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Abstract 22 

Background: Environmental factors like stress affect age-related cognitive deficits and promote 23 

Alzheimer’s disease (AD)-related pathology in mice. Excess glutamate has been proposed as a 24 

possible mediator underlying these effects in the hippocampus, a vulnerable brain region implicated 25 

in learning and memory.  26 

Methods: Here, we examined a) whether stress applied during a sensitive developmental period 27 

early in life affects later synaptic plasticity, learning and memory and plaque load in the 28 

APPswe/PS1dE9 mouse model for Alzheimer’s disease and b) whether these effects could be 29 

rescued using long-term treatment with the glutamate modulator riluzole.  30 

Results: Our results demonstrate that ELS impairs synaptic plasticity in 6-month-old mice and 31 

increases plaque load in 12-month-old APPswe/PS1dE9 mice, while impairing flexible spatial learning 32 

in the Barnes maze. Notably, spatial learning correlated well with hippocampal expression of the 33 

transporter EAAT2, which is important for extracellular glutamate uptake. The changes in LTP, 34 

plaque load and cognition after ELS were all prevented by riluzole treatment that started from post-35 

weaning.  36 

Conclusion: These results suggest that normalising glutamate signalling may be a viable therapeutic 37 

strategy for treating vulnerable individuals at risk of developing stress-aggravated AD, particularly in 38 

relation to adverse early life experiences. 39 

 40 

Highlights 41 

• In APP/PS1 mice, early life stress impairs LTP and flexible spatial learning. 42 

• Early life stress increases plaque load in APPswe/PS1dE9 mice.  43 

• EAAT2 correlates positively with flexible spatial learning. 44 

• Riluzole treatment prevented ELS changes in LTP, flexible spatial learning and plaque load. 45 
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• Thus, normalising glutamate signalling rescues ELS-induced deficits in AD mice.  46 

1. Introduction 47 

Alzheimer’s disease (AD) is a frequent age-related neurodegenerative disorder characterised by 48 

progressive cognitive decline (Selkoe and Schenk, 2003) that is, in view of current human life 49 

expectancy (Jagust, 2013; Prince et al., 2013; Small et al., 2002), even expected to increase in the 50 

future (Brookmeyer et al., 2007). While familial forms of AD are linked to rare genetic mutations 51 

(Querfurth and LaFerla, 2010; Scheltens et al., 2016), the cause of sporadic AD remains elusive. 52 

Various recent lines of evidence suggest that environmental factors play a role in AD risk (Baumgart 53 

et al., 2015; Herbert and Lucassen, 2016; Matthews et al., 2016; Xu et al., 2015). One of these 54 

environmental factors may be exposure to stress, particularly when experienced during the sensitive 55 

period of early life. For instance, Individuals with a history of childhood adversity have a higher 56 

probability to develop later diseases (Ferraro et al., 2016; Schafer and Ferraro, 2012), and a higher 57 

prevalence and severity of mild cognitive impairment at an older age (Kang et al., 2017; Wang et al., 58 

2016). Likewise, evidence from rodent studies indicates that early life stress (ELS) triggers age-59 

related cognitive decline (Oitzl et al., 2000; Solas et al., 2010; Vallée et al., 1999). Such ELS-induced 60 

accelerations of cognitive decline are often accompanied by (neuro)biological changes of aging, such 61 

as a reduced telomere length (Price et al., 2013), reductions in adult hippocampal neurogenesis 62 

(Bath et al., 2016; Lucassen et al., 2015; Naninck et al., 2015), and enhanced neuro-inflammatory 63 

profiles (Hoeijmakers et al., 2016; Johnson and Kaffman, 2018). In line with the hypothesis that ELS 64 

may affect the course of AD related changes, ELS has been shown to worsen cognitive decline in 65 

various genetic mouse models for AD both following pre- (Sierksma et al., 2013) and postnatal stress 66 

(Hui et al., 2017; Lesuis et al., 2018). Yet how early life adversity aggravates aging and AD is 67 

unknown.  68 

Studies in transgenic animal models for AD have implicated glutamatergic N-methyl-D-69 

aspartate (NMDA) receptors in AD and reveal that glutamatergic synapses are particularly affected 70 
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(Haass and Selkoe, 2007; Kamenetz et al., 2003; Kessels et al., 2013; Rowan et al., 2003; Townsend 71 

et al., 2006; Turner et al., 2003; Walsh et al., 2002). Whereas synaptic NMDA activity is critical for 72 

long-term potentiation (LTP) and memory formation, excessive extra-synaptic NMDA activation has 73 

been associated with the induction of long-term depression and even excitotoxicity (Hardingham, 74 

2006; Hardingham and Bading, 2010; Rusakov and Kullmann, 1998). Glutamate uptake by the 75 

excitatory amino acid transporter 2 (EAAT2, (also known as GLT-1 or Slc1a2)) is the primary 76 

mechanism via which extracellular glutamate regulates physiological glutamatergic 77 

neurotransmission in the brain (Furuta et al., 1997; Huang and Bergles, 2004; Tzingounis and 78 

