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ABSTRACT 

 The in vitro MultiFlow® DNA Damage Assay multiplexes H2AX, p53, phospho-histone 

H3, and polyploidization biomarkers into a single flow cytometric analysis [Bryce et al., 2016]. 

The current report describes a tiered, sequential data analysis strategy based on data 

generated from exposure of human TK6 cells to a previously described 85 chemical training set 

and a new pharmaceutical-centric test set (n=40). In each case, exposure was continuous over 

a range of closely spaced concentrations, and cell aliquots were removed for analysis following 

4 and 24 hr of treatment. The first data analysis step focused on chemicals‘ genotoxic potential, 

and for this purpose we evaluated the performance of a machine learning (ML) ensemble, a 

rubric that considered fold increases in biomarkers against global evaluation factors (GEFs), 

and a hybrid strategy that considered ML and GEFs. This first tier further used ML output and/or 

GEFs to classify genotoxic activity as clastogenic and/or aneugenic. Test set results 

demonstrated the generalizability of the first tier, with particularly good performance from the ML 

ensemble: 35/40 (88%) concordance with a priori genotoxicity expectations and 21/24 (88%) 

agreement with expected mode of action (MoA). A second tier applied unsupervised hierarchical 

clustering to the biomarker response data, and these analyses were found to group certain 

chemicals, especially aneugens, according to their molecular targets. Finally, a third tier utilized 

benchmark dose analyses and MultiFlow biomarker responses to rank genotoxic potency. The 

relevance of these rankings is supported by the strong agreement found between benchmark 

dose values derived from MultiFlow biomarkers compared to those generated from parallel in 

vitro micronucleus analyses. Collectively, the results suggest that a tiered MultiFlow data 

analysis pipeline is capable of rapidly and effectively identifying genotoxic hazards while 

providing additional information that is useful for modern risk assessments—MoA, molecular 

targets, and potency. 
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INTRODUCTION 

 Our laboratories have pursued the development and validation of a multiplexed flow 

cytometric assay that combines information from several biomarkers relevant to DNA damage 

response pathways and aneuploidy induction [Bryce et al., 2014, 2016, 2017, 2018; Bernacki et 

al., 2016]. This so-called MultiFlow® DNA Damage Assay is formatted as an add-and-read test 

that efficiently prepares cells in microtiter plates for flow cytometric analysis. The biomarkers 

measured are: i) phosphorylation of H2AX at serine 139 (H2AX) to detect DNA double strand 

breaks, ii) phosphorylation of histone H3 at serine 10 (p-H3) to identify mitotic cells, iii) nuclear 

p53 content as an indicator of p53 activation in response to DNA damage, iv) frequency of 8n+ 

cells to monitor polyploidization, and v) determination of nuclei counts to provide information 

about treatment-related cytotoxicity and cytostasis. Relative to individual, standard in vitro 

genotoxicity assays, an advantage of the MultiFlow method is that it goes beyond genotoxic 

hazard identification, since it is capable of distinguishing between clastogenic and aneugenic 

modes of action (MoA) [Bryce et al., 2016].  

 Given the multiplexed nature of the MultiFlow assay, the data analysis procedures used 

to synthesize and interpret biomarker responses have resembled pattern-recognition tools as 

opposed to parametric and non-parametric pair-wise tests that are commonly applied to 

traditional single endpoint genotoxicity assays. One published example of a MultiFlow data 

analysis strategy makes use of a series of global evaluation factors (GEFs) [Bryce et al., 2017]. 

This approach is based on cutoff response values that were derived for each biomarker and 

time point from data collected by 7 laboratories. To optimize agreement with a priori calls, a 

rubric was developed around the collection of cutoff values that categorizes chemicals as 

genotoxic or not, and if the former, whether the activity is clastogenic, aneugenic, or both. This 

approach was reported to exhibit good sensitivity and specificity across laboratories, and it 

provided reliable MoA information. However, an important caveat is that the initial report did not 
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evaluate the method‘s performance against chemicals that were outside of the training set, i.e., 

with an external test set that was not used to develop the GEFs and associated rubric.  

 Other data analysis strategies have made use of supervised machine learning (ML) 

tools. In this paradigm, mathematical algorithms were developed based on training set data 

where genotoxic potential and MoA are known. The labeled data provided a means to create 

models that could then be used to make predictions based on new biomarker response data 

that were not part of the training set. For instance, most recently, an ensemble of three ML 

algorithms consisting of logistic regression, random forest, and an artificial neural network has 

been described [Bryce et al., 2018]. In this case, a majority vote was used to make a final 

prediction about genotoxicity and genotoxic MoA. As with GEFs, this ML strategy also 

demonstrated good performance characteristics, but in this case in a more convincing fashion, 

as performance was maintained with an external test set of 103 chemicals.  

 Whereas there are certain advantages and disadvantages to the GEF and machine 

learning data analysis strategies, their use is not mutually exclusive, so it was of interest to 

evaluate them further, both in isolation and together. The current experiments were therefore 

designed to extend our work with MultiFlow data analysis strategies by testing the performance 

of the GEF rubric and/or a ML ensemble using chemicals outside the training set. Furthermore, 

we investigated the utility of hierarchical clustering to group genotoxic chemicals with similar 

molecular targets, and evaluated the capacity of MultiFlow biomarker responses to provide 

genotoxicity potency ranking. For these investigations, MultiFlow data were generated from TK6 

cells exposed to a diverse set of chemicals using a continuous treatment design (i.e., 24 hr), 

and in some cases these analyses were supplemented with in vitro micronucleus 

measurements. The results are discussed in terms of the performance and benefits of a 

sequential, tiered, high information content data analysis pipeline (see Figure 1). 

 

MATERIALS AND METHODS 
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Chemicals 

 The identities of 85 previously reported training set chemicals [Bryce et al., 2018] and a 

new set of pharmaceutical-centric test set chemicals (n=40), the source, and other information, 

are provided in Table I. Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., 

Kenilworth, NJ, USA (MSD), supplied 20 of the 40 test chemicals (coded) to Litron, and these 

were stored at -20°C until they were solubilized in dimethyl sulfoxide (DMSO), at which point 

they were refrozen at -20°C. Additional test set chemicals (n = 20) were selected by Litron 

scientists largely from the list recommended by Kirkland and colleagues for evaluating new 

genotoxicity tests [Kirkland et al., 2016]. Our a priori expectation regarding the in vitro 

mammalian cell genotoxicity potential for each of the 125 chemicals can be found in Table I. As 

explained in more detail below, the experiments reported herein occurred in the absence of an 

exogenous metabolic activation system. Thus, the a priori calls provided in Table I reflect 

expected genotoxicity assay results in the context of an S9-free mammalian assay system.  

 

Cell Culture and Treatments 

 TK6 cells were purchased from ATCC® (cat. no. CRL-8015). Cells were grown in a 

humidified atmosphere at 37°C with 5% CO2, and were maintained at or below 1 x 106 cells/mL. 

The culture medium consisted of RPMI 1640 with 200 µg/mL sodium pyruvate (both from 

Sigma-Aldrich, St. Louis, MO), 200 µM L-glutamine, 50 units/mL penicillin and 50 µg/mL 

streptomycin (from Mediatech Inc., Manassas, VA), and 10% v/v heat-inactivated horse serum 

(Gibco®, a Thermo Fisher Scientific Company, Waltham, MA).  

 Chemicals selected by Litron scientists were tested using the same experimental design 

described previously [Bryce et al., 2016, 2017]. Briefly, treatments occurred in U-bottom 96 well 

plates, with 198 µL TK6 cell suspension (2 x 105/mL) combined with 2 µL of DMSO-solubilized 

test chemical per well. The highest concentration tested was 1 mM, and the 19 additional 

concentrations were tested using a square root dilution scheme—that is, each concentration 
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differed from the one above by a factor of 70.71%. In this manner a wide range of 

concentrations were evaluated (i.e., nearly 3 orders of magnitude, 0.0014 to 1 mM). Each of the 

20 concentrations was tested in a single well, whereas solvent was evaluated in 4 replicate 

wells. Upon addition of test chemical the plates were immediately incubated in a humidified 

atmosphere at 37°C with 5% CO2 for 24 hr.  

