screens to remove artifacts; specificity checked with trypsin assay; no biophysical or genetic validation to confirm specificity.	Tomlinson and Watowich, 2012
crude venom extractions of cone snails (comprise disulfide-rich short peptides of 10–40 residues) followed by fractionation	not stated	in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Bz-Nle-Lys- Arg-Arg-AMC	Initial hit, MrIA (conotoxin from marmoreus, 13-aa peptide), followed by SAR. Cyclic octapeptide, 9 has DENV2 NS2B/3 $K_i = 9$ and 2.2 μ M, respectively	DENV NS2B/3 protease; binding in active site in protease analyzed by in silico docking; no biophysical or genetic validation to confirm specificity	Xu et al., 2012
Chemical Diversity Laboratory (San Diego, CA)	41,600	in vitro DENV2 NS2B/3 protease colorimetric assay; peptide substrate acetyl- TTSTRR-para-nitroaniline	BP2109 DENV2 IC ₅₀ of 15.43 μ M, DENV-2 replicon EC ₅₀ = 0.17 μ M.	DENV NS2B/3 protease; compound resistant DENV2 shows R55K and E80K mutations in NS2B; no biophysical validation.	Yang et al., 2011
Novartis	1 million	DENV4 NS5 Pol elongation SPA assay (homopolyC/oligoG)	primary hit, NITD-1 (IC ₅₀ =7.2 mM, N-sulfonylanthranilic acid derivative); SAR conducted. Most active analogue, NITD-28 (IC ₅₀ = 260 nM); inactive in DENV cell-based assays	DENV2 NS5 FL; binding confirmed by uv photo- crosslinking studies and MS analysis.	Niyomrattanakit et al., 2010; Yin et al., 2009

A Cro
Inhibitors Type/Source	Library size	Screening Assay/Method	Inhibitor	DENV/Host Target	Reference
Selleck bioactive compound library and the Chemdiv 7 library	21,271	Alpha screen with DENV prefusion E dimer or domain I (DI)-DII protein and GNF-2 inhibitor (4,6-disubstituted pyrimidine derivative)	7 compounds, $IC_{50} < 10 \mu M$; DENV2 EC_{50} range from 0.8-9 μM	DENV Envelope; no validation of on-target inhibition in DENV- infected cells.	Lian et al 2018
Quinazolinone derivatives	not stated	SPR with DENV2 RdRp (aa272-900)	Q63, $K_{\rm d} = 0.9 \ \mu\text{M}$; DENV-1, -2, -4 EC ₅₀ = 1.7–2.1 μ M.	DENV NS5 RdRp; binding confirmed by ITC, binding site in RdRp analyzed by in silico docking. No validation of on-target inhibition in DENV- infected cells.	Yao et al., 2018
Maybridge Chemical Company; RO3 fragment library 2009 (Cambridge, U.K.)	500	Thermo-denaturation assay with DENV4 NS3 helicase and DENV3 NS5 MTase	No hits for helicase, 7 hits for MTase (IC ₅₀ range from 0.18-9 mM); fragment linking strategy improved 2'- O MTase inhibitory activity.	DENV NS3 helicase and NS5 MTase; binding site in MTase analyzed by in silico docking. No biophysical or genetic validation.	Benmansour et al., 2017; Coutard et al., 2014
Novartis in-house fragment library	1408	DENV3 RdRp (aa 273-900) X- ray crystallography	Most potent compounds, 27 , 29 , 29i ; DENV1-4 NS5 de novo initiation (dnI) IC ₅₀ = 13-172 nM; DENV4 NS5 elongation IC ₅₀ = 0.43-5 μ M; DENV1-4 EC ₅₀ = 2-14 μ M.	DENV NS5 RdRp; binding confirmed by ITC, SPR, DSF, cellular thermo-shift. Compound resistant DENV2 replicons have L512V and E802D mutations in RdRp.	Noble et al.,2016; Yokokawa et al., 2016; Lim et al., 2016
LOPAC (Library of Pharmacologically Active Compounds; Sigma, St. Louis, MO)	480	AlphaScreen® to inhibit interaction between HIV-1 integrase and nuclear transport receptor importin $\alpha/\beta 1$ (IMP $\alpha/\beta 1$)	Ivermectin; inhibition of DENV1/2 NS5- IMP α/β 1 interaction, IC ₅₀ = 1.5-2.3 μ M; EC ₅₀ = 1.6–2.3 μ M.	DENV NS5-IMPα/β1 interaction; no validation of on-target inhibition in DENV-infected cells.	Tay et al., 2013; Wagstaff et al., 2011

Table 2. Compound screening with DENV protein binding assays.