Wadiche, 2007). Interestingly, the expression of glutamate transporters, including EAAT2, is 79 

decreased after early life stress (Odeon et al., 2015), in aging (Brothers et al., 2013; Potier et al., 80 

2010) as well as in AD (Jacob et al., 2007; Masliah et al., 1996) and has been associated with 81 

neurodegeneration (Masliah et al., 1996).  82 

Since (early life) stress can disturb glutamatergic signalling and function, the effects of ELS 83 

and AD may thus converge at glutamatergic transmission (O’Connor et al. 2013; Musazzi et al. 2011). 84 

In the present study we therefore tested in APPswe/PS1dE9 mice whether ELS affects mechanisms 85 

which are critical for the uptake of glutamate from synapses (i.e. EAAT2), synaptic plasticity, and 86 

whether these effects can be modulated by the glutamate modulator riluzole. This drug alters 87 

glutamatergic neurotransmission by decreasing presynaptic glutamate release, and by facilitating 88 

glial glutamate uptake via increased EAAT2 expression (Azbill et al., 2000; Frizzo et al., 2004; 89 

Fumagalli et al., 2008; Pereira et al., 2016; Pittenger et al., 2008). Riluzole increases synaptic 90 

connectivity, strengthens neural connectivity (Larkum and Nevian, 2008), and enhances LTP  (De Roo 91 

et al., 2008). Moreover, riluzole prevents age-related cognitive decline in rodents (Pereira et al., 92 

2014) and AD related changes in gene expression (Pereira et al., 2017). Our present results show not 93 

only that ELS affects synaptic plasticity and spatial memory in APPswe/PS1dE9 mice, in close 94 

correlation with EAAT2 expression in the hippocampus, but also that these deficits in LTP and spatial 95 

memory in 12-month-old AD mice were completely prevented by prolonged riluzole treatment. 96 
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 97 

2. Materials and Methods  98 

2.1. Mice and breeding.  99 

All experimental procedures were conducted under Dutch national law and European Union 100 

directives on animal experiments (2010/63/EU), and were approved by the animal welfare 101 

committee of the University of Amsterdam. Wild type (WT) and APPswe/PS1dE9 male littermates 102 

(Jankowsky et al., 2001) of 6 and 12 (± 1) months of age were used. To obtain mice, two 10 weeks 103 

old C57BL/6J virgin WT females (Harlan Laboratories B.V., Venray, The Netherlands) and one 104 

heterozygous male APPswe/PS1dE9 mouse were housed together for one week to allow mating. 105 

Pregnant females were housed individually in a standard cage covered with a filter top and 106 

monitored daily for the birth of pups (Arp et al., 2016; Lesuis et al., 2018, 2016; Rice et al., 2008). 107 

When a litter was born before 10.00 a.m., the previous day was considered the day of birth 108 

(postnatal day 0; PND 0), after which the early life stress paradigm was initiated from PND 2-9. At 109 

PND 21, mice were weaned and ear biopsies were collected for identification and genotyping. Mice 110 

were housed with 2-6 same sex littermates per cage. All experimental mice were left undisturbed 111 

(except for cage cleaning once a week) until the start of the experimental procedures at 6 and 12 112 

months of age. Number of mice used: 6 months old: 56 mice; 12 months old: 57 mice.  113 

 114 

2.2. Early life stress.  115 

At postnatal day (PND) 2, litters were culled to 6 pups per litter, and dams and their litters were 116 

randomly assigned to the early life stress (ELS) or control condition until PND 9, after which all mice 117 

were treated equally, as described before (Arp et al., 2016; Lesuis et al., 2018, 2016; Naninck et al., 118 

2015; Rice et al., 2008). Briefly, control dams were provided with a standard amount of sawdust 119 

bedding and nesting material (one square piece of cotton nesting material (5 x 5 cm; Tecnilab-BMI, 120 
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Someren, the Netherlands)). ELS dams were provided with a strongly reduced amount of sawdust 121 

bedding and half the nesting material (1/2 piece of nesting material), and a fine-gauge stainless steel 122 

mesh was placed 1 cm above the cage floor. 123 

 124 

2.3. Riluzole treatment.  125 

Riluzole (Selleckchem, The Netherlands) was added to the drinking water from weaning (PND 28) 126 

onwards, and provide fresh every 3-4 days. Bottles were shielded from light to prevent light 127 

exposure. A dosage of 4.0 mg/kg per day per animal (adapted from (Pereira et al., 2016)) was 128 

dissolved in tap water and stirred until the water was completely transparent.  129 

 130 

2.4. Field potential recordings.  131 

Field potential recordings were conducted in 6-month-old male animals. At PND 180 ± 14 mice were 132 

sacrificed between 9 and 10 a.m. through quick decapitation. Immediately after decapitation, the 133 

brain was rapidly removed, and collected in ice-cold oxygenated (95% O2/5% CO2) solution 134 

containing (in mM): Cholinechloride (120), glucose (10), NaHCO3 (25), MgSO4 (6), KCl (3.5), NaH2PO4 135 

(1.25), CaCl2 (0.5). Coronal slices (350 µm) were cut using a microtome (Leica VT1000S). For 136 

recovery, slices were incubated for 20 minutes in warm (32 °C) oxygenated standard artificial 137 

cerebrospinal fluid (aCSF) containing (in mM): NaCl (120), KCl (3.5), MgSO4 (1.3), NaH2PO4 (1.25), 138 

CaCl2 (2.5), glucose (10), NaHCO3 (25), after which the sections were maintained at room 139 

temperature (22 °C). Sections containing the dorsal hippocampal CA1 area (bregma -2.0 mm to -3.2 140 

mm) were placed in a recording chamber with a constant flow of oxygenated aCSF. Field excitatory 141 

synaptic potentials (fEPSPs) were recorded as described previously (Bagot et al., 2009; Pu et al., 142 

2007; Wiegert et al., 2006). fEPSPs were evoked using a stainless steel bipolar stimulation electrode 143 

(60 µm diameter, insulated except for the tip) positioned on the Schaffer collaterals and recorded 144 
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through a glass electrode (2-5 MΩ impedance, filled with aCSF) positioned in the CA1 stratum 145 

radiatum. A stimulus-response curve was generated by gradually increasing the stimulus intensity to 146 

define a level that generated the half-maximal response that was used for the remainder of the 147 

experiment. Once the input-output curve for each recording was established, baseline synaptic 148 

transmission was monitored by stimulating at 0.033 Hz for 10 minutes. When recordings were 149 

stable, afferent fibres were stimulated at 10 Hz for 90 seconds (Mayford et al., 1996; Wiegert et al., 150 

2006). We used this paradigm since it elicits synaptic plasticity at the threshold for LTP and LTD, and 151 

is therefore will-suited to examine subtle and potentially bi-directional changes in synaptic plasticity 152 

(Derks et al., 2016; Mayford et al., 1996; Wiegert et al., 2006). Next, the degree of potentiation was 153 

determined by recording fEPSPs every 30 seconds for 1h. Synaptic transmission was measured by 154 

determining the slope of the fEPSP. The average baseline value was normalised to 100% and all 155 

values of the experiment were normalised to this baseline average. 156 

 157 

2.5. Barnes maze.  158 

Mice (12 months) were transferred to a reversed light/dark cycle (lights on 8 p.m., lights off 8 a.m.) 159 

one month before behavioural testing commenced and were single-housed in the behaviour room 160 

for one more week before testing. Three days prior to testing, mice were handled for five minutes 161 

per day. Testing was conducted during the dark, active phase of the mice between 12 and 6 p.m. 162 

During testing, recording was done with a video camera connected to a computer with Ethovision 163 

software version 14 (Noldus, The Netherlands). Twelve-month-old APPswe/PS1dE9 and WT male 164 

mice were tested for spatial memory in the spatial Barnes maze task. A classic set up was used (110 165 

cm diameter, 12 exit holes) in which mice were trained for one (day 1 and 2) or two (day 3 and 4) 166 

sessions a day (adapted from (Lesuis et al., 2018)). During training, mice were placed in the centre of 167 

the maze twice (inter-trial interval of 30 minutes) and were allowed to navigate to the exit hole 168 

leading to the home cage (acquisition learning). Behavioural flexibility was tested by relocating the 169 
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exit hole to another location on the maze (180 degrees) for two sessions per day on two consecutive 170 

days. Cages containing used bedding material were placed at equal distances under the maze to 171 

avoid guidance by odour cues, the board was rotated after each trial, and the maze was cleaned 172 

with 25 % EtOH to dissipate odour cues. The location of the exit hole was always fixed relative to the 173 

distal extra-maze cues in the room. The distance the mice travelled until the exit hole was reached 174 

was analysed.  175 

 176 

2.6. Tissue preparation.  177 

One week after behavioural testing, mice were sacrificed by quick decapitation, between 8.00 and 178 

9.00 p.m. (beginning of the inactive phase). The brains were removed, and the left hemisphere was 179 

immersion-fixed in 4% paraformaldehyde in phosphate buffer (0.1 M PB, pH 7.4) for 48 h and then 180 

stored in 0.01% sodium-azide in 0.1 M PB at 4 °C until further processing. Paraformaldehyde-fixed 181 

tissue was overnight cryoprotected in 30% sucrose/0.1 M PB. Frozen hemispheres were cut in 40 µm 182 

thick coronal sections in six parallel series using a sliding microtome and stored in antifreeze solution 183 

(30% Ethylene glycol, 20% Glycerol, 50% 0.05 M PBS) at -20 °C until immunohistochemical staining. 184 

 185 

2.7. DAB immunohistochemistry.  186 

Immunocytochemistry was used to visualise amyloid plaques. Prior to staining, sections were 187 

mounted on glass (Superfrost Plus slides, Menzal, Braunschweig, Germany) and antigen retrieval was 188 

performed by heating the sections in 0.1 M citrate buffer (pH 6) in a microwave (Samsung M6235) to 189 

a temperature of ±95 °C for 15 min. Sections were incubated with 0.3% H2O2 for 15 min to block 190 

endogenous peroxidase activity, and were next incubated for 30 min in blocking buffer (1% BSA, 191 

0.3% Triton X-100 in 0.05 M TBS). Primary antibody 6E10 (1:1500, BioLegend) was incubated for two 192 

hours at room temperature and overnight at 4 °C. Sections were incubated with biotinylated 193 
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secondary antibody (1:200, sheep anti-mouse, GE Healthcare) for 2h at room temperature followed 194 

by a 90 min incubation with avidin-biotin complex (ABC kit, Elite Vectastain Brunschwig Chemie, 195 

Amsterdam, 1:800). Subsequent chromogen development was performed with diaminobenzidine 196 

(DAB; 20 mg/100 mL 0.05 M Tris, 0.01% H2O2). 197 

 198 

2.8. Fluorescent immunohistochemistry.  199 

A random subset of brains (N=4-5 mice/group) was used for EAAT2 immunohistochemistry. All 200 

stainings were performed on parallel series from the same brains within an age group. Sections were 201 

incubated with blocking mix containing goat anti-mouse Fab fragments (1:200) in 0.1 M PBS. Primary 202 

mouse anti-EAAT2 (1:250, Cell Signalling) was incubated for 1h at RT followed by incubation at 4 °C 203 

overnight. Sections were incubated in the secondary antibodies (1:200 sheep anti-mouse) for 2h, 204 

and mounted and coverslipped with Vectashield. 205 

 206 

2.9. Imaging and quantification.  207 

Quantification was performed on coronal sections of the left hemisphere on 8–10 sections per 208 

animal of matched anatomical levels along the rostro-caudal axis (Lesuis et al., 2017). Using a Nikon 209 

DS-Ri2 microscope, representative images of 20x magnification were systematically captured. For 210 

images from DAB staining, ImageJ software was used to binarise the pictures to 8-bit black-and-211 

white pictures, and a fixed intensity threshold was applied defining the DAB staining. Measurements 212 

were performed for the percentage area covered by DAB staining (Christensen et al., 2009; Marlatt 213 

et al., 2013). EAAT2 fluorescence was measured using ImageJ in 50 µm intervals from the cellular 214 

layer in the CA1 of the hippocampus (Pereira et al., 2016). All images were quantified by an 215 

experimenter blinded to the experimental procedures and animals. 216 

 217 
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2.10. Statistical analysis.  218 

Data were analysed using SPSS 22.0 (IBM software). Data are expressed as mean ± standard error of 219 

the mean (S.E.M.). Data were considered statistically significant when p<0.05. Outliers were 220 

determined using a Grubb’s test, which identifies a maximum of one value to be excluded from the 221 

analysis. Repeated measures ANOVA was performed to assess Barnes maze learning curves over the 222 

different trials, and to assess synaptic plasticity. Greenhouse-Geisser correction was applied when 223 

the assumption of sphericity was violated. To enhance the readability of the graphs, the repeated 224 

measures data for the LTP and Barnes maze have been split up in separate graphs (Figure 1A, B and 225 

Figure 2A-D), although statistical analysis was performed on all data combined. To compare between 226 

groups accounting for the main and interaction effects of genotype (WT vs. APPswe/PS1dE9), 227 

condition (Ctrl vs. ELS), and treatment (water vs. Riluzole), a 2x2x2 ANOVA was performed, with 228 

planned contrasts as post hoc tests to correct for the relevant comparisons conducted. Pearson’s 229 

correlation test was conducted to determine correlations. 230 

 231 

3. Results 232 

3.1. Early life stress model 233 

APPswe/PS1dE9 and WT littermates were housed with limited nesting and bedding materials from 234 

PND 2 to 9 in order to induce ELS. In line with previous reports (Lesuis et al., 2018; Naninck et al., 235 

2015) this procedure reduced body weight gain (Ctrl: 3.6 ± 0.11 gram; ELS: 2.5 ± 0.08 gram; 236 

t(55)=8.06, p=0.001), indicative of effective stress exposure. Since effects of ELS are particularly sex-237 

specific (Loi et al., 2017; Naninck et al., 2015), all experiments were further conducted with male 238 

mice. From PND 28 onwards, half of the mice received riluzole supplementation to their drinking 239 

solution. Water consumption was measured at 3 different time points throughout the experiment 240 
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(Table 1). No differences in consumption of water with or without riluzole were observed (see Table 241 

1).  242 

Table 1. Consumption of water with and without riluzole at different time points throughout the 243 

experiment. 244 

 PND 35 6 months 11 months 

Water  4.1 ± 1.0 (20) 4.7 ± 1.0 (20) 5.2 ± 1.0 (21) 

Water + Riluzole 4.2 ± 1.0 (16) 4.7 ± 1.0 (16) 5.5 ± 0.9 (16) 

 Ns Ns Ns 

Water consumption is expressed as average ml/mouse/day. Data expressed as mean ± S.E.M 245 

(number of mice).  246 

3.2. Hippocampal synaptic plasticity  247 

To investigate whether ELS and/or an APPswe/PS1dE9 background affected synaptic plasticity, we 248 

measured hippocampal long-term potentiation (LTP) at 6 months of age, and tested whether effects 249 

could be rescued by riluzole treatment. We found no differences of condition, genotype or 250 

treatment on maximum slope or the half-maximum stimulation intensity, as determined from the 251 

input-output curve (Table 2). There was a main effect of treatment (F(1,97)=30.84, p<0.001) on the 252 

slope factor.  253 

Table 2. Basal field potential characteristics for hippocampal CA1 area 254 

  Max Slope 

(mV/ms) 
Half Max 

Intensity (µA) 
Slope Factor S N (mice 

(slices)) 

water 

Ctrl – WT -0.24 ± 0.03 2.27 ± 0.05 -0.22 ± 0.05 10 (27) 

ELS – WT -0.27 ± 0.03 2.29 ± 0.04 -0.23 ± 0.04 8 (21) 

Ctrl – APPswe/PS1dE9 -0.26 ± 0.04 2.36 ± 0.05 -0.24 ± 0.05 10 (17) 

ELS – APPswe/PS1dE9 -0.16 ± 0.04 2.25 ± 0.10 -0.15 ± 0.04 6 (14) 
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riluzole 

Ctrl – WT -0.36 ± 0.03 2.10 ± 0.05 -0.54 ± 0.15 6 (8) 

ELS – WT -0.45 ± 0.04 1.87 ± 0.03 -0.54 ± 0.07 5 (6) 

Ctrl – APPswe/PS1dE9 -0.33 ± 0.05 2.14 ± 0.07 -0.58 ± 0.12 5 (7) 

ELS – APPswe/PS1dE9 -0.30 ± 0.05 2.06 ± 0.11 -0.32 ± 0.05 6 (9) 

Main/interaction effects ns ns T*  

Data expressed as mean ± S.E.M. Maximal slope of the fEPSP (Max slope), half-maximum stimulus 255 

intensity (Half Max Intensity), and the slope of the input-output curve (Slope Factor S) in the CA1 256 

area. C: condition effect, G: genotype effect, T: treatment effect.  257 

  258 

In water treated mice, both condition and genotype reduced LTP (condition: F(1,40)=4.47, 259 

p=0.04; genotype: F(1,40)=7.86, p=0.008) (Figure 1A). When combining all data, riluzole treatment 260 

increased LTP in all groups (main treatment effect: F(1,63)=61.62, p<0.001) (Figure 1A,B). However, 261 

these effects were most pronounced in APPswe/PS1dE9 mice (genotype*treatment: F(1,63)=22.62, 262 

p<0.001; post hoc difference between: Ctrl-APPswe/PS1dE9 water vs. riluzole: p<0.001; ELS-263 

APPswe/PS1dE9 water vs. riluzole p<0.001), while there was also an interaction between condition 264 

and treatment (F(1,63)=4.40, p=0.04) (Figure 1A,B). The average of the signal during the last 10 265 

minutes was analysed separately (Figure 1C). Here, too, riluzole treatment significantly increased 266 

synaptic potentiation (F(1,63)=62.41, p<0.001), most strongly in APPswe/PS1dE9 mice 267 

(F(1,63)=15.34, p<0.001). Post hoc testing revealed a significant effect of riluzole treatment in ELS-268 

WT mice (p=0.01), Ctrl-APPswe/PS1dE9 mice (p<0.001), and ELS-APPswe/PS1dE9 mice (p<0.001).  269 

 270 

3.3. Barnes maze training 271 

We next investigated whether ELS-induced changes in synaptic plasticity also affect spatial memory 272 

performance in WT and APPswe/PSdE9 mice, and whether such effects could be prevented by 273 
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riluzole in 12-month-old mice (Lesuis et al., 2018). For acquisition learning, there was a mild but 274 

significant effect of treatment, in which riluzole resulted in a shorter distance to locate the exit hole 275 

(F(1,58)=6.91, p=0.01) (Figure 2A,B). However, neither genotype nor condition affected performance 276 

on acquisition learning (genotype effect: F(1,58)=0.27, p=0.61; condition effect: F(1,58)=1.31, 277 

p=0.26). No effects were observed when examining, the last trial of acquisition learning, indicating 278 

that after 6 training sessions, all groups learned to find the location of the exit hole to a similar 279 

degree (Figure 2C). 280 

When the exit hole was relocated to a new location, riluzole again improved performance, 281 

resulting in a shorter distance travelled to the exit hole (F(1,58)=24.90, p<0.001) (Figure 2D,E). In 282 

addition, APPswe/PS1dE9 mice took a longer distance to find the exit hole (F(1,58)=9.97, p=0.003). 283 

Analysis of the last trial, as an indication of how well mice had learned to locate the exit hole, 284 

revealed an effect of treatment, genotype and condition, as well as a condition x treatment 285 

interaction effect (treatment: F(1,58)=39.03, p<0.001; genotype: F(1,58)=5.95, p=0.018; condition: 286 

F(1,58)=8.56, p=0.005; condition x treatment: F(1,58)=7.68, p=0.003) (Figure 2F). Post hoc testing 287 

revealed that in APPswe/PS1dE9 mice, ELS resulted in a longer distance to the exit hole than Ctrl 288 

animals. Riluzole treatment also resulted in a shorter travelling distance to the exit hole in both 289 

groups.  290 

 291 

3.4. EAAT2 expression 292 

Immunocytochemical labelling revealed that EAAT2 was reduced in the distal portion of the CA1 293 

area with age (F(1,34)=81.38, p=0.001) (Figure 3A). We further found that EAAT2 expression in aged 294 

riluzole treated animals was enhanced when compared to untreated young and aged mice 295 

(treatment effect: F(1,34)=250.22, p=0.001). Moreover, in water-treated animals, genotype reduced 296 

EAAT2 expression at all ages (F(1,34)=5.6, p=0.025). We found an interaction effect between 297 

condition x treatment (F(1,34)=14.42, p=0.001) and genotype x treatment (F(1,34)=8.76, p=0.006), 298 
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reflecting the enhanced EAAT2 expression following riluzole treatment in aged ELS and 299 

APPswe/PS1dE9 mice.   300 

Importantly, EAAT2 expression correlated significantly with cognitive performance of the 301 

last learning trial of the Barnes maze in aged mice (r=-0.75, n=32, p=0.001) (Figure 3B), which 302 

suggests a potential mechanism by which riluzole may rescue cognitive performance.  303 

 304 

3.5. Hippocampal plaque load 305 

Finally, we investigated plaque load, an important pathological hallmark of AD, and we found a 306 

significant interaction effect between condition and treatment in the hippocampal CA1 area 307 

(F(1,37)=7.52, p=0.009). ELS-APPswe/PS1dE9 mice treated with water displayed an increased plaque 308 

load, which was absent in APPswe/PS1dE9 animals treated with riluzole treatment (p<0.05) (Figure 309 

3C). Plaque load did not correlate with cognitive decline (r=0.09, n=32, p=0.59) (Figure 3D).  310 

 311 

4. Discussion 312 

Previous studies have reported that early life stress can alter flexible spatial learning, synaptic 313 

plasticity and amyloid levels in 12-month-old APPswe/PS1dE9 mice (Lesuis et al., 2018). In the 314 

current study, we investigated whether riluzole, a modulator of glutamate levels (Brothers et al., 315 

2013; Pittenger et al., 2008) can rescue these effects. We found that ELS-induced impairments in 316 

synaptic plasticity, flexible spatial learning and plaque load in APPswe/PS1dE9 mice can be rescued 317 

by prolonged riluzole treatment from post-weaning onward, likely by regulating EAAT2 expression. 318 

Our current model for ELS has previously been shown to induce (age-related) impairments in 319 

spatial learning, memory processes (reviewed by (Walker et al., 2017; Yam et al., 2017)) and synaptic 320 

plasticity (Brunson et al., 2005). In addition, it has been shown that ELS aggravates AD-related 321 

neuropathology, including increased soluble Aβ levels, increased plaque load, and impaired cognitive 322 
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performance (Hoeijmakers et al., 2016; Lesuis et al., 2018, 2016). In agreement, we found that ELS 323 

impaired synaptic plasticity in WT mice. In addition, LTP was impaired in APPswe/PS1dE9 mice which 324 

is in line with earlier studies showing impairments in synaptic plasticity in (transgenic) mouse models 325 

of AD (Jacobsen et al., 2006; Rowan et al., 2003). Moreover, ELS-exposure in APPswe/PS1dE9 mice 326 

further decreased synaptic plasticity, and even resulted in LTD-like changes. We then investigated 327 

whether alterations in glutamatergic signalling might attenuate these effects by long-term treatment 328 

with the glutamate modulator riluzole, administered immediately after weaning. While riluzole did 329 

not affect LTP in Ctrl-reared wild type mice, it increased LTP in all other experimental groups, 330 

suggesting that the impairments resulting from both ELS and an APPswe/PS1dE9 background are 331 

indeed mediated by disturbances in glutamatergic signalling. Interestingly, riluzole treatment was 332 

most effective in APPswe/PS1dE9 mice. This effect was most pronounced in the first 10 minutes 333 

after stimulation, which could point to a different recovery of the presynaptic glutamate release 334 

between WT and APPswe/PS1dE9 mice after the 90 seconds of high frequency stimulation (which 335 

may have resulted in a depletion of synaptic vesicles). These effects of riluzole may be related to one 336 

of the many pathways associated to synaptic plasticity that are differentially regulated by AD 337 

(Pereira et al., 2016) and the exact nature of this interaction requires further investigation. Clearly, 338 

riluzole was able to prevent ELS and APPswe/PS1dE9-induced alterations in synaptic plasticity in 6-339 

month-old mice. 340 

We have previously reported that ELS resulted in aberrantly increased LTP in older 341 

APPswe/PS1dE9 mice, which was paralleled by less specific memory formation on a fear 342 

conditioning task (Lesuis et al., submitted). Although these animals were recorded at different ages 343 

(6 vs. 12 months old), the opposing phenotypes are remarkable. Importantly, both excessively 344 

enhanced and decreased levels of LTP have been implicated in cognitive deficits (Hancock et al., 345 

1991; Migaud et al., 1998; Willshaw and Dayan, 1990), but future studies are required to investigate 346 

the possible age-dependent effects and the exact nature of ELS-induced effects on synaptic plasticity 347 

in APPswe/PS1dE9 mice.   348 
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LTP is an important cellular model for learning and memory (Kessels and Malinow, 2009; 349 

Malinow and Malenka, 2002), and functional brain abnormalities have been observed in humans 350 

decades before the development of other symptoms (Reiman et al., 2004; Sperling et al., 2009). We 351 

therefore tested whether ELS affected learning and memory in APPswe/PS1dE9 mice. Previously, we 352 

have reported that 12-month-old ELS-APPswe/PS1dE9 mice are impaired in flexible spatial learning 353 

in the Barnes maze (Lesuis et al., 2018). In line with these findings, we found at present that ELS 354 

exposure in APPswe/PS1dE9 mice did not alter acquisition learning, but impaired flexible spatial 355 

learning. While riluzole slightly enhanced acquisition learning, it particularly prevented the deficits 356 

on flexible spatial learning. Interestingly, riluzole treatment improved performance in both 357 

transgenic groups, as well as in the ELS-WT mice. Together, these observations indicate that in 358 

cognitively impaired animals, be it after ELS or due to an APPswe/PS1dE9 background, riluzole 359 

improves cognitive performance.  360 

A possible mechanism via which the effect of riluzole may rescue both these impairments, 361 

could be through regulating EAAT2 expression (Brothers et al., 2013; Pereira et al., 2016; Pittenger et 362 

al., 2008), which is relevant for maintaining proper synaptic glutamate levels (Tzingounis and 363 

Wadiche, 2007). EAAT2 regulates reuptake of glutamate outside the synaptic cleft, preventing excess 364 

glutamate from binding to extra-synaptic NMDA receptors, reducing synaptic efficiency and inducing 365 

LTD and excitotoxicity (Hardingham and Bading, 2010), and has been implicated in aging and various 366 

neurodegenerative diseases, including AD (Hardingham and Bading, 2010; Jacob et al., 2007; Masliah 367 

et al., 1996; Pereira et al., 2016; Potier et al., 2010; Rusakov and Kullmann, 1998). Furthermore, 368 

EAAT2 haploinsufficiency aggravates cognitive impairments in an AD mouse model, while EAAT2 369 

overexpression improves cognitive performance (Takahashi et al., 2015).  370 

In line with this, we observed that EAAT2 immunoreactivity was significantly reduced with 371 

aging, while both ELS and an APPswe/PS1dE9 background further lowered EAAT2, which was 372 

strongest in APPswe/PS1dE9 mice exposed to ELS. Riluzole treatment strongly increased EAAT2 373 
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levels in the CA1 area of the hippocampus in all groups, irrespective of their genetic background or 374 

early life experience. Interestingly, EAAT2 expression correlated significantly with flexible spatial 375 

learning , indicating that EAAT2 is indeed relevant for memory formation. Increased 376 

immunoreactivity for EAAT2 was observed in the same region as where we observed decreases in 377 

synaptic plasticity in ELS-APPswe/PS1dE9 mice. In addition, others have previously observed 378 

increased spine clustering in the same area in riluzole-treated rats, which also correlated with 379 

cognitive performance (Pereira et al., 2014), suggesting a potential mechanism by which riluzole can 380 

increase cognitive performance. However, in addition to regulating glutamate levels, the drug has 381 

additional pharmacological effects such as inhibiting Na
+
 channels (Bellingham, 2011). A possible 382 

contribution of these mechanisms to the present results cannot be ruled out. 383 

Synaptic dysfunction is an important mechanism implicated in AD-related cognitive deficits 384 

(Selkoe 2002; DeKosky and Scheff 1990) and presenting as one of the first symptoms of AD (Sperling 385 

et al. 2009; Reiman et al. 2004). Amyloid-β (Aβ), one of the hallmarks of AD neuropathology, is 386 

closely related to glutamatergic dysregulation, since Aβ oligomers disrupt glutamate uptake, reduce 387 

synaptic transmission, facilitate LTD and inhibit LTP (Li et al. 2009; Cheng et al. 2009). This is thought 388 

to occur through an excessive activation of extra-synaptic NMDA receptors (Li et al., 2011, 2009), 389 

and a decrease in the expression of synaptic NMDA receptors (Snyder et al., 2005). In parallel, 390 

neuronal activity, regulated by glutamatergic signalling increases the release of Aβ (Kamenetz et al., 391 

2003), possibly resulting in vicious cycle of neurotoxicity. In the current study, we find that plaque 392 

load was increased following ELS, an effect that was rescued by riluzole treatment. Likewise, we 393 

have previously shown that in APPswe/PS1dE9 mice soluble Aβ-40 and Aβ-42 levels are increased 394 

following ELS (Lesuis et al., 2018), although plaque load was not affected in this study. EAAT2 395 

overexpression has previously been shown to decrease pathological markers in an AD mouse model 396 

(Takahashi et al., 2015), again supporting the hypothesis that improved regulation of glutamatergic 397 

signalling via enhanced EAAT2 uptake could potentially mitigate Aβ toxicity and worsen cognitive 398 

performance. This may suggest that normalising glutamate levels prevents Aβ pathology. 399 
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 400 

5. Conclusions 401 

The present results indicate that riluzole rescues deficits in flexible spatial learning in 12-month-old 402 

ELS-exposed APPswe/PS1dE9 mice. The effects of riluzole are possibly mediated by alterations in 403 

synaptic plasticity that emerge already from a young age onwards (at least 6 months) since LTP 404 

deficits were completely rescued by riluzole supplementation. Future studies are required to 405 

investigate in more detail the critical time windows in which riluzole can prevent the ELS-induced 406 

impairments. Ultimately, reducing glutamatergic signalling could represent future therapeutic 407 

strategy for treating vulnerable individuals at risk of developing stress-aggravated AD, particularly in 408 

relation to adverse early life experiences.  409 

 410 

6. List of abbreviations 411 

aCSF: artificial cerebrospinal fluid 412 

AD: Alzheimer’s disease 413 

Aβ: amyloid-β 414 
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EAAT2: excitatory amino acid transporter 2 416 
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fEPSP: Field excitatory synaptic potential 418 

LTP: long-term potentiation 419 

NMDA: N-methyl-D-aspartate 420 

PND: postnatal day 421 
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 693 

Figure legends 694 

Figure 1: Chronic riluzole treatment rescues ELS-induced impairments in hippocampal LTP in 695 

APPswe/PS1dE9 mice after 10 Hz stimulation for 90 seconds. (A) LTP in water-treated mice. Both 696 

genotype and condition decrease the slope of the fEPSP over the entire 60 minutes after stimulation, 697 

resulting in LTD in ELS-APPswe/PS1dE9 mice. Right panel: typical example of a fEPSP at baseline 698 

(black), and 50 minutes after stimulation (grey). (B) Chronic riluzole treatment significantly increases 699 

LTP, most strongly in APPswe/PS1dE9 mice. (C) During the last 10 minutes of recording, chronic 700 

riluzole treatment increased LTP significantly in ELS-WT, Ctrl-APPswe/PS1dE9 and ELS-701 

APPswe/PS1dE9 mice. Ctrl-WT-water: N=18; ELS-WT-water: N=13; Ctrl-APPswe/PS1dE9-water: 702 

N=10; ELS-APPswe/PS1dE9-water: N=5; Ctrl-WT-riluzole: N=4; ELS-WT-riluzole: N=6; Ctrl-703 

APPswe/PS1dE9-riluzole: N=4; ELS-APPswe/PS1dE9-riluzole: N=10. *: p<0.05.  704 
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Figure 2: Chronic riluzole-treated aged APPswe/PS1dE9 mice were protected against ELS-induced 706 

deficits in Barnes maze performance. (A,B) The distance travelled before the mice located the exit 707 

hole was comparable between all groups (water-treated mice: full line; riluzole-treated mice: dashed 708 

line). (C) The distance travelled during the last trial of acquisition learning was also comparable 709 

between all groups. (D) When the exit hole was relocated to a novel location, in WT mice, long-710 

lasting riluzole treatment (dashed line) resulted in a slight improvement in the distance travelled to 711 

the exit hole, compared to water-treated mice (full line). (E) Water-treated APPswe/PS1dE9 mice 712 

took longer to locate the exit hole compared to WT mice, especially when exposed to ELS. The 713 

distance travelled was improved in all groups after chronic riluzole treatment. (F) The distance 714 

travelled to the exit hole when the exit hole was relocated to a new location was reduced by long-715 

term riluzole treatment in all groups, except for Ctrl-WT mice. Ctrl-WT-water: N=7; ELS-WT-water: 716 

N=9; Ctrl-APPswe/PS1dE9-water: N=9; ELS-APPswe/PS1dE9-water: N=9; Ctrl-WT-riluzole: N=7; ELS-717 

WT-riluzole: N=8; Ctrl-APPswe/PS1dE9-riluzole: N=8; ELS-APPswe/PS1dE9-riluzole: N=9. *: p<0.05.  718 

 719 

Figure 3. Chronic riluzole increases EAAT2 expression. (A) Quantification of fluorescent intensity of 720 

CA1 hippocampal sections labelled for EAAT2. Chronic Riluzole administration significantly increased 721 

labelling in the region 150-200 µm from the pyramidal cell bodies in aged mice. N=4/group. * 722 

indicates a significant difference from the Ctrl-WT group of the respective age or treatment group. 723 

(B) