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1. HIGHLIGHTS: 

 Predict AML treatment response based on tumor genomics using computational modeling. 

 Predict response to bromodomain (BRD) and extra-terminal (BET) inhibitor JQ1. 

 Patient cohort was 100 patients randomly selected from the BEAT AML project. 

 Predicted disease inhibition scores matched ex vivo IC50 with 86% accuracy. 

 Genomic predictors of response to BET inhibitor JQ1 were identified. 
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Abstract 

Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia 

(AML), overall survival rates remain low. The ability to predict treatment response based on 

individual cancer genomics using computational modeling will aid in the development of novel 

therapeutics and personalize care.  Here, we used a combination of genomics, computational 

biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly 

selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain 

(BRD) and extra-terminal (BET) inhibitor.  Computational biology modeling was used to generate 

patient-specific protein network maps of activated and inactivated protein pathways translated 

from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by 

quantitatively measuring drug effect using a composite AML disease inhibition score.   93% of 

predicted disease inhibition scores matched the associated ex vivo IC50 value.  Sensitivity and 

specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of 

response were identified. Patient samples harbouring chromosomal aberrations del(7q) or -7, 

+8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in 

both in silico and ex vivo assays. This study shows how a combination of genomics, 

computational modeling and chemosensitivity testing can identify network signatures associating 

with treatment response and can inform priority populations for future clinical trials of BET 

inhibitors. 

 

Abbreviations: Acute  myeloid leukemia (AML); bromodomain (BRD); bromodomain extra-

terminal (BET); BET inhibitor (iBET); computational biology modelling (CBM); overall 

survival (OS); tyrosine kinase inhibitor (TKI); disease inhibition score (DIS) 

 

Keywords: BET inhibitor, JQ1, computational modeling, AML, Drug Response, Genetics 
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Introduction 

Acute myeloid leukaemia (AML) is a complex heterogeneous disease characterized by 

uncontrolled proliferation of immature myeloid blasts and bone marrow failure.1 Standard 

treatment for AML consists of cytarabine-based chemotherapy, with hematopoietic stem cell 

transplant as the only potentially curative option. The 5-year overall survival (OS) rate for 

patients younger than the age of 60 is approximately 40%, while 5-year OS for patients older 

than 60 is less than 20%.2, 3  Unfortunately, a majority of patients relapse, further complicating 

clinical care. 

Studies suggest that AML may arise due to a series of genetic alterations that 

accumulate with age.2 With the advent of next-generation sequencing technologies, the complex 

amalgam of cytogenetic, genetic, and epigenetic alterations present at diagnosis and/or relapse 

of AML are now better defined.  Although chromosomal abnormalities occur in more than 50% of 

adult AML patients, most recurrent alterations are rare and found in less than 10% of patients.1 

Commonly mutated genes include FLT3, NPM1, DNMT3A, IDH1, RUNX1, and cKIT, among 

others. 1 4 5  Certain cytogenetic abnormalities are used for prognostic and diagnostic purposes.  

For example, t(8;21)(q22;q22), t(15;17)(q22;q12) and inv(16)(p13.1;q22) alterations are 

favorable risks associated with better patient outcomes. Other more common alterations such as 

deletion or monosomy of chromosome 5 or 7 are poor risk factors associated with resistance to 

therapy and worse overall survival. Deletion of chromosome 5 occurs in approximately 10-20% 

of de novo AML cases.5 A recent study suggests that loss of chromosome 5 may be an early 

event that leads to additional genetic alterations, including amplification of chromosome 8.4 Such 

heterogeneity complicates the prognosis and treatment of AML for these patients.   

 Epigenetic alterations are also considered key players in the progression of AML.  The 

process by which leukaemia stem cells aberrantly self-renew and propagate the disease has 

been linked to changes in regulatory chromatin modifications.6 Novel therapies that target these 
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epigenetic modifiers such as demethylating agents (decitabine, azacitidine) and histone 

deacetylase inhibitors (panobinostat) have shown some promise in leukemia, other 

hematological malignancies, as well as solid tumors 7, 8.  A new class of epigenetic therapy 

include the BET inhibitors (iBETs).  The BET protein family consists of 3 ubiquitously expressed 

proteins, BRD2, BRD3, BRD4, and the testis-specific protein BRDT.  As chromatin scaffolds, 

they recruit elements of the positive transcriptional elongation factor b (P-TEFb) complexes to 