Cysteine reactive probes	5	Binding of cysteine reactive probes to DENV NS2B/3 protease cysteine mutant A125C; fluorescent peptide substrate, N-acetyl-Gly-Arg- Arg-AMC	5,5'-dithiobis-(2-nitrobenzoic acid (DTNB) and biarylchloromethylketone (BAClMK)	DENV NS2B/3 protease; binding confirmed by X- ray crystallography.	Yildiz et al., 2013
NRSB library, Institute of Chemistry and Cell Biology Longwood Screening Facility, Harvard Medical School	235,456	DENV2 MTase GTP-bodipy displacement assay	Hit class with thioxothiazolidin core. 24 analogues tested. BG- 323 has DENV2 guanylation K_i and IC ₅₀ = = 7.5 and 7.3 μ M; EC ₅₀ = 30 μ M	DENV MTase; binding site in MTase analyzed by in silico docking; no validation of on-target inhibition in DENV- infected cells.	Stahla-Beek et al., 2012
Compound libraries at NSRB at Harvard Medical School.	≤ 30,000	DENV2 Env stem peptide (aa419–447) conjugated with FITC- soluble Env trimer FP assay ; 384 well format	1662G07 (Maybridge; $IC_{50} = 15$ μM; $EC_{50}/CC_{50} = 16.9/>100$ μM); and different analogues, $IC_{50} = 8-40$ μM; DENV2 EC_{50} = 1.5-10 μM	DENV Envelope; binding confirmed by SPR; no validation of on-target inhibition in DENV- infected cells.	Schmidt et al., 2012, 2010

CEP TEN

Table 3. DENV rational drug design.

Inhibitors Type/Source	Library size	Screening Assay/Method	Inhibitor	DENV/Host Target	Reference
Cyclic peptides designed from aprotinin (target DENV protease prime sites)	19	Designs are based on aprotinin-bound DENV3 NS2B/3 protease X-ray structure (PDB code 3U1J). Fluorescence resonance energy transfer (FRET)- based NS2B/3 protease assay; ITC	19 cyclic peptides targeting S3 to S4' positions made and tested. CP7 (PC*RARIYGGC*A; cyclized through a disulfide bond between two cysteine residues*), DENV3 K_i = 2.9 μ M	DENV NS2B/3 protease; molecular simulation to analyze binding in protease active site; no biophysical or genetic validation to confirm specificity.	Lin et al., 2017, 2016
Peptide inhibitors with CONH2 and boronic acid warheads	8 each	fluorescence resonance energy transfer (FRET)- based NS2B/3 protease assay	Best compound, 7 (Bz-(4- guanidino)Phe-Arg-B(OH)2; DENV2 $K_i = 27$ nM; IC ₅₀ = 36 nM; EC ₅₀ /CC ₅₀ = 18/>100 μ M	DENV and WNV NS2B/3 protease; confirmed by X-ray crystallography; no genetic validation.	Nitsche et al., 2017
high throughout synthesized cyclic octapeptides	33	in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Boc–Gly– Arg–Arg–MCA	Best peptide, 22 has IC_{50} = 0.95 μ M; most cellular active peptide, 33 , has IC_{50} = 2.1 μ M and EC_{50}/CC_{50} = 11.4/129 μ M.	DENV NS2B/3 protease; binding in active site analyzed by in silico docking; no biophysical or genetic validation.	Takagi et al., 2017
fused bicyclic compounds of pyrrolidino and imidazolidinone derivatives	not stated	in vitro DENV2 NS2B/3 protease assay; fluorescent peptide substrate, Bz-Nle- Lys-Arg-Arg-MCA	Fused pyrrolidino [1,2- c]imidazolidinone compound, 2 has $IC_{50}= 1.2$ μM (competitive to nucleotide incorporation) and DENV2 EC ₅₀ = 39 μM .	DENV NS2B/3 protease; binding site in active analyzed by in silico docking; no biophysical or genetic validation.	Weng et al., 2017; Zhou et al., 2013
Library of active-site metal ion chelator	n.a	In vitro filter-binding DENV RdRp assay	DMB220 (pyridoxine- derivative); DENV1-4 RdRp IC ₅₀ and EC ₅₀ /CC ₅₀ = 5-6.7 μ M and 2.2-2.8/>50 μ M; inactive against HIV RT and weakly active against HIV integrase.	DENV RdRp; S600T mutation in RdRp conferred 3-fold increase in IC_{50} . In silico docking of compound in RdRp; no biophysical or genetic validation.	Xu et al., 2016; Stranix et al., 2009.
Peptidomimetics (N-capped- Capped (Bz-Arg-Lys- 4- hydroxyphenylglycine-NH ₂	< 100*	fluorescence resonance energy transfer (FRET) with substrate Abz-Nle-Lys-Arg-	104 , DENV2 $K_i = 18 \text{ nM}$; EC ₅₀ /CC ₅₀ = 3.4/>100 μ M. Inactive against thrombin and	DENV NS2B/3 protease; binding in active site analyzed by in silico	Behnam et al., 2015*, 2014; Nitsche et al., 2013, 2012