 MSD-supplied chemicals were tested similarly, with the following exceptions. Preliminary 

dose-range finding experiments were used to generate 24 hr relative nuclei count (RNC) data 

for each chemical provided (via MultiFlow® — Cleaved PARP Kit, Litron Laboratories, 

Rochester, NY). Concentrations for the definitive experiment were chosen based on the RNC 

results with the intention to test at least one concentration that approached or slightly exceeded 

the MultiFlow assay‘s cytotoxicity limit, that is 80% reduction to RNC at 24 hr [Bryce et al., 

2016]. There were two exceptions, 14n and 16p, compounds that were tested up to maximal 

feasible concentrations due to the low quantity of chemical that could be supplied (4.41 and 100 

µM, respectively). For the definitive experiments, 10 concentrations of each chemical were 

tested in duplicate wells of a 96 well plate. As described above, the majority of chemicals were 

tested using a square root 2 dilution scheme. Based on data from preliminary dose-range 

finding experiments, some chemicals were tested using finer dilution schemes.  

 

MultiFlow Assay 

 TK6 cells were prepared for analysis using reagents and instructions included in the 

MultiFlow® DNA Damage Kit — p53, H2AX, Phospho-Histone H3 (Litron Laboratories, 

Rochester, NY). Components and preparation of the MultiFlow working solution have been 

described in detail previously [Bryce et al. 2016, 2017]. At the 4 and 24 hr sampling times, cells 

were resuspended with pipetting, then 25 µL were removed from each well and added to a new 

96-well plate containing 50 µL/well of pre-aliquoted working MultiFlow reagent solution. Mixing 
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was accomplished by pipetting the contents of each well several times. After incubation at room 

temperature for 30 min, samples were analyzed via flow cytometry. 

 Flow cytometric analysis was carried out using either a FACSCanto™ II flow cytometer 

equipped with a BD™ High Throughput Sampler or a Miltenyi Biotec MACSQuant® Analyzer 10 

flow cytometer with integrated 96-well MiniSampler device. Stock photomultiplier tube detectors 

and associated optical filter sets were used to detect fluorescence emissions associated with 

the fluorochromes: FITC (detected in the FITC channel, to use BD instrument parlance), PE (PE 

channel), propidium iodide (PerCP-Cy5.5 channel), and Alexa Fluor® 647 (APC channel).  

 Representative bivariate graphs, gating logic, and position of regions were described in 

detail in earlier reports [Bryce et al., 2016, 2017; Bernacki et al., 2016]. Briefly, two biomarker 

measurements, H2AX and p53, were based on the shift in median channel fluorescence 

intensity relative to same-plate solvent controls. Polyploidy and p-H3 biomarker measurements 

were based on their frequency among other nuclei. Nuclei to counting bead ratios were 

calculated for each sample, and these ratios were used to determine absolute nuclei counts 

(those with 2n and greater DNA-associated propidium iodide fluorescence). Nuclei counts were 

used to derive RNC, and %cytotoxicity was calculated as 100% minus %RNC at 24 hr. 

 

MultiFlow Data Analysis: Pre-Processing 

 Data analyses described herein were restricted to those concentrations that did not 

exceed the MultiFlow assay‘s cytotoxicity limit, i.e., the top concentration of each chemical had 

to exhibit ≤ 80% reduction to RNC at the 24 hr time point. This has been described previously 

by Bryce and colleagues [2016, 2017]. The present report differs slightly, such that in addition to 

the 80% maximum cytotoxicity limit noted above, only two concentrations within the cytotoxicity 

range 70-80% were permitted. Finally, except for 14n and 16p as noted above, in the absence 

of excessive cytotoxicity the top concentration was 1 mM or the lowest precipitating 

concentration, whichever was lower.   

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



 For the GEF, machine learning, and benchmark dose analyses described below, 4 and 

24 hr H2AX, p53, and p-H3 measurements, and 24 hr polyploidy frequencies, were converted 

to fold-change values by dividing them by the mean value associated with solvent-exposed 

cultures on the same plate (Microsoft Excel 2008, v12.3.6). This was performed for every test 

article concentration that was not excluded due to excessive cytotoxicity or other limits 

described above.  

 Unsupervised clustering analyses benefitted from several transformations. First, feature 

scaling (also known as unity-based normalization) was applied to every test article 

concentration to bring the values into the range 0 to 1 [Jayalakshmi and Santhakumaran, 2011]. 

Second, for each biomarker response and time point combination, fold-change values versus 

normalized concentration curves were used to generate an area under the curve (AUC) value. 

AUC provided a means of converting each biomarker dose-response relationship for every 

chemical into a single value. This was accomplished using Microsoft Excel via the trapezoidal 

rule as described at https://calculushowto.com/find-the-area-under-the-curve-in-excel. One (1) 

was subtracted from every biomarker‘s fold-change value before AUC calculations were made 

in order to set the no effect (baseline) value to zero. With this offset in place, AUC values were 

zero or nearly so in the case of no response, positive in the case of an increase, and negative in 

the case of a reduction. Also note that polyploid fold change values were transformed with the 

square root function, a processing step that converted this biomarker‘s dynamic range to one 

that more closely approximated that of the other biomarkers (found to be advantageous for 

artificial neural network models, see Bryce et al., 2018). 

 

MultiFlow Data Analysis: Global Evaluation Factors 

 MultiFlow biomarker/time point combinations were compared to GEFs reported by Bryce 

and colleagues [2017]. GEFs for the three clastogen-responsive biomarkers 4 hr H2AX, 4 hr 
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p53, and 24 hr H2AX, were 1.51-, 1.40-, and 2.11-fold, respectively; GEFs for the three 

aneugen-responsive biomarkers 4 hr p-H3, 24 hr p-H3, and 24 hr polyploidy, were 1.71-, 1.52-, 

and 5.86-fold, respectively; and the GEF for the pan-genotoxicant (clastogen- and aneugen-

responsive) biomarker, 24 hr p53, was 1.45-fold. Meeting or exceeding these interlaboratory-

derived values identified a significant biomarker response at a particular time point. To 

synthesize the results of these multiple comparisons and to make judgments about genotoxic 

potential and MoA, the following rubric was applied. A genotoxic call with a clastogenic MoA 

required two successive concentrations to meet or exceed the GEF for at least two out of four 

clastogen-sensitive biomarkers: 4 hr H2AX, 4 hr p53, 24 hr H2AX, and 24 hr p53. A genotoxic 

call with an aneugenic MoA required two successive concentrations to meet or exceed the GEF 

for at least two out of four aneugen-sensitive biomarkers: 4 hr p-H3, 24 hr p-H3, 24 hr 

polyploidy, and 24 hr p53. In cases where both clastogen and aneugen call criteria were met, 

the call was genotoxic with a ―mixed‖ MoA. When the above criteria were not met, the call was 

non-genotoxic under the test conditions. 

 

MultiFlow Data Analysis: Machine Learning Ensemble 

 The development and use of three ML models, multinomial logistic regression (LR), 

artificial neural network (ANN), and random forest (RF), was described in detail previously 

[Bryce et al., 2018]. Briefly, these various models utilize 4 and 24 hr MultiFlow data fold-change 

values and predict whether a chemical exhibits genotoxic activity or not, and if present whether 

the genotoxicity occurs via a clastogenic, aneugenic, or clastogenic and aneugenic MoA. Each 

model‘s output was synthesized into genotoxicity and MoA calls as follows. Genotoxic, with 

evidence for a clastogenic MoA, required two successive concentrations to exhibit clastogen 

probability scores ≥ 80%, or one concentration to exhibit a clastogen probability score ≥ 90%. 

Genotoxic, with evidence for an aneugen MoA, required two successive concentrations to 
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exhibit aneugen probability scores ≥ 80%, or one concentration to exhibit an aneugen 

probability score ≥ 90%. Non-genotoxic was defined as the absence of two successive 

concentrations exhibiting clastogen or aneugen probability scores ≥ 80%, and no one 

concentration exhibiting a clastogen or aneugen probability score ≥ 90%. 

 A majority vote ensemble considered the genotoxicity calls from each of the 3 modeling 

approaches as described above. A simple majority (2 out of 3) was necessary for a summary 

genotoxic call. For most chemicals, MoA predictions were found to be in agreement across 

models. In instances when models showed significant clastogen and aneugen probabilities, the 

chemical was considered genotoxic with evidence for a mixed MoA.  

 

MultiFlow Performance Assessments  

 Training and test set chemicals were evaluated against a priori genotoxicity and MoA 

expectations. This was accomplished by evaluating the performance of the GEF rubric and ML 

ensemble on their own. Furthermore, we investigated a hybrid strategy that made use of both 

GEFs and ML predictions. With this approach, an overall genotoxic call was made when either 

the GEF or ML ensemble was positive. 

 For each strategy described above, performance was assessed by determining the level 

of agreement between expected and observed genotoxicity calls. This was accomplished by 

calculating the percentage of chemicals correctly identified as being genotoxic or non-genotoxic. 

Furthermore, for those agents that were identified as genotoxic, the level of agreement between 

MoA calls was also made by calculating the percentage of compounds that showed expected 

MoA. In the several instances where a priori MoA was either difficult to define or hypothesized 

to be a mixed MoA, any genotoxic MoA prediction was considered correct. In cases where a 

presumably non-genotoxic chemical was identified as genotoxic, any/all associated MoA calls 

were considered incorrect.  
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Unsupervised Clustering 

 Chemicals that were identified as aneugens by the hybrid GEF and machine learning 

approach were evaluated using JMP software‘s unsupervised clustering platform (JMP, 

v12.0.1). As described above, the biomarker response data were first converted to AUC values, 

and when clustering aneugens, the following 7 biomarkers were used as variables: 4 hr H2AX, 

p-H3 and p53, and 24 hr H2AX, p-H3, p53 and 24 hr polyploidy. The analysis options were set 

as follows: clustering method = hierarchical; method for calculating distances between clusters 

= ―Ward‖; data as usual = ―Standardize Data‖; data visualization = ―Dendrogram‖, with ―two way 

clustering‖.  

 Chemicals identified as clastogens by the hybrid GEF and machine learning approach 

were evaluated in a similar manner. However, in this case, the 4 variables were utilized: 4 hr 

H2AX, 4 hr p53, 24 hr H2AX, and 24 hr p53.  

 

Benchmark Dose Analyses  

 A subset of the reference genotoxic chemicals (n = 34) were evaluated for in vitro 

micronucleus (MN) formation using TK6 cells from the same treated cultures used in the 

MultiFlow assay. These analyses were conducted at the 24 hr time point, and were 

accomplished via flow cytometric analysis using In Vitro MicroFlow® Kit reagents (Litron 

Laboratories, Rochester, NY). These methods have been reported in detail elsewhere 

[Avlasevich et al., 2006]. For the MN endpoint, concentrations were limited to those that resulted 

in ≤ 55% reduction to relative nuclei counts.  

 The Benchmark Dose (BMD) for continuous data is defined as the dose or exposure that 

results in a predetermined percent change (benchmark response, BMR) in the response rate of 

an adverse effect relative to the response in the concurrent controls, generally in the range of 1-

10% increase in the background [MacGregor et al., 2015]. Traditionally, the BMD approach is 
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utilized to estimate a Point of Departure (PoD) value from in vivo studies and thereby derive 

compound specific reference values in human health safety assessment; in these cases, the 

choice of BMR value should be justified. There is much debate over the appropriate BMR value 

to be selected, with several expert groups suggesting that an endpoint specific effect size 

approach is necessary [Slob, 2016; Zeller et al., 2016, 2017]. Briefly, a ‗one-size-fits-all‘ BMR in 

the range of 1-10% is suggested to be inappropriate to apply to all endpoints. One theory favors 

scaling the BMR in percent change to the maximum response observed for the endpoint, which 

takes into account natural variation [Slob, 2016]. Based on a similar principle, work by Zeller et 

al. [2016] examined data from multiple genotoxicity endpoints to calculate endpoint specific 

‗response quotients’ by dividing the assay‘s response at a non-genotoxic dose level by the 

response of the concurrent vehicle control. The resulting fold-increase values over control were 

converted into BMR values in percent. Results of applying the approach to datasets derived 

from multiple in vivo genotoxicity studies range from 20-110%.  

 Importantly, it is not the purpose of this study to derive PoD metrics to infer reference 

values. Rather, we chose BMRs to minimize variation at the respective point in the dose 

response curve and thereby generate more precise PoD estimates [Slob and Setzer, 2014; 

Wills et al., 2015; Bemis et al., 2016]. Furthermore, the choice of BMR is not critical for in vitro 

endpoint comparisons, providing that it is the same value for all chemicals in the group. This has 

been demonstrated by Bemis and colleagues [2016], who produced BMD confidence intervals 

for various BMR values and showed similar correlations.  

 BMD analyses were performed for the subset of 34 chemicals with concurrent MultiFlow 

and MicroFlow data. Specifically, H2AX, p-H3, p53, and in vitro MN dose responses were 

evaluated using PROAST (v63.3). Values for Critical Effect Size (CES, in PROAST notation) of 

0.5 (BMR 50%), or 1.0 (BMR 100%, in the case of in vitro MN compounds mitomycin C, 4-

nitroquinoline 1-oxide, and topotecan—which failed to yield a dose response with BMR 50%) 

were used for BMD analysis for the compounds. Compound was selected as covariate per 
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endpoint and CES.  The resulting 95% Confidence Intervals (CI‘s) were used to represent the 

relative potency of the compound for the endpoint under study. After ranking the in vitro MN 

induction potency of each compound, the data were compared with 24 hr H2AX and 24 hr p53 

endpoints for the clastogen group of compounds, and 24 hr p-H3 and 24 hr p53 endpoints for 

the aneugen group of compounds. These correlations are represented in cross system plots on 

a double Log scale [Soeteman-Hernández et al, 2016; Bemis et al., 2016]. The analyses were 

conducted separately for clastogens (n = 21) and aneugens (n = 13). 

 Figure 1 is a schematic representation of the overall data analysis strategy that was 

configured into three tiers and applied to MultiFlow data as described in detail above. 

 

RESULTS AND DISCUSSION 

Tier 1 Analyses: Training Set 

 The 85 reference chemicals that comprise the training set were given a priori 

classifications in regard to their genotoxic potential, as well as their predominant genotoxic MoA, 

clastogenicity or aneugenicity (Table I). Results for several of these agents are presented in 

detail in order to describe prototypical response profiles, and to introduce a new data 

visualization tool. These examples should provide a useful background for interpreting the 

aggregate chemical results that are presented hereafter. 

 Thapsigargin is an inhibitor of the sarco/endoplasmic reticulum Ca++ ATPase [Rogers et 

al., 1995]. A radar plot portrays each biomarker response and time point combination as a 

function of concentration (Figure 2a). As expected for a non-genotoxicant, no substantial 

increases in H2AX, p-H3, p53 or polyploidization biomarkers were observed, despite that fact 

that it was tested to cytotoxic concentrations (71% cytotoxicity). Thus, it is not surprising that 

neither the GEF rubric or any of the three ML models predicted genotoxicity (Table II). Note that 

interested readers can access an Excel version of Table II as Supplemental file 1.  
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 Treatment of TK6 cells with the reference genotoxicant 4-nitroquinoline 1-oxide resulted 

in a prototypical clastogenic response profile (Figure 2b). The H2AX biomarker was increased 

at 4 and 24 hr. Whereas p53 activation at the 24 hr time point is a pan-genotoxicity signal, 

activation at 4 hr, as observed here, is quite specific for clastogens [Bryce et al., 2014, 2016]. 

Additionally, 4-nitroquinoline 1-oxide did not increase polyploidization, and the p-H3 biomarker 

was reduced in a dose-dependent manner. Both of these observations provide additional 

evidence of clastogenic as opposed to aneugenic activity. As shown in Table II, the GEF rubric 

and all three of the ML models predicted genotoxicity, with a clastogenic MoA.  

 Mebendazole‘s aneugenicity has been attributed to microtubule binding [Laclette et al., 

1980]. MultiFlow response data illustrate a typical tubulin binder-induced aneugenic response 

profile (Figure 2c). While anti-H2AX-associated fluorescence did not increase at either time 

point and p53 translocation was not apparent at 4 hr, marked p53 responses were observed at 

24 hr. Furthermore, robust increases in p-H3 positive events were induced by mebendazole, 

and this was accompanied by polyploidization. GEFs as well as the machine learning ensemble 

identified this compound as genotoxic, with evidence for an aneugenic MoA. 

 Crizotinib is another aneugen that is instructive for several reasons. Crizotinib is a potent 

inhibitor of c-Met and ALK (anaplastic lymphoma kinase), with cell-based assay IC50 values in 

the low nM range [Awad and Shaw, 2014].  Even so, there is evidence that the agent‘s in vitro 

aneugenic activity may be related to off-target effects on aurora kinase(s) [Kong et al., 2018]. 

Data presented in Figure 2d support this view, as it generated response profiles that are similar 

to several confirmed aurora kinase inhibitors tested in the MultiFlow assay (e.g., ZM-447439 

and tozasertib). As with many tubulin binders, p53 activation and polyploidization were observed 

at the 24 hr time point. In the case of this kinase inhibitor, polyploidization was especially robust, 

and was evident well before the assay‘s cytotoxicity limit was reached (i.e., 8-fold increase in 

polyploidy at 59% cytotoxicity). Unlike tubulin binders, the proportion of p-H3-positive events 
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was not elevated. Rather, at the highest concentrations tested, severe decreases were 

observed. These observations are consistent with aurora kinase inhibition, as this activity would 

be expected to repress serine 10 phosphorylation of histone H3 on mitotic chromosomes 

[Crosio et al., 2002]. Despite the response profile being quite different than spindle poisons, 

both the GEF rubric as well as all three of the ML models identified crizotinib as genotoxic, with 

evidence for an aneugenic MoA (Table II). 

 Results from the tier 1 data analyses are presented for all 85 training set chemicals in 

Table II. For the ML ensemble, the concordance between a priori expected and observed 

genotoxicity calls was 99%. For those agents with a genotoxic call, the agreement with 

expected MoA was 98%. In both cases, the one mischaracterized agent was imatinib mesylate 

(identified as a clastogen). Supplemental file 2a-c provides Manhattan-type plots that show ML 

probabilities for each of the 85 chemicals at every concentration tested.  

 Table II also provides performance metrics for GEFs. The most obvious difference 

between GEFs and ML is that the latter was effective for both genotoxicity calls and MoA 

predictions (at least with a training set size of 85 chemicals), while the GEF rubric showed a 

lower level of agreement between expected and observed genotoxic activity calls (i.e., 93% 

concordance), especially for clastogens. As shown by Table II, the hybrid strategy, GEF + ML, 

did not outperform ML on its own. 

  

Tier 1 Analyses: Test Set 

 With promising results evident for 85 training set chemicals, work with compounds that 

were not used to devise the GEF rubric or the ML models were tested in the MultiFlow assay. 

The results from tier 1 analyses are presented in Table III. For this set of 40 diverse chemicals, 

the ML ensemble provided the best performance: 88% agreement between expected and 

observed genotoxicity calls. As with the training set, GEFs alone did not perform as well, as it 

resulted in 75% agreement with a priori classifications. Furthermore, the hybrid GEF + ML 
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strategy did not outperform the ML-only approach (88%).  

 Three suspected genotoxicants were not identified as such by any of the tier 1 analysis 

strategies that were evaluated: 6f, 13m, and 14n. While 6f was an anticipated aneugen, it was 

not observed to affect any of the aneugen-sensitive biomarkers, despite the fact that analyses 

included concentrations that induced up to 63.8% cytotoxicity. Compound 14n was also 

classified a priori as aneugenic, and in this case only one aneugen biomarker was slightly 

induced: 4 hr p-H3 was increased by 1.39-fold at the highest concentration tested, 4.41 µM. 

This false negative result for 14n should be qualified to some degree, since cytotoxicity at the 

highest feasible concentration tested was 48.7%, well below the assay‘s cytotoxicity limit of 

80%. The third false negative result, 13m, is also noteworthy. Whereas 6f and 14n showed 

slight to nil biomarker responses, 13m caused robust increases that exceeded biomarker GEFs 

for 4 hr p-H3 and 4 hr H2AX across several consecutive concentrations, as well as 24 hr 

polyploidy at the highest concentration (Figure 3a). This response profile was not observed in 

the 85 chemical training set, and consequentially the GEF rubric was not developed with this in 

mind, and the ML models have no experience with this pattern.  

 Tier 1 mischaracterized two non-genotoxicants as genotoxic: 2b and 12L. In the case of 

2b (a.k.a., sodium diethyldithiocarbamate trihydrate), it should be noted that this compound has 

been shown to induce cytogenetic damage in both CHO and TK6 cells [Hilliard et al., 1998; 

Galloway et al., 1998; Greenwood et al., 2004], and DNA double strand breaks in rat 

hepatocytes [Storer et al., 1996], but genotoxicity was seen only at concentrations deemed 

overly cytotoxic by current testing standards. There are at least two biologically plausible causes 

for indirect effects leading to in vitro DNA damage: diethyldithiocarbamate chelates copper and 

zinc, and it is a potent inhibitor of superoxide dismutase [Heikkila et al., 1976; Nicotera et al., 

1989]. 

 Of the chemicals identified as genotoxic, tier 1 analyses were also used to predict their 

genotoxic MoA. As shown in Table III, ML resulted in 88% agreement between expected and 
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observed calls. GEF alone and the hybrid GEF + ML approaches performed similarly (88%). 

Note that interested readers can access an Excel version of Table III as Supplemental file 1. 

One compound, 16p, showed mixed activities, as both clastogen and aneugen biomarker 

responses were detected. This was an expected result, as 16p has an azobenzimidazole 

structure that was previously observed to induce premature centromere separation at 

metaphase in addition to induction of micronuclei and structural aberrations. MultiFlow 

biomarker results for this atypical agent are shown in Figure 3b. The three chemicals with 

misidentified MoA included the aneugen call for ciprofloxacin, a fluoroquinoline class antibiotic 

that was expected to exhibit clastogenic activity based on its reported topoisomerase II inhibitor 

activity, and the two a priori non-genotoxicants discussed above (i.e., 2b and 12L; both 

identified as clastogens).  

 Supplemental file 3a-c provides Manhattan-type plots that show machine learning 

probabilities for each of the 40 test set chemicals at every concentration evaluated. Overall, the 

high concordance values speak to the generalizability of the ML ensemble to detect 

genotoxicants, and to furthermore provide an indication of genotoxic MoA.  

 

Tier 2 Analyses 

 A set of 21 a priori aneugens and mixed MoA chemicals that were identified as such in 

tier 1 ML analyses were evaluated via unsupervised hierarchical clustering using 4 and 24 hr 

MultiFlow biomarker data that were each converted to a single AUC value. The resulting 

groupings are presented in Figure 4 in the form of a two dimensional dendrogram. The clade 

denoted ―TB‖ was entirely comprised of tubulin binders. Note that whereas the exact 

mechanism of test agent 17q is not known, it is a benzimidazole-containing structure and 

therefore expected to have tubulin-binding properties. The other clear grouping is denoted ―KI‖, 

a clade that included each of the presumptive mitotic kinase inhibitors that were tested: AMG 

900, crizotinib, tozasertib, hesperadin, ZM-447439, and 10j. 
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 The set of 46 a priori clastogens that were identified as such in tier 1 analyses were also 

evaluated via unsupervised clustering using the 4 clastogen-responsive biomarkers. The results 

are shown in Figure 5. For this set of diverse clastogens, it is less obvious that clusters formed 

around different molecular targets. That said, the clade identified as ―TI‖ was highly enriched for 

topoisomerase inhibitors (6/8), and the ―C-L‖ grouping was enriched for DNA cross-linking 

agents (5/9). 

 Taken together, a second tier that consists of unsupervised hierarchical clustering 

appears to complement genotoxic potential and MoA analyses, as it provides useful information 

about likely molecular targets. This is especially true in the case of delineating aneugens that 

target mitotic kinases versus those that interfere with tubulin polymerization.  

 

Tier 3 Analyses 

 BMD metrics served as a basis for tier 3 analyses that were conducted to determine 

whether MultiFlow biomarker(s) could provide a reliable indication of chemicals‘ genotoxic 

potency as measured by the in vitro micronucleus assay. The advantage of using BMD-derived 

potency metrics has been previously discussed by Soeteman-Hernández and colleagues [2015, 

2016], and here we have expanded the utility to in vitro datasets. As shown in Figures 6, 7, and 

8, the BMDs in the MultiFlow endpoints were plotted against micronucleus response BMDs on a 

double-log scale. As opposed to representing correlation with a numerical coefficient value, a 

linear relationship with intercept zero equals a straight line in a double-log plot. Therefore, two 

lines with unity slope were drawn on each correlation plot in such a manner that the majority of 

the BMD confidence intervals are encompassed between the lines. The distribution of BMD 

positions within the two lines show approximate linearity, differing by a proportionality constant. 

Furthermore, the vertical distance between the two lines translates into an uncertainty margin 

given by the estimation of a BMD on the y axis based on a specified BMD on the x axis, and 

vice versa. The uncertainty margin is used as a measure of correlation between two endpoints.       
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 For the aneugens, when comparing MN induction to p53 responses, the cross system 

plots show good correlation, with the majority of the compounds located between the two lines 

(Figure 6). Taking the microtubule binder nocodazole as an example, the horizontal dashed line 

intersections with the sloped dashed lines may be considered as the respective upper and lower 

bounds of the uncertainty range for the in vitro MN endpoint. The intercepts of approximately -3 

and -1 on the Log scale correspond to lower and upper bounds of 10-3 = 0.001 and 10-1 = 0.1 

M, respectively. Hence, the in vitro MN BMD for nocodazole is estimated to lie between 0.001 

and 0.1 M considering an uncertainty margin of approximately 1 Log. In fact, the in vitro MN 

potency for nocodazole in the dataset represented in Figure 6 has both BMDL and BMDU either 

side of -2 Log, and hence within the estimated potency of -3 Log and -1 Log estimated from the 

p53 response. The MN vs. 24 hr p-H3 system plot also indicates the BMDs for the majority of 

compounds in both systems are proportionally related (Figure 6), however the two lines are 

drawn further apart than the MN vs. 24 hr p53 system (i.e., 2 logs versus 1 log). In both cases, 

MN vs. p53 and MN vs. p-H3, the data are randomly scattered with good correlation.  

 For the clastogens, good correlation is observed for MN vs. H2AX and MN vs. p53, with 

data randomly scattered between the two diagonal lines of the unity slopes, with distances of 

approximately 3 Log, and 2 Log respectively for each system (Figure 7). The in vitro MN 

BMD100 CI for compounds mmc, nqo, and top, plotted against BMD50 H2AX and p53 

endpoints show similar correlation with BMD CIs lying within approximately 2 Log for both 

systems (Figure 8).  

 The correlations observed here are consistent with those of other genotoxicity endpoints 

which have been compared using similar methodologies. Bemis and colleagues [2016] obtained 

an uncertainty margin of approximately 1.5 Log when comparing the in vitro MN responses 

against in vivo MN responses for a group of 7 clastogens. Similarly, Soeteman-Hernández et al. 

[2015] assessed the ability to predict in vivo MN potency from in vitro MN data. BMD confidence 
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intervals spanned 2 orders of magnitude, with in vivo BMD confidence intervals generally 

showing smaller than those from in vitro studies.  

 

Conclusions 

 The MultiFlow DNA Damage Assay‘s ability to predict chemicals‘ in vitro genotoxic 

potential and MoA was demonstrated with an external test set of 40 largely pharmaceutical-

centric compounds. Whereas the GEF and associated rubric exhibited high specificity and 

accurate MoA predictions, it provided lower sensitivity to detect genotoxicants relative to a ML 

ensemble. Indeed, ML exhibited a good balance between genotoxic potential predictions and 

MoA information. Interestingly, a hybrid strategy whereby GEFs and ML were used to make 

calls was no better than ML on its own. That being said, from a practical perspective, GEFs may 

serve a useful function at novice laboratories. GEFs can be used right away, even as training 

set data are being generated. Furthermore, while early ML models are being built and tested, 

concurrent use of the GEF rubric represents a safety net of sorts, as it is capable of highlighting 

biomarker response patterns that the machine learning model(s) may not have encountered. On 

a related point, additional practical advice for new adopters of this assay is provided in 

Supplemental file 4, that is, a shorter list of diverse training set chemicals (n = 24) that can be 

used to build base learner(s). 

 Unsupervised clustering is able to group certain genotoxicants with the same or similar 

molecular targets based on multifactorial biomarker response patterns. This was especially 

successful with aneugens that were clustered into tubulin binder and kinase inhibitor groups. 

While these analyses do not offer proof of molecular targets, they do represent a powerful 

hypothesis-generating tool, one that could be used to efficiently design the necessary follow-up 

test(s) aimed at directly and conclusively identifying molecular target(s) responsible for in vitro 

genotoxicity  

 With respect to the BMD analyses reported herein, the strong correlation of MultiFlow 
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biomarkers to bona fide genomic damage in the form of MN provides assurances of the 

relevance of the new assay‘s endpoints. Furthermore, the correlations suggest that potency 

determinations based on MultiFlow endpoints, at least on a rank-order basis, are likely 

comparable to those derived from the MN assay. This bolsters the use case whereby the 

constellation of MultiFlow assay biomarkers serve as a reliable genotoxicity screening tool that 

is predictive of in vitro MN formation, with the benefit of providing more mechanistic information. 

Finally, dose-response analyses such as these are worth pursuing further because they reflect 

the paradigm shift that has been transitioning genotoxicity away from a simple binary yes/no 

characteristic to a quantitative metric that has the potential to better inform risk assessments as 

margin of exposure and other toxicological principles can be considered [Pottenger and 

Gollapudi, 2009, 2010; Gollapudi et al., 2013; Johnson et al., 2014; MacGregor et al., 2015a,b; 

Dearfield et al., 2017]. 
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FIGURE LEGENDS 

Figure 1. Flow chart representing a tiered MultiFlow assay data analysis pipeline. With this 

strategy chemicals are evaluated for their genotoxic potential and genotoxic mode of action (tier 

1), insights into molecular target are provided by unsupervised clustering (tier 2), and finally 

potency metrics are generated (tier 3).  

 

Figure 2. Radar plots show MultiFlow assay data for seven biomarker/time point combinations 

and for each of four chemicals: thapsigargin, 4-nitroquinoline 1-oxide (4NQO), mebendazole, 

and crizotinib. The biomarker data are expressed as fold-increase over mean solvent control on 

the same plate, and each chemical concentration appears as a different colored line. The top-

most endpoint (24 hr p53, at 12 o‘clock) is a pan-genotoxic biomarker, whereas the biomarkers 

arranged on the right side of the graph are responsive to clastogens and those arranged on the 

left are responsive to aneugens.  

 

Figure 3. Radar plots show MultiFlow assay data for seven biomarker/time point combinations 

and for each of two chemicals: MSD-supplied test compounds 13m and 16p. The biomarker 

data are expressed as fold-increase over mean solvent control on the same plate, and each 

chemical concentration appears as a different colored line. Same format as Figure 2.  

 

Figure 4. Unsupervised clustering results are shown as a two dimensional dendrogram for 21 

chemicals that were identified as exhibiting aneugenic activity. As described in Materials and 

Methods, each biomarker dose response was converted to an area under the curve for this 

analysis. The abbreviations TB (tubulin binder) and KI (kinase inhibitor) are used to denote 

clades with chemicals that are known to exhibit these activities. The bottom-most graph shows 

the horizontal distances between join points. 
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Figure 5. Unsupervised clustering results are shown as a two dimensional dendrogram for 46 

chemicals that were identified as exhibiting clastogenic activity. As described in Materials and 

Methods, each biomarker dose response was converted to an area under the curve for this 

analysis. The abbreviations TI (topoisomerase inhibitor) and C-L (cross-linker) are used to 

denote clades that are enriched for chemicals known to exhibit these activities. The bottom-

most graph shows the horizontal distances between join points. 

 

Figure 6. Left panel: BMD analyses of aneugen compounds represented in cross system plots 

with BMD50 CIs for in vitro MN against BMD50 CIs 24 hr p-H3 responses in TK6 cells, with both 

x and y axes representing Log10 concentration of compounds in M. The dashed parallel lines 

are drawn in such a way that encompasses most of the CIs. Dashed square box default 

PROAST output encompassing finite BMD CIs. Compound ‗car‘ falls outside the trend with 

unbound CI in the 24 hr p-H3 endpoint. Right panel: BMD50 CIs for in vitro MN against BMD50 

24 hr p53 responses in TK6 cells, with both x and y axes representing Log10 concentration of 

compounds in µM. Dashed parallel lines encompassing most of the BMD CIs, similarly to the left 

panel correlation plot. Dashed square box default PROAST output encompassing finite BMD 

CIs. Compounds ‗gli‘ and ‗des‘ lie outside the general observed trend, with unbound upper CI in 

the 24 hr p53 endpoint. Dashed horizontal lines obtain the uncertainty range with corresponding 

circles intercept with the x axis predicting the BMD50 for in vitro MN response. See Table I for 

compound abbreviations. Abbreviation: BMD = Benchmark Dose, CI = Confidence Interval, MN 

= micronucleus. 

 

Figure 7. Left Panel: BMD analyses of clastogen compounds represented in cross system plots 

with BMD50 CIs for in vitro MN versus BMD50 CIs 24hr H2AX responses in TK6 cells, with 

both x and y axes representing Log10 concentration of compounds in µM. The dashed parallel 
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lines are drawn in such a way that encompasses all of the CIs. Dashed square box default 

PROAST output encompassing finite BMD CIs. Right Panel: BMD50 CIs for in vitro MN versus 

BMD50 24hr p53 responses in TK6 cells, with both x and y axes representing Log10 

concentration of compounds in µM. Dashed parallel lines encompassing most of the BMD CIs. 

Dashed square box default PROAST output encompassing finite BMD CIs except outliers. 

Compound ola lies outside the general observed trend, with an unbound upper CI in the p53 

endpoint. Compound cis displays an unbound upper CI in the p53 endpoint. See Table I for 

compound abbreviations. Abbreviation: BMD = Benchmark Dose, CI = Confidence Interval, MN 

= micronucleus. 

 

Figure 8. Left Panel: BMD analyses of clastogen compounds represented in cross system plots 

with BMD100 CIs for in vitro MN versus BMD50 24hr H2AX responses in TK6 cells, with both x 

and y axes representing Log10 concentration of compounds in µM. The dashed parallel lines 

are drawn in such a way that encompasses all of the CIs. Dashed square box default PROAST 

output encompassing finite BMD CIs. Right Panel: BMD100 CIs for in vitro MN versus BMD50 

24hr p53 responses in TK6 cells, with both x and y axes representing Log10 concentration of 

compounds in µM. Dashed parallel lines encompassing most of the BMD CIs. Dashed square 

box default PROAST output encompassing finite BMD CIs. See Table 1 for compound 

abbreviations. Abbreviation: BMD = Benchmark Dose, CI = Confidence Interval, MN = 

micronucleus. 
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Table I. Chemicals and a priori Classifications.  

Chemical, 

Abbreviation  

CAS No., 

Source if not 

Sigma-Aldrich 

Chemical 

Set 

a priori Mammalian Cell 

Genotoxicity & MoA 

Classifications 

Notes; References 

17-Estradiol 

(est) 

50-28-2 Training Genotoxic; Aneugen  Steroid hormone; Hernández 

et al., 2013 

AMG-900  

(amg) 

945595-80-2 Training Genotoxic; Aneugen Pan-Aurora kinase inhibitor 

(A/B/C); Payton et al., 2010  

Carbendazim  

(car) 

10605-21-7 Training Genotoxic; Aneugen Mitotic spindle poison; Van 

Hummelen et al., 1995 

Colchicine 

(col) 

64-86-8 Training Genotoxic; Aneugen Mitotic spindle poison; Kirkland 

et al., 2016 

Crizotinib 877399-52-5 Training Genotoxic; Aneugen  Tyrosine kinase inhibitor, 

potent activity against c-Met 

and ALK, with evidence of off-

target Aurora kinase inhibition 

[Kong et al., 2018] 

Diethylstilbestrol 

(des) 

56-53-1 Training Genotoxic; Aneugen Synthetic estrogen; Parry et 

al., 2002 

Flubendazole 

(flu) 

31430-15-6 Training Genotoxic; Aneugen Mitotic spindle poison; Tweats 

et al., 2016  

Griseofulvin  

(gli) 

126-07-8 Training Genotoxic; Aneugen Mitotic spindle poison; Oliver 

et al., 2006 

Mebendazole 

(meb) 

31431-39-7 Training Genotoxic; Aneugen Mitotic spindle poison; Van 

Hummelen et al., 1995  

Nocodazole 

(noc) 

31430-18-9 Training Genotoxic; Aneugen Mitotic spindle poison; 

Verdoodt et al., 1999 

Noscapine 

(nos) 

128-62-1 Training Genotoxic; Aneugen Mitotic spindle poison; Schuler 

et al., 1999  

Paclitaxel 

(pac)  

33069-62-4 Training Genotoxic; Aneugen Mitotic spindle poison; Kirkland 

et al., 2016 

Vinblastine 

sulfate  

(vin) 

143-67-9 Training Genotoxic; Aneugen Mitotic spindle poison; Kirkland 

et al., 2016 

Vincristine sulfate 

(vis) 

2068-78-2 Training Genotoxic; Aneugen Mitotic spindle poison; Kondo 

et al., 1992 
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1,3-Propane 

sultone 

(psu) 

1120-71-4 Training Genotoxic; Clastogen Alkylator; Dertinger et al., 2011 

4-Nitroquinoline 

1-oxide 

(nqo) 

56-57-5 Training Genotoxic; Clastogen Likely several modes of 
clastogenic action that may 
include ROS; Kirkland et al., 
2016 

5-Fluorouracil 51-21-8 Training Genotoxic; Clastogen Anti-metabolite, thymidylate 
synthase inhibitor; Kirkland et 
al., 2016 

Aphidicolin 38966-21-1 Training Genotoxic; Clastogen DNA polymerase inhibitor; 

Glover et al., 1984 

Azathioprine 446-86-6 Training Genotoxic; Clastogen  Prodrug of mercaptopurine, 
purine analog; Henderson et 
al., 1993  

Azidothymidine 

(azt) 

30516-87-1 Training Genotoxic; Clastogen Nucleoside analog; Kirkland et 

al., 2016 

Bleomycin sulfate 

(bls) 

9041-93-4 Training Genotoxic; Clastogen Radiomimetic; Rosefort et al., 

2004 

Camptothecin 

(cam) 

7689-03-4 Training Genotoxic; Clastogen Topoisomerase I inhibitor; 

Attia et al., 2009 

Chlorambucil 

(chl) 

305-03-3 Training Genotoxic; Clastogen Nitrogen mustard-type 

alkylator; Dertinger et al., 2012 

Cisplatin 

(cis) 

15663-27-1 Training Genotoxic; Clastogen  Atypical alkylator; Kirkland et 

al., 2016 

Cytosine 

arabinoside 

(cya) 

147-94-4 Training Genotoxic; Clastogen Anti-metabolite; Kirkland et al., 

2016 

Doxorubicin 23214-92-8 Training Genotoxic; Clastogen Anthracycline, likely several 

modes of action that includes 

inhibition of topoisomerase II; 

Gewirtz DA, 1999 

Emodin 518-82-1 Training Genotoxic; Clastogen Anthraquinone, topoisomerase 

II inhibitor; Li et al., 2010 

Ethyl 

methanesulfonate 

(ems) 

62-50-0 Training Genotoxic; Clastogen Alkylator; Gocke et al., 2009  

Etoposide  

(etp) 

33419-42-0 Training Genotoxic; Clastogen Topoisomerase II inhibitor; 

Kirkland et al., 2016 
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Glycidamide 

(gly) 

5694-00-8 Training Genotoxic; Clastogen Major in vivo metabolite of 

acrylamide; Paulsson et al., 

2003  

Hydralazine HCl 304-20-1 Training Genotoxic; Clastogen Prepared in RPMI medium; 

Martelli et al., 1995 

Hydrogen 

peroxide 

(hyp) 

7722-84-1 Training Genotoxic; Clastogen  ROS, prepared in RPMI 

medium; Kimura et al., 2013 

Hydroxyurea 

(hyu) 

127-07-1 Training Genotoxic; Clastogen Anti-metabolite, ribonucleotide 

reductase inhibitor; Dertinger 

et al., 2012 

Melphalan 142-82-3 Training Genotoxic; Clastogen Nitrogen mustard-type 

alkylator; Dertinger et al., 2012 

Menadione 

(men) 

58-27-5 Training Genotoxic; Clastogen ROS implicated; Cojocel et al., 

2006  

Methotrexate 59-05-2 Training Genotoxic; Clastogen Anti-metabolite; Keshava et 

al., 1998 

Methyl 

methanesulfonate 

66-27-3 Training Genotoxic; Clastogen Alkylator; Kirkland et al., 2016 

N-Methyl-N′-nitro-

N-

nitrosoguanidine 

(MNNG) 

70-25-7 Training Genotoxic; Clastogen Alkylator; Nikolova et al., 2014 

Mitomycin C 

(mmc) 

50-07-7 Training Genotoxic; Clastogen DNA cross-linker; Kirkland et 

al., 2016 

N-Ethyl-N-

nitrosourea 

759-73-9 Training Genotoxic; Clastogen Alkylator; Kirkland et al., 2016 

Olaparib  

(ola) 

763113-22-0 Training Genotoxic; Clastogen PARP inhibitor; FDA approved 

label (Lynparza™) 

Propyl gallate 121-79-9 Training Genotoxic; Clastogen ROS likely; Tayama and 

Nakagawa, 2001 

Resorcinol 

diglycidyl ether 

101-90-6 Training Genotoxic; Clastogen Gulati et al., 1989 

Stavudine 3056-17-5 Training Genotoxic; Clastogen Nucleoside analog; FDA 

approved label (Zerit
®
) 

Temozolomide 

(tmz) 

85622-93-1 Training Genotoxic; Clastogen Alkylator; Chinnasamy et al., 

1997 
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Thiotepa 

(thi) 

52-24-4 Training Genotoxic; Clastogen Alkylator; Dertinger et al., 2012 

Topotecan 

(top) 

123948-87-8 Training Genotoxic; Clastogen Topoisomerase I inhibitor; 

Aydemir and Bilaloğlu, 2003 

Alosetron HCl 122852-42-0 Training Non-genotoxic 5-HT3 antagonist; Kirkland et 

al., 2016 

Amitrole 61-82-5 Training Non-genotoxic Kirkland et al., 2016 

Anthranilic acid 118-92-3 Training Non-genotoxic Kirkland et al., 2016 

Brefeldin A  20350-15-6 Training Non-genotoxic ER-golgi transporter inhibitor, 

ER stress-induced apoptosis; 

Moon et al., 2012 

Caffeine 58-08-2 Training Non-genotoxic Mitochondria-dependent 

apoptosis, ROS involvement 

likely; Lu et al., 2008 

Carbonyl cyanide 

m-chlorophenyl 

hydrazone 

(CCCP) 

555-60-2 Training Non-genotoxic Uncoupler of oxidative 

phosphorylation; de Graaf et 

al., 2004 

Clofibrate 637-07-0 Training Non-genotoxic Antilipidemic agent; IARC 

monograph 

Cyclohexanone 108-94-1 Training Non-genotoxic Industrial chemical; Kirkland et 

al., 2008 

Cycloheximide 66-81-9 Training Non-genotoxic Protein synthesis inhibitor; 

Youngblom et al., 1989 

D-Limonene 5989-27-5 Training Non-genotoxic  Male rat kidney tumors due to 

α2μ-globulin nephropathy; 

Kirkland et al., 2016 

D-Mannitol 69-65-8 Training Non-genotoxic Polyol; Kirkland et al., 2016 

Dexamethasone 50-02-2 Training Non-genotoxic Glucocorticoid receptor 

agonist; Krishna et al., 1995 

Dextrose 50-99-7 Training Non-genotoxic Sugar; Lotz et al., 2009 

Di-(2-

ethylhexyl)phthal

ate  (DEHP) 

117-81-7 Training Non-genotoxic Organic plasticizer; Kirkland et 

al., 2016 

Diethanolamine 111-42-2 Training Non-genotoxic Secondary amine; Kirkland et 

al., 2016 

Erythromycin 114-07-8 Training Non-genotoxic Antibiotic; Kirkland et al., 2016 
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Famotidine 76824-35-6 Training Non-genotoxic Histamine H2 receptor 

antagonist; FDA approved 

label (Pepcid
®
) 

Imatinib mesylate 152459-95-5 Training Non-genotoxic Protein-tyrosine kinase 

inhibitor; FDA approved label 

(Gleevec
®
) 

Hexachloroethan

e 

67-72-1 Training Non-genotoxic Industrial chemical; Kirkland et 

al., 2016 

Lidocaine 137-58-6 Training Non-genotoxic Amide, local anesthetic; FDA 

approved label (Lidoderm
®
) 

Lovastatin 75330-75-5 Training Non-genotoxic HMG-CoA reductase inhibitor; 

FDA approved label 

(Mevacor
®
) 

Melamine 108-78-1 Training Non-genotoxic Industrial organic base; 

Kirkland et al., 2016 

Methyl carbamate 598-55-0 Training Non-genotoxic  Industrial intermediate; 

Kirkland et al., 2016 

N-Butyl chloride 109-69-3 Training Non-genotoxic Fumigant; Kirkland et al., 2016 

Ofloxacin  82419-36-1 Training Non-genotoxic Fluoroquinoline antibiotic; FDA 

approved label (Floxin
®
) 

Paroxetine 61869-08-7 Training Non-genotoxic SSRI antidepressant; FDA 

approved label (Paxil
®
) 

Phenanthrene 85-01-8 Training Non-genotoxic Polycyclic aromatic 

hydrocarbon; Kirkland et al., 

2008 

Phenformin HCl 834-28-6 Training Non-genotoxic Biguanide antidiabetic; 

Kirkland et al., 2016 

Progesterone 57-83-0 Training Non-genotoxic Steroid hormone; Kirkland et 

al., 2008 

Pyridine 110-86-1 Training Non-genotoxic Heterocyclic organic 

compound; Kirkland et al., 

2016 

Sodium chloride 7647-14-5 Training Non-genotoxic Prepared in RPMI medium; 

Matsushima et al., 1999 

Sodium dodecyl 

sulfate 

151-21-3 Training Non-genotoxic Ionic detergent; NTP database 

Sucrose 57-50-1 Training Non-genotoxic Diaz et al., 2007 
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Tert-butyl alcohol 75-65-0 Training Non-genotoxic Kirkland et al., 2016 

Thapsigargin  67526-95-8 Training Non-genotoxic ER stress-induced apoptosis; 

Futami et al., 2005 

Tolterodine L-

tartrate 

124937-52-6 Training Non-genotoxic Muscarinic receptor 

antagonist; Kirkland et al., 

2016 

Tunicamycin  11089-65-9 Training Non-genotoxic  Glycosylation inhibitor, ER 

stress-mediated apoptosis; 

Han et al., 2008 

Zonisamide 68291-97-4 Training Non-genotoxic Sulfonamide anticonvulsant; 

Kirkland et al., 2016 

10j  MSD Test Genotoxic; Aneugen Tyrosine kinase inhibitor; 

Ames neg., CHO MN pos., 

CHO ChromAb neg. but 

polyploidy evident; MSD in-

house results  

13m MSD Test Genotoxic; assumed Aneugen Tyrosine kinase inhibitor; CHO 

and TK6 MN pos.; MSD in-

house results 

14n  MSD Test Genotoxic; Aneugen Serine/threonine kinase 

inhibitor; Ames neg., CHO MN 

pos., CHO ChromAb neg. but 

polyploidy and 

endoreduplication evident; 

TK6 MN neg.; MSD in-house 

results 

16p MSD Test Genotoxic; Mixed Azobenzimidazole structure; 

Likely >1 MoA; Ames neg., 

CHO MN and ChromAb pos. 

with premature centromere 

separation at metaphase in 

addition to structural 

aberrations, Rat MN neg.; 

MSD in-house results 

17q MSD Test Genotoxic; assumed Aneugen Benzimidazole structure; 

Ames neg., CHO MN pos.; 

MSD in-house results 
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Phenolphthalein, 
supplied coded 
as 3c  
 

77-09-8; MSD Test Genotoxic; Mixed Likely >1 MoA; Spindle poison, 

centromere amplification 

[Heard et al., 2013]; CHO 

ChromAb pos.; MSD in-house 

results 

6f MSD Test Genotoxic; Aneugen Kinase inhibitor, leucine-rich 

repeat; Ames neg., CHO MN 

pos., CHO ChromAb neg., rat 

MN pos.; MSD in-house 

results 

Hesperadin 422513-13-1; 

Selleckchem 

Test Genotoxic; Aneugen Aurora kinase inhibitor (B); in 

vitro MN pos., aberrant 

metaphases; Hauf et al., 2003; 

Kurihara al., 2006 

Tozasertib 639089-54-6; 

Selleckchem 

Test Genotoxic; Aneugen Pan-Aurora kinase inhibitor 

(A/B/C); Gollapudi et al., 2014 

ZM-447439 331771-20-1; 

Selleckchem 

Test Genotoxic; Aneugen Aurora kinase inhibitor (A/B); 

Gollapudi et al., 2014 

7g MSD Test Genotoxic, MoA uncertain Possibly > 1 MoA; Ames pos., 

CHO MN pos., CHO ChromAb 

neg., TK6 MN pos., HPBL MN 

neg.; mechanism affects 

tubulin so suspected aneugen, 

but Ames pos. suggests 

primary DNA damage; MSD 

in-house results 

9i MSD  Test Genotoxic; Clastogen Non-nucleoside antiviral; 

Ames neg., CHO MN pos., 

CHO ChromAb pos.; MSD in-

house results 

AZD2858 486424-20-8; 

Selleckchem 

Test Genotoxic; Clastogen Glycogen synthase-3 inhibitor; 

in vitro MN and ChromAb pos., 

Ann Doherty, personal 

communication 

Beta-Lapachone 4707-32-8; 

Selleckchem 

Test Genotoxic; Clastogen Topoisomerase I inhibitor; in 

vitro ChromAb and comet 

pos.; Degrasi et al. 1993  
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Ciprofloxacin 85721-33-1; 

Selleckchem 

Test Genotoxic; Clastogen Topoisomerase II inhibitor; in 

vitro MN pos.; Curry et al. 

1996 

Dasatinib 302962-49-8; 

Selleckchem 

Test Genotoxic; Clastogen Tyrosine kinase inhibitor, 

especially Ber-Abl, Scr, c-Kit; 

Ames neg., clastogenic in 

CHO, in vivo MN neg.; Sprycel 

package insert, 2010 

Genistein 446-72-0 Test Genotoxic; Clastogen Topoisomerase II inhibitor; in 

vitro MN pos.; Klein and King, 

2007 

Irinotecan 57852-57-0; 

Selleckchem 

Test Genotoxic; Clastogen Topoisomerase I inhibitor; 

Ames neg., in vitro ChromAb 

pos., in vivo MN pos.; 

Camptosar packet insert, 2014 

Mitoxantrone 
2HCl 

70476-82-3; 

Selleckchem 

Test Genotoxic; Clastogen Topoisomerase II inhibitor; in 

vitro MN pos., H2AX pos.; 

Smart et al. 2008 

Teniposide 29767-20-2; 

Selleckchem 

Test Genotoxic; Clastogen Topoisomerase II inhibitor; in 

vitro ChromAb pos., in vitro 

MLA pos.; DeMarini et al. 1987 

Entecavir, 
supplied coded 
as 19s 

MSD Test Genotoxic; Clastogen Guanine nucleoside analog; 

CHO MN pos., CHO ChromAb 

pos.; MSD in-house data 

Hydroquinone, 
supplied coded 
as 1a 

123-31-9; MSD Test Genotoxic; Mixed Likely >1 MoA; Kirkland et al., 

2016 

20t MSD Test Genotoxic; Clastogen Adenosine nucleoside analog; 

Ames neg., CHO MN pos., 

CHO ChromAb pos.; MSD in-

house results 

Tetrahydroxydibo
ron, supplied 
coded as 4d 

MSD Test Genotoxic; Clastogen Ames pos., CHO MN pos., 

CHO ChromAb pos.; MSD in-

house results 

6-Thioguanine 154-42-7 Test Genotoxic; Clastogen Antimetabolite, purine analog; 

Ames pos., in vitro ChromAb 

pos., in vivo MN pos.; NTP 
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database 

11k MSD Test Non-genotoxic Tryrosine kinase inhibitor; 

Ames neg., CHO MN neg., Rat 

MN neg.; MSD in-house data 

12L MSD Test Non-genotoxic Drug candidate; Ames neg., 

CHO MN neg.; MSD in-house 

results 

15o MSD Test Non-genotoxic (in TK6 cells)  Tryrosine kinase inhibitor; 

CHO MN weak pos. only at 24 

hr; CHO ChromAb neg., TK6 

MN neg., Rat MN neg.; MSD 

in-house results 

18r  MSD Test Non-genotoxic Benzimidazole structure; 

Ames neg., CHO MN neg.; 

MSD in-house results 

2b  20624-25-3; 

MSD 

Test Non-genotoxic Sodium diethyldicarbamate 

trihydrate; CHO MN pos., TK6 

MN pos., but cited authors 

attribute results to cytotoxicity, 

Hilliard et al., 1998; Galloway 

et al., 1998; Greenswood et 

al., 2004; Cu and Zn chelator, 

superoxide dismutase 

inhibitor, Heikkila et al. 1976; 

Nicotera et al. 1989 

5e MSD Test Non-genotoxic (in mammalian 

cells) 

Aryl boronic acid; Ames pos., 

CHO MN neg.; MSD in-house 

results 

8h MSD Test Non-genotoxic HDAC inhibitor; Ames neg., 

CHO MN neg.; CHO ChromAb 

neg.; MSD in-house results 

Ampicillin 
trihydrate 

7177-48-2 Test Non-genotoxic Ames neg., in vitro ChromAb 

neg., in vivo MN neg.; Kirkland 

et al., 2016 

Anisomycin 22862-76-6 Test Non-genotoxic Protein biosynthesis inhibitor; 

in vitro MN neg. with high 

levels of apoptosis; personal 
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communication, Maik Schuler 

Chlorocholine 
chloride 

999-81-5 Test Non-genotoxic Ames neg., in vitro and in vivo 

ChromAb neg.; Kirkland et al., 

2016 

Menthol 89-78-1 Test Non-genotoxic Ames neg., in vitro MN neg. in 

p53 competent cell lines, in 

vivo MN and comet neg.; 

Kirkland et al., 2016 

Osimertinib 1421373-65-0 Test Non-genotoxic EGFR kinase inhibitor; in vitro 

and in vivo genetox neg.; 

Tagrisso package insert, 2012 

Topiramate 97240-79-4 Test Non-genotoxic Ames, in vitro ChromAb and 

MLA neg., in vivo ChromAb 

Neg.; Kirkland et al., 2016 

Tris (2-ethylhexyl) 
phosphate 

78-42-2 Test Non-genotoxic Ames neg., in vitro ChromAb 

neg., in vivo ChromAb and MN 

neg.; Kirkland et al., 2016 

Zafirlukast 107753-78-6 Test Non-genotoxic Ames, in vitro ChromAb, MLA, 

and Hprt neg.; Kirkland et al., 

2016 

Abbreviations: MDS = Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.; 

FDA = US Food and Drug Administration; NTP = National Toxicology Program; PARP = 

poly ADP ribose polymerase; ROS = reactive oxygen species; MN = micronuclei; 

ChromAb = chromosome aberration; MLA = mouse lymphoma assay; ER = 

endoplasmic reticulum; Hprt = hypoxanthine guanine phosphoribosyltransferase; EGFR 

= epithelial growth factor receptor; MoA = mode of action; CHO = Chinese hamster 

ovary cells 
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Table II. Training Set Chemicals, N = 85 
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Table III. Test Set Chemicals, N = 40 
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