RNA polymerase II (RNA Pol II) to initiate transcriptional elongation.  In AML and other 

hematological cancers, these BET proteins have been found to preserve aberrant chromatin 

states, thereby increasing transcription of known oncogenes including c-MYC.9    

 Using an RNAi screen, Zuber et al identified BRD4 as a chromatin modifier critical for 

tumor growth in an AML mouse model.  The study demonstrated that suppression of BRD4 

using shRNAs, or the small-molecule inhibitor JQ1, led to robust anti-leukemic effects in 

vitro and in vivo.10  Since the discovery of JQ1 as the first BET inhibitor with both differentiation 

and specific anti-proliferative effects on human squamous carcinoma, new derivatives and 

inhibitors have been generated.11  Since then, several BET inhibitors have shown promise in 

AML and other hematological malignancies both in vitro and in early phase clinical trials (Table 

1).12-17   

 The mechanisms that mediate sensitivity to the iBETs remain broad.  In addition to 

downregulation of c-MYC, BET inhibitors have been shown to affect additional transcriptional 

regulators including FOSL1 and E2F target genes.18 Wild-type NPM1 has been shown to inhibit 

BRD4 activity.  However, approximately 35% of AML patients harbor a mutation in NPM1c, 

which leads to the release of BRD4 and upregulation of the core transcriptional program which 

facilitates leukemia development. Treatment of NPM1c AML cells with a BET inhibitor can 

restore BRD4 inhibition, reducing BRD4 recruitment to chromatin and downregulating 

expression of critical oncogenes such as c-MYC.19 Mutations in FLT3 are also common in AML, 
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yet treatment with FLT3 tyrosine kinase inhibitors (TKI) is often associated with resistance.  

However, combining the BET inhibitor JQ1 with a FLT3 TKI, ponatinib, was highly synergistic 

and enhanced cell death in AML cell line models as well as human CD34+ AML blast progenitor 

cells.20 These studies highlight the pleiotropic effects of BET inhibitors and their potential benefit 

to treat the heterogeneous nature of AML.  

 Due to the diverse mechanism behind leukemogenesis as well as the pleiotropic 

mechanisms mediating sensitivity to iBETS, not all cell lines and patients respond in the same 

manner or achieve the same depth of response. Therefore, success of these iBETs lies, in part, 

on the ability to identify patients likely to respond to targeted therapies before initiating therapy.  

Predictive simulation is an emerging technology in the era of personalized medicine.  By 

performing next-generation sequencing and subsequently translating the genomic aberrations 

into patient-specific network maps of activated and inactivated protein pathways, a patient-

specific cancer avatar can be created. After performing digital drug simulation on these avatars, 

sensitivity to specific therapies can be calculated in silico. Such an approach was shown to 

predict drug sensitivity in eight models of glioblastoma patient-derived tumor cells exposed to ten 

therapeutics with 75% accuracy.21 Another retrospective study on three cohorts of 

myelodysplastic syndrome (MDS) patients accurately predicted drug responses to standard of 

care therapies (azacitidine, decitabine, and lenalidomide) with ≥ 80% accuracy.22  One of the 

major advantages to using cancer avatars is the ability to assess tumor cell sensitivity to FDA-

approved and investigational therapies by modeling their unique mutational profiles, broadening 

the therapeutic options for refractory patients and avoiding potentially ineffective regimens. This 

method also allows clinicians, researchers, and pharmaceutical companies to simulate digital 

clinical trials to gain perspective on molecular criteria for identifying sensitive and resistant 

profiles. 
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  This study has created simulated computational models of AML patient genomics to 

create a digital clinical trial to evaluate the cytotoxic effect of JQ1 on primary AML samples.  

Patients included in this virtual trial participated in the BEAT AML study spearheaded by our 

collaborators at Oregon Health Sciences University. Patient information including cytogenetics 

and whole-exome sequencing data were entered into a computational biology modeling (CBM) 

software system to generate patient-specific network maps, or cancer avatars.  Using these 

patient-specific cancer avatars, we simulated in silico drug sensitivity assays to JQ1 to predict 

which patient samples will be sensitive to the drug.  We compared the CBM drug sensitivity 

predictions with ex vivo drug sensitivity data of the primary AML cells treated with JQ1.  

Additionally, we correlated genomic abnormalities identified in this patient cohort to in situ and 

ex vivo JQ1 sensitivity to discover biomarkers and molecular aberrations that may be used 

prospectively to predict clinical response to JQ1.  (Figure 1) 
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Materials and Methods 

Patient Samples 

All patients gave consent to participate in the Beat AML cores study (NCT01728402) ,which had 

the approval and guidance of the Institutional Review Board at Oregon Health & Science 

University (OHSU), University of Utah, University of Texas Medical Center (UT Southwestern), 

Stanford University, University of Miami (UM), University of Colorado (UC), University of Florida 

(UF), National Institutes of Health (NIH), Fox Chase Cancer Center and University of Kansas 

(KUMC). Samples were sent to the coordinating center (OHSU; IRB#9570) where they were 

coded and processed. Access to patient data and all analyses for this study were approved by 

the UF IRB (#201601364). Patients provided bone marrow and/or peripheral blood, along with a 

skin punch biopsy as germline control. 

Mononuclear cells were isolated by Ficoll-gradient centrifugation from freshly obtained bone 

marrow aspirates or peripheral blood draws and plated into assays within 24 hours. All samples 

were analysed for clinical characteristics and drug sensitivity.47  

Whole Exome, Custom Capture Validation Sequencing 

Whole exome sequencing was performed on bone marrow and/or peripheral blood, along with 

a skin punch biopsy using Illumina Nextera Rapid Capture Exome capture probes. Custom 

capture validation probes were assembled by Roche Sequencing Solutions. Sequencing was 

performed on an Illumina HiSeq 2500.  

Ex Vivo Functional Screen 

Small-molecule inhibitors, purchased from LC Laboratories (Woburn, MA, USA) and Selleck 

Chemicals (Houston, TX, USA), were reconstituted in DMSO and stored at -80°C. Inhibitors 

were distributed into 384-well plates prepared with a single agent/well in a 7-point concentration 

series ranging from 10 M to 0.0137 M for each drug. The final concentration of DMSO was 
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≤0.1% in all wells; plates were stored at -20°C and thawed immediately prior to use. Primary 

mononuclear cells were plated across inhibitor panels within 24 h of collection. Cells were 

seeded into 384-well assay plates at 10,000 cells/well in RPMI-1640 media supplemented with 

fetal bovine serum (10%), L-glutamine, penicillin-streptomycin and -mercaptoethanol (10-4 M). 

After three days of culture at 37°C in 5% CO2, MTS reagent (CellTiter96 AQueous One; Promega 

Madison, WI, USA) was added, optical density was measured at 490 nm.47 

AML Computation Biology Model (CBM) 

The computational biology model (CBM) used in this study is an extensively validated, 

comprehensive network of signalling, metabolic, epigenetic and transcriptional regulatory 

pathways underlying cancer physiology.21-25 The network is created through a rigorous workflow 

of manually curating and aggregating published experimental data and representing the 

functionality of the genes, proteins and interactions mathematically, using ordinary differential 

equations.21  The CBM coverage includes pathway networks underlying many cancer 

phenotypes including growth factor, cytokine and chemokine signaling pathways, transcriptional, 

post-transcriptional, translational and post-translational regulation, epigenetic regulation, cell 

cycle machinery, oxidative and ER stress, protein homeostasis including proteasomal machinery 

and autophagy, DNA repair pathways, apoptotic cascade and TP53 signaling, metabolic 

pathways, angiogenic and immune-suppressive pathways, among others.  The CBM includes 

about 112 central pathways, over 75,000 reactions, and 3300 cancer specific-genes including 

comprehensive coverage of the kinome, transcriptome, proteome and metabolome.  This 

extensively integrated network that makes up the CBM can be used to predict a patient’s 

response to a single drug or a combination of drugs. Both prospective and retrospective 

validations have been shown in studies of glioblastoma multiform (GB), multiple myeloma (MM), 

myeloproliferative neoplasms (MPN) and MDS.22-25 26   

Creation of AML profiles 
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Bone marrow samples and clinical data from 100 AML patients from the BEAT AML project 

(Leukemia and Lymphoma Society) were obtained and underwent conventional cytogenetic, 

whole exome sequencing, and an ex-vivo drug sensitivity assay.  Genomic aberrations were 

interpreted for phenotypic implications (i.e., gain of function (GOF) versus loss of function 

(LOF)).  The cytogenetic segments related to deletions, gains, translocations, or derivatives, 

were interpreted as amplifications (AMP) and deletions (DEL) of the genes residing in those 

segments.  The genes found on the loci of these affected regions of the chromosome are 

extracted from the human reference genome at ENSEMBL.  The complete list of genes is 

matched with the CBM to identify those that are to be represented in the model.  All genes that 

have coverage in the model (Suppl. table 5) are included in the input file that is used to create 

the patient cancer avatar.  Genes reported to have a gain in copy number due to chromosomal 

amplifications are interpreted as being over-expressed at the gene expression level, while those 

genes in the deleted segments are considered a loss of copy number and are interpreted as 

having a knock-down in the model. 

For mutation signatures, the gene variants with known functional impact and therapeutic 

implication are searched in the public domain and are recorded in a mutation library.  Mutational 

signatures are processed through our internal variant calling workflow that utilizes DbNFSP, a 

database that uses multiple prediction algorithms including SIFT, FATHMM, Mutation Assessor, 

LRT, Mutation Taster, PROVEAN, MetaSVM, and others, to determine if the gene mutation will 

have a functional impact on the protein, which will be classified as either deleterious or non-

deleterious based on a concordance of more than 5 algorithms. 27-31 A deleterious mutation in an 

oncogene is assumed to be a GOF mutation at the protein activity level, or a LOF if present in a 

tumor suppressor gene.  Frameshift and missense mutations are assumed to cause a loss of 

protein function except in those cases where there is experimental evidence that the mutation 

causes a gain of function.   
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Finally, this input file is overlaid on the control model (non-tumorigenic baseline) by indicating the 

gene mutations, amplifications, deletions and translocations, and the profile is simulated as per 

the rules outlined above to create a dynamic disease state.  Protein network maps are created 

for each patient profile based on their input data and disease specific biomarkers that are unique 

to each profile. 

Digital Drug Model   

JQ1 was used as a representative BET inhibitor.  A digital drug model of JQ1 was created for 

CBM by programming its mechanism of action inhibiting the iBET target isoforms BRD4, BRD2 

and BRD3 in the network, and the resultant effects on specific pathways and biomarkers 

determined from published literature. 11, 32, 33  

Simulation and Analysis 

Using the digital drug model of JQ1, virtual applications of JQ1 were applied to each patient’s 

disease via computer simulation in a dose respondent fashion.  The efficacy of JQ1 for each 

patient was measured as a function of disease inhibition score (DIS) – the degree to which 

crucial cancer signalling pathways and phenotypes were repressed. DIS is a composite of the 

percentage impact on proliferation and viability index with the drug in reference to the untreated 

disease network.  The proliferation index is an average function of the active CDK-cyclin 

complexes that define cell cycle checkpoints and is determined by calculating contributions in 

the biomarkers CDK4-CCND1, CDK2-CCNE, CDK2-CCNA and CDK1-CCNB1.  A viability index 

based on survival and apoptosis markers is also generated for each patient.  The biomarkers 

constituting the survival index include AKT1, BCL2, MCL1, BIRC5, BIRC2 and XIAP, while the 

apoptosis index comprises the pro-apoptotic markers of caspases, Puma and cleaved PARP. 

Viability of a cell is calculated as a ratio of survival index/apoptosis index, and the weightage of 

each biomarker is adjusted to achieve a maximum correlation with experimental trends of the 

endpoint from peer-reviewed studies.   
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𝐃𝐢𝐬𝐞𝐚𝐬𝐞 𝐈𝐧𝐡𝐢𝐛𝐢𝐭𝐢𝐨𝐧 𝐒𝐜𝐨𝐫𝐞   = % 𝐈𝐧𝐡𝐢𝐛𝐢𝐭𝐢𝐨𝐧 [𝐏𝐫𝐨𝐥𝐢𝐟𝐞𝐫𝐚𝐭𝐢𝐨𝐧 + 𝐕𝐢𝐚𝐛𝐢𝐥𝐢𝐭𝐲]  

Statistics 

Raw absorbance values were adjusted to a reference blank value, and then used to determine 

cell viability (normalized to untreated control wells). The concentration of inhibitor required to 

inhibit cell growth by 50% (IC50) was calculated using a non-linear regression analysis. 

Computational JQ1 drug sensitivity predictions were compared against JQ1 IC50 values obtained 

from experimental ex vivo testing.  For ex vivo results, an IC50 < 2.70M was considered 

sensitive and an IC50 > 2.70M was considered resistant to JQ1 therapy.  This threshold was 

determined based on the Cmax concentration derived from pharmacokinetic studies of JQ1.11 

For CBM results, a DIS ≥ 30% was classified as sensitive (responder), and a DIS <30% was 

classified as resistant (non-responder).  Post-hoc analysis of virtual responders and non-

responders were performed to determine all unique cytogenetic and genomic identifiers between 

the two groups.   Correlation between actual response and predicted response was assessed by 

using a 2X2 contingency table to calculate PPV, NPV, sensitivity and specificity, and 

significance was calculated using a Chi-square test.  

 

Results 

Correlation Summary of Predictive vs. Ex-Vivo outcomes: 

As part of the BEAT AML study, ex vivo drug sensitivity assays were performed on 100 

patient’s sample from the BEAT AML study. Patient characteristics details are included in 

supplementary table 1. CBM derived AML DIS for each patient were compared to experimentally 

determined ex vivo sensitivity towards JQ1 (Figure 2, Suppl. Table 2).  For ex vivo results, an 

IC50 less than 2.70 μM for JQ1 was considered sensitive and an IC50 greater than 2.70 μM was 
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considered resistant to JQ1 therapy as indicated by the vertical Cmax dotted line on the plot.  

For predictive CBM results, patients with a DIS ≥ 30% were classified as sensitive, whereas 

patients with a DIS <30% were classified as resistant, indicated by the horizontal % threshold 

dotted line on the plot.  A schema of patient-response is depicted in Figure 3. Experimental 

sensitivity to JQ1 closely matched with virtual predictions using the CBM model.  Of the 100 

patients modeled from the BEAT AML project, 89 patients’ ex vivo results were considered 

sensitive to JQ1 and 11 were considered resistant.  CBM correctly predicted 84 of 89 sensitive 

profiles to JQ1, and 5 of these incorrect predictions were false negatives.  CBM accurately 

predicted 9 out of the 11 patient samples that showed resistance to JQ1, with the two 

mismatched predictions being false positive.  As shown in Table 2, the CBM predictions of JQ1 

sensitivity are highly accurate with positive predictive value (PPV) of 97.67%, negative predictive 

value (NPV) of 64.29%, and an overall accuracy of 93%. As calculated, specificity and sensitivity 

of our CBM model is 81.82% and 94.38%, respectively. 

 

Patient-specific CBM Analysis for Responders and Non-responders to JQ1 

 Representative computer-simulated patient network maps are shown in Figure 4A-D. 

Profile 2305 was virtually simulated with increasing concentrations of JQ1 in silico. CBM 

predicted a 50% decrease in the profile’s AML disease inhibition, suggesting sensitivity to JQ1. 

This profile had an ex vivo IC50 of 0.04 M. (Suppl table 2) The mechanism of drug sensitivity 

was determined to be due to a gain of function of BRD2 and BRD4, key targets of JQ1.9 This 

patient profile also possessed loss of Dual specificity phosphatase 6 (DUSP6) activity, which 

promotes ERK activation, ultimately leading to an increase in its transcriptional target, c-MYC, 

another key mediator of JQ1 drug impact.34  Additionally, a loss of function in the enzyme 

methylene tetrahydrofolate reductase (MTHFR) was observed in this patient profile. MTHFR has 

been shown to affect heterochromatin maintenance and can lead to the hypermethylation of 
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specific genes. 35,36  In a similar manner, abrogation of MTHFR may impact the expression of 

BRD2 and BRD4, further sensitizing this patient to the iBET JQ1 (Figure 4A).   

 Patient ID 2304 had a different set of aberrations that supported the response of this 

profile to JQ1.(Figure 4B)  This patient had a LOF aberration in nucleophosmin (NPM1), a gene 

commonly mutated in one third of adult AML patients.  Loss of NPM1 has been shown to 

activate a BRD4-dependent core transcriptional program in AML.19   This patient also had a LOF 

of DUSP6 and MTHFR genes that would further enhance iBET sensitivity.  Profile 2304 had an 

ex vivo IC50 of 0.16 M and a DIS of 57.54. (Suppl. Table 2)  

 Conversely, the patient profile 4006 is classified as resistant to JQ1 in silico as the AML 

disease inhibition was only reduced by 25% and this profile had an ex vivo IC50 of 10 M. 

(Suppl. Table 2) CBM identified resistance due to a LOF of EP300. EP300 functions as a 

histone acetylase that impacts gene transcription by recruiting bromodomain proteins, including 

BRD4.37,38 Loss of EP300 function also results in loss of BRD4, therefore making this profile less 

sensitive to JQ1.  Additionally, amplification of AMPK (PRKAA1) was observed in this patient 

profile and may indirectly affect sensitivity to JQ1 (Figure 4C).  A recent study found that AMPK 

induces a pro-survival autophagic response after treatment with JQ1, and inhibiting AMPK could 

increase JQ1-mediated apoptosis.39  

 Patient ID 1126 is also predicted to be a non-responder by CBM at DIS of 20.61 and ex 

vivo IC50 of 10 M.  Lack of response in this profile can be explained due to presence of a GOF 

mutation in Fibroblast growth factor receptor 4 (FGFR4) gene that can activate a parallel 

resistance pathway. (Figure 4D) FGFR4 aberrations have been shown to cause resistance to 

chemotherapy in other cancers including colorectal cancer and could mediate this resistance 

through activating parallel RTK pathway loops thus overcoming BET inhibition. 40, 41 
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Identification of common chromosomal aberrations with patient-specific response to JQ1 

 As part of the BEAT AML study, conventional cytogenetic analysis was provided for each 

patient sample (Suppl. table 1 & 3).  Of the 100 patients included in the present study, 18 

patients presented one or more of the common cytogenetic abnormalities including monosomy 

7, 7q-del, trisomy 8, 5q-del, 19p-amp, or 22q-del.  As shown in Table 3, associations of some of 

these chromosomal aberrations with response to JQ1 were analysed.  Patient samples 

harboring chromosomal aberrations del(7q) or monosomy 7 (n=4), trisomy 8 (n=10) or del(5q) 

(n=7) responded to JQ1 in both in silico and ex vivo sensitivity assays. Post-hoc analysis shows 

that the patients with trisomy 7, 7q-del, trisomy 8, or 5q-del would have a higher likelihood of 

sensitivity to JQ1 (p=0.041) or other BET inhibitors.  However, a single patient sample with 

del(22q) was not sensitive to JQ1.   

Identification of common somatic aberrations with patient-specific response to JQ1 

 The insights gained from CBM predictive JQ1 response analysis in patient disease 

networks are supported by the frequency of occurrence of somatic mutations in the drug 

sensitizing pathways. Mutations in genes that are linked to ERK pathway dysregulation in the 

disease network including KRAS (n=7), NRAS (n=23), DUSP6 (n=9) and NF1 (n=6), were 

present predominantly in the responder profiles.  FLT3 (n=30) and NPM1 (n=9) mutations were 

also highly frequent in the responder profiles in this cohort. (Suppl. table 4)   

 

Discussion 

 There is a significant need to develop novel treatment strategies for AML and to 

personalize patient care.  One approach uses computational modeling to predict treatment 

response based on patient-specific tumor genomics.  The present study leveraged the use of 

CBM technology to predict response to the iBET JQ1 in AML patients, and validated the 
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predictions by measuring JQ1-induced cytotoxicity on primary patient samples in an ex vivo drug 

sensitivity assay.  Additionally, the in silico CBM technology provided novel insight into the 

mechanisms that mediate sensitivity and resistance and aids in the identification of potential 

biomarkers that predict response to iBET.   

 By integrating cytogenetic, genomic, and transcriptomic data from 100 patients 

participating in the BEAT AML study, we predicted these patients’ response to the iBET JQ1 

using CBM technology.  Our data shows high accuracy between digitally derived DIS and 

experimentally determined ex vivo IC50 values for JQ1, with a reported accuracy of 93 % (Table 

2, Suppl. Table 2).  Additionally, the transparency of the CBM network provides insight into the 

molecular mechanisms mediating a response to JQ1.  For example, profile 2305, which was 

predicted to be a responder (Figure 4A), showed enhanced activity of key targets of JQ1 and 

pro-tumorigenic proteins including BRD2 and BRD4 and loss of function of proteins expected to 

play an anti-tumorigenic function such as DUSP6 and MTHFR. 34,36 In another responder profile 

2304, the NPM1 mutation along with MTHFR loss enhanced BRD4 activity and sensitized the 

profile to BET inhibition.(Figure 4B)  An example of a non-responsive patient, profile 4006 

(Figure 4C) suggests that loss of the histone acetylase EP300 may be responsible for lack of 

sensitivity to JQ1 due to its role in regulating BRD4.37  FGFR4 gain in another profile 1126 could 

be the reason for non-response to JQ1 due to activation of a parallel resistance pathway.40,41  

Due to the complexity of interactions between signalling pathways, additional validation of the 

roles these proteins play in mediating iBET sensitivity are necessary.  However, these proteins, 

and others, that are highlighted by the CBM technology may help identify biomarkers that 

mediate response to iBETs including JQ1. 

 The results of this study also suggest that trisomy 8 is one of the cytogenetic aberrations 

associated with a positive response to JQ1 (Table 3).  The gene coding for the oncogenic 

transcription factor, MYC, is located on chromosome 8.  An increase in MYC expression has 
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been associated with increased cancer cell proliferation and survival due to its pleiotropic effects 

on cell signalling pathways. For example, MYC can activate IRF4, MCL1, and Cyclin D1 

expression, regulating cell death and cell cycle pathways. 42,43  Importantly, MYC was described 

as an important target of bromodomain proteins, including BRD4, and inhibition of bromodomain 

proteins by JQ1 leads to a significant decrease in MYC expression.32  The ability of iBETs to 

modulate MYC expression has implications across a multitude of cancer types. MYC is also 

induced in profiles with dysregulated ERK44,45 linked to mutations in ERK regulators KRAS, 

NRAS, DUSP6 and NF1 genes in JQ1 responder profiles as evident from the gene matrix. 

(Suppl. table 4)  

 Other chromosomal abnormalities associated with a response to JQ1 include del-5q and 

monosomy 7.  Genes present within these chromosomal regions may also mediate sensitivity to 

JQ1 such as NPM1 (chromosome 5) and EZH2 and KMT2C (chromosome 7), as they have 

been implicated in the regulation of bromodomain proteins. For example, loss of NPM1 activity 

increased BRD4 activity.19  Additionally, a recent study found that sensitivity to iBETs can be 

enhanced by loss of EZH2 function.46    

 Thus, through this CBM analysis of AML patients’ genetics and predicting JQ1 sensitivity 

using an AML- specific in silico approach, we have identified genomic aberrations with molecular 

mechanisms of sensitivity towards iBETs.  The ability of the CBM to predict multiple genetic 

factors contributing to drug response is unique and nicely complements ex vivo and clinical 

studies for identifying genetic signatures for drug responses.  The predictions however are 

based on interpretation and translation of genomic inputs for creating and understanding the 

patient disease characteristics.  The false predictions could be due to incorrect interpretations of 

unknown deleterious variants or incomplete genomic data. 
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Conclusions 

In this study, we ran a virtual clinical trial to evaluate the efficacy of the BET inhibitor JQ1 in 

patients with AML.  Our study successfully validated the accuracy of our CBM technology using 

ex vivo drug sensitivity data.  Additionally, by integrating known cytogenetic and genomic 

alterations specific for each patient, this CBM technology can elucidate novel biomarkers that 

may predict patient sensitivity to JQ1.  Virtual clinical trials on larger datasets will help further 

elucidate the inclusion and exclusion criteria for response to iBETs and other such first-in-class 

therapeutics used in specific disease settings.  
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FIGURE for LR-D-18-00238R1   

Figure Legends: 

Figure 1:  Schema for the Retrospective Virtual Clinical Trial: 

Schematic illustrates the study design and methods.  100 randomly selected patients form the 

BEAT AML project were modelled using CBM on which efficacy of the JQ1 digital drug model 

was evaluated.  Predicted responses to JQ1 were compared with ex vivo chemosensitivity assay 

to determine prediction correlation and accuracy.  Post-hoc biomarker analysis was done to 

determine genomic predictors of JQ1 response.  
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Figure 2: Illustration of AML disease inhibition score associations with ex vivo JQ1 IC50 

values.  A scatterplot representing ex vivo determined IC50 (X-axis) and virtually simulated 

disease inhibition scores of JQ1 (Y-axis).  Cut-offs to determine sensitivity and resistance were 

determined empirically. For CBM response predictions (Y-axis), 30% disease inhibition was 

chosen as the threshold for response (horizontal threshold dotted line). A disease inhibition 

score >30% is classified as a responder, or sensitive to JQ1, while a disease inhibition score 

<30% is classified as a non-responder, or resistant to JQ1.  For ex vivo IC50 values (X-axis), the 

Cmax of JQ1 was calculated from a previous study and used as the threshold for response.11 

(Vertical Cmax dotted line) IC50 < 2.7M was considered sensitive, and IC50 > 2.7M was 

considered resistant. The green diamonds indicate the responder and non-responder predictions 

that matched with the ex vivo response, while the red diamonds indicate false negatives and 

false positive predictions. 
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Figure 3: Schema representing JQ1 responders and non-responders.  Delineation of virtual 

and ex vivo profiles sensitive and resistant to JQ1.  
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Figure 4A-D: Computer-simulated patient-specific network maps and digital response to 

JQ1.  Patient specific network maps were generated using CBM modeling.  Patient 2305 (A) and 

2304 (B) are representative examples of profiles predicted to be sensitive to JQ1 as measured 

by the in-silico AML disease inhibition score.  Patient 4006 (C) and 1126 (D) are representative 

examples of profiles predicted to be resistant to JQ1 as measured by the in-silico AML disease 

inhibition score. Boxes highlighted in light green represent gene mutations leading to protein 

loss of function or knock-down contributing to drug sensitivity. Boxes highlighted in darker green 

represent gene mutations leading to protein gain of function or over-expression contributing to 

drug sensitivity. Boxes highlighted in purple represent gene mutations leading to loss of function 

or knock-down of proteins contributing to drug resistance, and boxes highlighted in dark blue 

represent gene mutations leading to protein gain of function or over-expression contributing to 

drug resistance.  
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TABLE LEGENDS for LR-D-18-00238R1   

Table 1: Summary of BET inhibitors in clinical trials for haematological malignancies.  

Completed or current clinical trials are listed.  Data obtained from www.clinicaltrials.gov. MM 

(multiple myeloma); MDS (myelodysplastic syndromes); MPD (myeloproliferative disorder); AML 

(acute myeloid leukemia); DLBCL (Diffuse Large B-Cell Lymphoma); ALL (Acute lymphoblastic 

leukemia); R/R (relapsed/refractory)  

Table 2: Statistical summary of AML patients’ predicted response to BET inhibitor JQ1 

Sensitivity, specificity, PPV (positive predictive value), NPV (negative predictive value), and 

accuracy are reported.  CI was calculated using MedCalc software 

(https://www.medcalc.org/calc/diagnostic_test.php). CI (confidence interval).   

Table 3: Common chromosomal aberrations associated with patient-specific response to 

JQ1.  Common chromosomal aberrations were assessed in JQ1 responders and non-

responders.   
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Table 1: Summary of BET inhibitors in clinical trials for 

hematological malignancies 
 

Summary of BET inhibitors in Clinical Trials 

BET 

Inhibitor 
Indication 

Clinical 

Status 
Reference 

CPI-0610 

Leukemia; Lymphoma; Multiple 

myeloma; Myelodysplastic 

syndromes; Myeloproliferative 

disorders 

Phase I NCT0215885811 

OTX 015 

Acute Myeloid Leukemia; 

Diffuse Large B-cell Lymphoma; 

Acute Lymphoblastic Leukemia; 

Multiple Myeloma 

Phase I 
NCT01713582; 

NCT0269818913 

RO 6870810; 

TEN 010 
AML; myelodysplastic syndrome Phase I NCT02308761 

INCB-054329 Advanced malignancies Phase I/II NCT02431260 

ABBV-075 Advanced malignancies Phase I NCT02391480 

FT 1101 Hematological malignancies Phase I NCT025438715 

GSK525762; 

I-BET-762 

Relapsed, refractory 

hematological malignancies, solid 

tumors 

Phase I/II NCT0194385112 

PLX-51107 
AML, myelodysplasia, solid 

tumors 
Phase I NCT0268339516 
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Table 2: Statistical Summary of AML Patients’ Predicted Response 

to BET Inhibitor JQ1 

 

 
Sensitivity Specificity PPV NPV Accuracy 

BET 

Inhibitor 

(JQ1) 

96.67% 

 

(95% CI: 

92.29-99.33) 

64.29% 

 

(95% CI: 

42.36-81.51) 

94.38% 

 

(95% CI: 

87.37-98.15) 

81.82% 

 

(95% CI: 

48.22-97.72) 

93.00% 
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Table 3: Correlation of cytogenetic aberrations with patient-specific 

response to JQ1 

BET Inhibitor (JQ1) - Patients with Chromosome aberrations 

Patient 

ID 

Drugs 

Tested 

Clinical 

Response 

Simulation 

Response 

Correlation 

Status 

7q-del / 

Monosomy 

7 

Trisomy 

8 

5q-

del 

19p-

amp 

22q-

del 

1953 JQ1 Responder Responder MATCH Y Y Y     

2236 JQ1 Responder Responder MATCH Y         

2500 JQ1 Responder Responder MATCH Y         

2612 JQ1 Responder Responder MATCH Y         

4006 JQ1 
Non-

Responder 

Non-

Responder 
MATCH   Y Y   Y 

2633 JQ1 Responder Responder MATCH   Y Y     

2079 JQ1 Responder Responder MATCH   Y       

2443 JQ1 Responder Responder MATCH   Y       

1924 JQ1 Responder Responder MATCH   Y       

1727 JQ1 Responder Responder MATCH   Y       

2704 JQ1 Responder Responder MATCH   Y       

4324 JQ1 Responder Responder MATCH   Y       

2690 JQ1 Responder Responder MATCH   Y       

4043 JQ1 Responder Responder MATCH     Y     

2452 JQ1 Responder Responder MATCH     Y     

2315 JQ1 Responder Responder MATCH     Y     

2426 JQ1 Responder Responder MATCH     Y     

2333 JQ1 Responder Responder MATCH       Y   
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