tripeptides)		Arg-Ser-3-(NO ₂)Tyr and HPLC-based NS2B/3 protease assays	trypsin.	docking; competitive fluorescence quench assay with aprotinin confirmed binding to protease active site; no genetic validation.	
Peptide inhibitors with phenylalanine and phenylglycine analogues as arginine mimetics for S2 pocket.	24	fluorescence resonance energy transfer (FRET) assay with substrate Abz-Nle-Lys- Arg-Arg-Ser-3-(NO ₂)Tyr	Most potent compound, 42a , DENV IC ₅₀ = 210 nM, $K_i = 139$ nM; not active against WNV protease, trypsin.	DENV NS2B/3 protease; binding in active site analyzed by in silico docking; competitive fluorescence quench assay with aprotinin confirmed binding to protease active site; no genetic validation.	Weigel et al., 2015
Capsid peptides	2	Atomic force microscopy- based force spectroscopy, dynamic light scattering, NMR and computational analysis	Peptide comprising aa14-23 of DENV Capsid protein, IC_{50} and EC_{50} not determined	Inhibits capsid binding to perilipin 3 in lipid droplets (LD), ApoE in very low-density lipoproteins (VLDLs). No genetic validation.	Faustino et al., 2015a, b, 2014; Martins et al., 2012
S-adenosyl-homocysteine analogues	12	in vitro DENV3 MTase N7 and 2'- <i>O</i> MTase assay	Compound 10, N7 and 2'- O IC ₅₀ = 0.82 and 0.17 μ M, respectively.	DENV MTase; compound binding confirmed by X-ray crystallography, No genetic validation.	Lim et al., 2011

Inhibitors Type/Source	Library size	Screening Assay/Method	Inhibitor	DENV/Host Target	Reference
NCI diversity set II library	24,428	In silico docking of apo-DENV NS2B/3 protease X-ray crystal structure (2FOM) using AutoDock Vina program; fluorescence-quench NS2B/3 protease assay with heptapeptide; split luciferase complementation (SLC)-based conformational switch assay to monitor NS2B conformational changes upon binding to NS3 protease	Tested top 29 hits; NSC135618, DENV2 IC ₅₀ = 1.8 μ M (hill coefficient = 0.7; non-competitive mode of inhibition); EC ₅₀ = 0.81 μ M; A549 CC ₅₀ = 48.8 μ M; inhibits ZIKV, YFV and WNV cell-based assays at low micromolar activities.	Likely NS2B/3 protease; binding confirmed with biophysical (thermal shift; Tm increased by 2.6-4.8 °C) using WT and mutant proteins and biochemical ZIKV protease cleavage assay. No genetic validation to confirm specificity.	Brecher et al., 2017
Maybridge database (using ICM software)	110,000	In silico docking of DENV Env β- OG binding site; DENV firefly luciferase reporter infectious virus assay	23 hits; compounds 2 and 5 with DENV2 EC ₅₀ = 3.1 and 5 μ M, respectively; BVDV EC ₅₀ >50 μ M; CC ₅₀ >100 μ M; compound 2 docked into DENV Env β -OG binding site.	Maybe DENV Envelope. No biophysical or genetic validation to confirm specificity.	Leal et al., 2017
Pyrazole analogs	Not stated	In silico docking of allosteric pocket of apo-DENV NS2B/3 protease X- ray crystal structure (2FOM) using PLANTS; DENV NS2B/3 protease assay with Boc-Gly-Arg-Arg-AMC	Compounds 4 , 5 : NS2B/3 protease $IC_{50} = 5-7 \mu M$; DENV2 cell-based protease and infection assays, $EC_{50} = 5-8 \mu M$; compound 4 (1 mg/kg) protected mice from lethal dose of intracerebrally injected DENV.	Maybe DENV NS2B/3 protease; no biophysical or genetic validation to confirm specificity.	Pelliccia et al., 2017
PubChem	210,903	In silico docking of apo-DENV NS2B/3 protease X-ray crystal structure (2FOM) using AutoDock Vina program; DENV NS2B/3 protease assay with Boc-Gly-Arg- Arg-AMC.	5 hits tested; CID54681617, CID54692801 and CID54715399; DENV2 IC ₅₀ values (μ M) and viral titer reduction assay = 19.9 & 79.9%; 17.5 & 69.8% and 9.1 & 73.9%, respectively.	Maybe DENV NS2B/3 protease; no biophysical or genetic validation to confirm specificity.	Cabaracas-Montalvo et al., 2016

Table 4. Compound screening with in silico docking and modeling in X-ray structures of DENV proteins.

PubChem ^a and SuperNatural II database ^b	372792 (47,473 small molecules and 325,319 natural products)	Homology models of DENV1-4 RdRp; in silico docking into RdRp RNA tunnel using AutoDock/Vina programs	39 compounds predicted to bind; IC_{50} not reported.	Maybe DENV3 RdRp; no biochemical, biophysical or genetic validation to confirm specificity.	Galiano et al., 2016
plant-derived secondary metabolites	2,194	In silico docking of DENV envelope, helicase, protease, MTase and RdRp X-ray crystal structures and NMR structures using Molegro Virtual Docker (version 6.0, Molegro ApS, Aarhus, Denmark)	25 hits for NS2B/3 protease; 21 hits for NS3 helicase; 15 hits for MTase; 1 hit for RdRp; 31 hits for Envelope. Most frequent binders: Polyphenolic compounds, flavonoids, chalcones, and other phenolics; IC ₅₀ not reported	DENV envelope, helicase, protease, MTase and RdRp; no biochemical, biophysical or genetic validation to confirm specificity.	Powers and Setzer 2016
In-house library of HCV NS5B inhibitors	203	In silico docking into DENV3 RdRp X-ray crystal structure (2J7U) using AutoDock 4.2 software package	HeE1-2Tyr (pyridobenzothiazole derivative; non-competitive mode of inhibition), DENV3 $IC_{50} = 1.5 \mu M$; DENV1-4 $EC_{50} = 6.8-15 \mu M$.	DENV3 NS5 RdRp (binding site determined by X-ray crystallography is in Site 1 between fingers domain and the priming loop); binds in the same region as NITD-107.	Tarantino et al., 2016
ChemBridge Corporation (San Diego, CA), Enamine (Kyiv, Ukraine), Life Chemicals (Niagara on the Lake, ON), Maybridge Chemicals, Thermo Fisher Scientific Inc., Janssen Pharmaceutical (Belgium).	5 million	In silico docking of DENV NS2B/3 protease X-ray crystal structure with nKRR-H inhibitor (3U11) using Molecular Operating Environment Molecular Operating Environment (MOE) software, Chemical Computing Group Inc.) and AutoDock (The Scripps Research Institute); DENV NS2B/3 protease assay with Bz-nKRR-AMC.	14 hits; compound 14 shows 85.3% at 300 μ M inhibition in NS2B/3 protease assay; EC ₅₀ = 5 μ M	Maybe DENV NS2B/3 protease; no biophysical or genetic validation to confirm specificity.	Li et al., 2015
Src tyrosine protein kinase active sca □ olds (databases of bioactive molecules from ChEMBL, BindingDB) and internal collection of kinase inhibitors	≤ 3000 Src inhibitors and ≤10000 virtual analogs	In silico docking of DENV3 NS5 RdRp allosteric site (cavity B) using Glide Standard Precision docking protocol and Autodock Vina; NS3–NS5 AlphaScreen assay	22 compound tested; compound 16i (purine derivative) with DENV EC ₅₀ = 5.3μ M; CC ₅₀ = 168 μ M	May inhibit DENV NS3–NS5 interaction; no biophysical or genetic validation to confirm specificity.	Vincetti et al., 2015

(A) Subset of the ZINC database with "drug-like" properties (selected from ChemBridge Corporation, ChemDiv Inc. (San Diego, CA), Ryan Scientific Inc. (Mount Pleasant, SC), Maybridge Chemical Company, Sigma- Aldrich); (B) Focused library from ChemBridge and Maybridge Chemical with clogP filters.	(A) 642,769 (B) 45 458	DrugDiscovery@TACC portal; in silico docking of DENV NS2B/3 protease X-ray crystal structures with (3U1I and 3U1J) and without (2FOM) bound inhibitors using autodock Vina program on supercomputer resources at the Texas Advanced Computing Center; DENV NS2B/3 protease assay with BocGRR-AMC.	ZINC04321905; DENV NS2B/3 protease $K_i = 7 \mu M$ with mixed noncompetitive inhibition.	Maybe DENV NS2B/3 protease; no biophysical or genetic validation to confirm specificity.	Viswanathan et al., 2014
MOE lead-like database	661,417	In silico docking of DENV NS2B/3 protease X-ray crystal structure (2FOM) at the NS3-NS2B interaction region using MOE software	39 hits tested; SK-12 (noncompetitive inhibitor); DENV1-4 EC ₅₀ = 0.7-2.4 μ M; JEV EC ₅₀ = 29.8 μ M; in silico modeling in NS2B binding site of NS3 protease.	Maybe DENV NS2B/3 protease; no biophysical or genetic validation to confirm specificity.	Pambudi et al., 2013
Library of Pharmacologically Active Compounds (LOPAC), Sigma-Aldrich	1280	In silico docking (AutoDock4 software package) of a model of WNV NS3 helicase X-ray crystal structure (2QEQ) with ssRNA.	3 hits tested; Ivermectin (DENV IC ₅₀ = 500 ± 70 nM; EC ₅₀ = 700 nM (virus reduction assay) and <1 μ M (CPE assay); K_i = 354 nM; uncompetitive inhibition. Mutations T408A and D409A in helicase protein abolish inhibitory activity. Also inhibits WNV, YFV, TBEV, JEV but not BVDV nor HCV.	Maybe DENV helicase; no biophysical or genetic validation to confirm specificity.	Mastrangelo et al., 2012
		Y			

Inhibitors Type/Source	Library size	Screening Assay/Method	Inhibitor	DENV/Host Target	Reference
Mammalian Ser/Thr, Tyr and lipid kinase inhibitors from Calbiochem (San Diego, CA), Sigma-Aldrich (St. Louis, MO), Pierce (Rockford, IL), re- synthesized clinical-stage inhibitors)	>120	DENV infection of Vero cells (IFA, fluorescence detection); 384 well format	Imatinib, dasatinib, GNF-2 (4,6 disubstituted pyrimidine), AZD0530, 2,4-diamino pyrimidines, DENV2 EC ₅₀ from 5-20 µM	c-Src, Abl and Fyn kinases and block DENV particle formation by binding to DENV Envelope in ER; validated by siRNA knockdown	de Wispelaere et al., 2018, 2013; Clark et al., 2016; Chu and Yang, 2007
in-house library	not stated	In vitro screen with DENV-2 luciferase reporter replicon assay; inhibitions tested with DENV2 whole virus infection assay	SAR exploration from hit compound, 10e; compound 14l (phthalazinone derivative); DENV2 EC ₅₀ value of 0.13 μM	under investigation (proposed as NS2B/3 protease based on docking studies); no biochemical, biophysical or genetic validation to confirm specificity.	Lu et al., 2018
Shionogi antiviral compounds library	7000	DENV-induced cytopathic (CPE) assay	compound-B (benzimidazole derivative); DENV1-4 $EC_{50}s = 1.32$ -4.12 μ M	NS4A; compound resistant virus, has C87S mutation in NS4A.	Nobori et al., 2018
chemically diverse compounds National Screening Laboratory for the Regional Centers of Excellence in Biodefense and Emerging Infectious Diseases (Harvard Medical School, Boston, MA)	51,000	Human foreskin fibroblasts, stably expressing human telomerase reverse transcriptase and IRF3/IFN-responsive pGreenFire-ISRE lentivector.	AV-C ((2-fluorophenyl)-2-(5- isopropyl-1,3,4-thiadiazol-2- yl)-1,2-dihydrochromeno[2,3- c]pyrrole-3,9-dione); DENV2 EC ₅₀ from 9.9 μM	agonist of TRIF signaling pathway, induces IRF3 expression and type I interferon secretion; IPS-1/MAVS involved in Flavivirus replication. Validated with CRISPR/Cas9- mediated genome editing in cells.	Pryke et al., 2017
MicroSource (2,000 known drugs, experimental bioactives, and pure natural products), Prestwick Chemical Library (1,119 off- patent drugs), Tocris, CRL, BioFocus, SPECS	5632	DENV2 infection of HEK293 cells (high content imaging, fluorescence detection); 384 well format	SAR exploration of 39 analogs; VGTI-A3, VGTI-A3-03 (DENV2 IC ₉₀ = 112 and 40 nM, respectively)	Binds to DENV capsid pocket involved in dimerization and associates with secreted virus particles; compound resistant	Smith et al., 2018, Shum et al., 2010

Table 5. Compound Screening with DENV cell-based assays

				virus, has 125L, L35P,	
				LSONI mutations in	
				Labibita Documina	
				Innibits Dopamine	
			SKI-417616	Receptor D4 and	
			(dihydrodibenzothiepines	Downstream Mitogen-	
			derivatives); DENV2 $EC_{50} =$	Activated Protein	Consider at al. 2014.
			1.2 μ M; CC ₅₀ = 43.2 μ M; also	(through blocking EDV	Sinith et al., 2014a.
			inhibits DENV-1, -3, -4, WNV,	(Infough blocking EKK	
			SINV at similar potency.	chemical validation	
				with known inhibitors	
				MTX- dihydrofolate	
			methotrexate (MTX) and	reductase: floxuridine –	
			floxuridine (DENV2 IC ₅₀ = 90	uracil analog, inhibits	
			and 60 nM, respectively); also	thymidylate synthase:	Fischer et al., 2013
			inhibits DENV-1, -3, -4, WNV	chemical validation	
			at similar potency. No efficacy	with thymidine	
			in letnal DENV mouse model.	precursor.	
				DENV NS2B/3	
		DENV-2 luciferase	BP13944 DENV2 $FC_{co} = 1.03$	protease; compound	
Chemical Diversity Lab (San	60,000	reporter replicon in	$\pm 0.09 \text{ µM}$: active on DENV-1	resistant DENV2	Yang et al. 2014
Diego, CA)	00,000	BHK21 cells	-3 and -4.	replicon has E66G	rung et un, 2011
				mutation in NS3	
				protease.	
				DENV NS4B;	
				compound resistant	
			JNJ-1A, DENV1-4 EC50 =	DENV2 replicon has	Haman dan Manalaa
			0.7 μ M; equally potent on	11081 mutation in NSAR: $D10AI / A 110T$	Arnandez-Morales
			DENV-1, -3, -4.	mutation in NS/B also	et al., 2017
				abolished inhibition:	
Janssen Pharmaceutical in-house library	not stated	DENV-2 luciferase		same as NITD-618	
	not stated	reporter replicon	 	vopioid receptor	
	∇			antagonist, DENV EC ₅₀	
		($= 1.9 \mu\text{M}; \text{ compound}$	
			SDM25N	resistant DENV2	van Cleef et al.,
				replicon has F164L	2013
				mutation in NS4B;	
				P104L mutation in	

				NS4B also abolished inhibition; same as NITD-618 and JNJ-1A.	
Chemical library from the Centre for Drug Design and	not stated	DENV2-induced CPE in Vero-B cells (7 day assay)	compound 1 (acyl-indole derivative), DENV2 EC_{50}/CC_{50} = 0.078/29 µM; extensive SAR exploration resulted in compound 12a (dimethoxyaniline analogue, (+)-enantiomer) DENV2 $EC_{50}/CC_{50} = 0.007/16$ µM	NS4B; compound resistant DENV2 has mutation in NS4B (amino acid not stated).	Bardiot et al., 2018
			compound 14 (purine pyrazolyl derivative) ; DENV2 EC50/CC50 = 1.9/>109 μM	Proposed NS5 RdRp; in silico docking in cavity B; no biophysical or genetic validation to confirm specificity.	Venkatesham et al., 2017
Discovery (CD3); KU Leuven			compounds 6b , 6d and 7a (pyrazine dicarboxamide derivatives), DENV2 EC50/CC50 = 0.5/>116 μM	Not determined	Saudi et al., 2016
			compounds 15b (imidazole dicarboxamide derivative), DENV2 EC ₅₀ /CC ₅₀ = $2.5/>120$ μ M; compounds 20a and 20b (pyrazine dicarboxamide derivatives), DENV2 EC ₅₀ /CC ₅₀ = $0.94/>117.5$ μ M.	Not determined	Saudi et al., 2014a
Selleckchem bioactive compound library (FDA- approved drugs and known bioactives)	≤ 2,000	ZIKV infection of U2OS cells (high content imaging, fluorescence detection); 384 well format	nanchangmycin (IC ₅₀ not determined); active against ZIKV, WNV, CHIKV.	Receptor Tyrosine Kinase, AXL; proposed as attachment receptor for Flaviviruses; no chemical or genetic validation to confirm specificity.	Rausch et al., 2017

Novartis in-house library	DENV report screer	DENV-2 luciferase reporter replicon; counter- screen with HCV replicon	Hit, compound 1 (spiropyrazolopyridon derivative), DENV2 EC ₅₀ =14 nM (HCV replicon EC ₅₀ > 5 μ M); extensive SAR exploration; compounds 14a ; DENV-2 and -3 EC ₅₀ = 42/76 nM; DENV-1 and -4 EC ₅₀ > 1 μ M; treatment with 5, 25, and 50 mg/kg of compound 14a (BID) reduced mouse viremia by 1.7-, 10-, and 39-folds.	DENV NS4B; compound resistant DENV2 has V63A/L/M/S/T mutations in NS4B.	Wang et al., 2015; Zou et al., 2015
			NITD-618 (aminothiazole derivative); DENV1-4 $EC_{50}/CC_{50} = 1.0-4.1 \mu M/>40$ μM	DENV NS4B; compound resistant DENV2 replicon has P104L and A119T mutation in NS4B.	Xie et al., 2011
		DENV-induced cytopathic (CPE) assay	NITD-982 (isoxazole-pyrazole derivative); DENV2 EC ₅₀ /CC ₅₀ = 2.4 nM/>5 μM	inhibits host dihydroorotate dehydrogenase involved in de novo pyrimidine biosynthesis; validated by binding assay, brequinar and uridine addition in DENV cell- based assay	Wang et al., 2011a
			Hit, NITD2636 has DENV-2 EC ₅₀ =0.55 μ M; extensive SAR exploration; NITD-451 (benzomorphan derivative); DENV2 EC ₅₀ /CC ₅₀ = 160 nM/>50 μ M; treatment with 25 mg/kg of compound14a (QD) reduced mouse viremia by about 40-folds.	viral RNA translation; validated with biochemical and cell- based assays.	Wang et al., 2011b
Not stated	≤ 200,000	DENV2 infection of Vero cells (CPE measurement); 96 well format	ST-148 (Maybridge); DENV1- 4 $EC_{50}/CC_{50} = 16-2800$ nM/>100 μ M; treatment with 50 mg/kg of compound (QD)	DENV capsid, ST-148 enhanced capsid protein self-interaction; compound resistant	Byrd et al., 2013a; Scaturro et al., 2014

			reduced mouse viremia by about 52-folds.	DENV2 has S34L mutation in capsid; validated by intracellular BRET assay.	
			ST-610 (benzoxazole derivative; ChemBridge); DENV1-4 $EC_{50} = 45-377$ nM; treatment with 100 mg/kg of compound (QD or BID) reduced mouse viremia by about 5-folds.	Inhibits DENV helicase unwinding activity but not ATPase activity; compound resistant DENV2 has A263T mutation in helicase.	Byrd et al., 2013b
bioactive lipid library Biomol (Enzo) supplemented with additional commercial compounds.	212	DENV infection of Vero cells (IFA, fluorescence detection); 384 well format	4-hydroxyphenyl retinamide (4- HPR); DENV2 $EC_{90}= 2 \mu M$; U18666A; also active on WNV, HCV, Modoc virus; treatment with 180 mg/kg of compound (QD) reduced mouse viremia by about 1.7-folds.	Inhibit DENV RNA synthesis likely via host pathway; mechanism of action not determined.	Carocci et al., 2015; Chu and Yang, 2007
		CERTER			

Table 6. DENV NIs.

Base	Modification (Name)	Assays	anti-DENV activity: EC ₅₀ /CC ₅₀ [IC50] µM	POLRMT SNIR [#] IC ₅₀ μM [% inhibition]	Reference
Adenosine (A)	2'-C-methyl-A	DENV2 infection in Vero cells [DENV2 in A549 cells]	4/18 [1.1/>50]*	62 ^a ; [>30 ^b]	Migliaccio et al., 2003; Chen et al., 2010a*
	7-deaza-2'-C-methyl-A (7DMA, MK-0608)	DENV2 infection in Vero cells	15/>320	n.d.	Schul et al., 2007; Olsen et al., 2004
	2'-C-acetylene-A	DENV2 infection in A549 cells	1.4/>50	n.d.	Chen et al., 2010a
	7-deaza-2'-ethynyl-A (NITD008)	DENV2 infection in A549 cells & human PBMCs*	0.7/>100; 0.18-28/>25*	91 ^a	Yin et al., 2009; Chen et al., 2010b*
	7-deaza-7-F-2'-acetylene-A	DENV2 infection in A549 cells	0.42/44	n.d.	Chen et al., 2010a
	7-deaza-7-cyano-2'- acetylene-A	DENV2 infection in A549 cells	3.1/>100	n.d.	
	7-deaza-7-ethanamide-2'- acetylene-A	DENV2 infection in A549 cells	2/62	n.d.	
	2'-C-acetylene-7-deaza-7- carbamoyl-A (NITD449)	DENV1-4 infection in Vero and A549 cells and human PBMCs	1.62-6.99/>50	n.d.	- Chen et al., 2010b
	3',5'-O-diisobutyryl-prodrug of NITD449 (NITD203)	DENV1-4 infection in Vero and A549 cells and human PBMCs	0.1-0.71/>50	n.d.	
Guanosine (G)	2'-C-Methyl-G	DENV2 infection in Vero cells	13.6/>60	[□70 ^b]	Migliaccio et al., 2003
	aryl-phosphoramidate prodrug of 6-O-methyl-2'-C- methyl-G (INX-08189)	DENV2 replicon in Huh7 cells	0.014/>1	32 ^a	Yeo et al., 2015
Cytosine (C)	2'-C-methyl-C	DENV2 subgenomic replicon I & whole virus infection in Huh7 cells	11.2 [19.5]	129 ^a ; [>60 ^b]	Lee et al., 2015

	2'-deoxy-2'-F-2'-C-methyl-C (PSI-6130)	DENV2 subgenomic replicon & whole virus infection in Huh7 cells	>50	n.d.	
	4'-azido-C (R1479)	DENV2 infection in human PBMCs	0.1-0.25/>25;	2.6 ^a ; [100 ^b]	Chen et al., 2014
	tri-isobutyl ester prodrug of R1479 (Balapiravir, R1626)	DENV2 infection in Huh7 cells, human primary macrophages and dendritic cells	1.9–11/>2000	n.d.	Nguyen et al., 2013
Uridine (U)	phosphoramidate prodrug of 2'-C-methyl-U (24)	DENV2 infection in human PBMCs	0.19 />50 [5]	>300 ^a [29.4]	- Wang et al., 2018
	phosphoramidate prodrug of 2'-C-ethynyl-U (27)	DENV2 infection in human PBMCs	0.45 />50 [1.6]	[16.8]	
	phosphoramidate prodrug of 2'-C-propynyl-U (29)	DENV2 infection in human PBMCs	1.9 />50 [2]	[6.7]	
	phosphoramidate prodrug of 2'-C-methyl-4'F-U (35)	DENV2 infection in human PBMCs	1.1 />50 [6.6]	[5.7]	
	phosphoramidate prodrug of 2'-C-ethynyl-4'-F-U (37)	DENV2 infection in human PBMCs	0.19 />50 [0.65]	[3]	
	phosphoramidate prodrug of 2'-deoxy-2'-F-2'-C-methyl-U (Sofosbuvir; PSI-7977)	DENV2 infection in human PBMCs	1.2/>20 [18]	[1.8; <3 ^b]	
		DENV2 CPE and PRNT* assays in Huh7 cells	4.9 $\mu M\!\!\!/\!\!\!>\!\!100$ and 1.4* [14.7]	n.d.	Xu et al., 2015
		DENV2 subgenomic replicon & whole virus infection in Huh7 cells	>50	n.d.	Lee et al., 2015
	3', 5' -di- <i>O</i> -trityl-5-fluoro-2' - dU	DENV2-induced CPE in Vero-B cells (7 day assay)	1.2/>50	n.d.	Saudi et al., 2014b
	3', 5' -di- <i>O</i> -trityl-2'-dU (Compound 2a)	DENV2-induced CPE in Vero-B cells (7 day assay)	2.7/>65	n.d.	Chatelain et al., 2013
	3' ,5'-di- <i>O</i> -trityl-U	DENV2-induced CPE in Vero-B cells (7 day assay)	2/>100	n.d.	De Burghgraeve et al., 2013
	2' ,5' di- <i>O</i> -trityl-U	DENV2-induced CPE in Vero-B cells (7 day assay)	30/>100	n.d.	

Modified nucleobase and nucleoside	ribavirin nucleobase	DENV2 replicon in Huh7 cells	4.9/>1000	n.d.	
	ribavirin	DENV2 replicon in Huh7 cells	1.3/20	[<10 ^b]	Lin et al., 2018
	mizoribine nucleobase	DENV2 replicon in Huh7 cells	2.4/23	n.d.	
	mizoribine	DENV2 replicon in Huh7 cells	15/33	n.d.	
	T-1105	DENV2 replicon in Huh7 cells	21/>665	n.d.	
	T-1105 riboside (T-1106)	DENV2 replicon in Huh7 cells	113/>1000	n.d.	
	diamino-purine	DENV2 replicon in Huh7 cells	3.6/13	n.d.	
	diamino-purine riboside	DENV2 replicon in Huh7 cells	27/31	n.d.	
	T-705 (favipiravir)	DENV2 replicon in Huh7 cells	110/>1000	221 ^a ; [>90 ^b]	

[#] mitochondria RNA Polymerase single nucleotide incorporation assay

5

^a Jin, Z., Kinkade, A., Behera, I., Chaudhuri, S., Tucker, K., Dyatkina, N., Rajwanshi, V.K., Wang, G., Jekle, A., Smith, D.B., Beigelman, L., Symons, J.A., Deval, J. 2017. Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs. Antiviral Res. 143, 1–43.

^b Arnold, J.J., Sharma, S.D., Feng, J.Y., Ray, A.S., Smidansky, E.D., Kireeva, M.L., Cho, A., Perry, J., Vela, J.E., Park, Y., Xu, Y., Tian, Y., Babusis, D., Barauskus, O., Peterson, B.R., Gnatt, A., Kashlev, M., Zhong, W., Cameron, C.E., 2012a. Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides. PLoS Pathog. 8, e1003030.

Nature Reviews | Microbiology

Highlights

- 1. Review the strategies for dengue drug discovery
- 2. Review the major breakthroughs in dengue drug discovery
- 3. Provide prospective for future dengue drug discovery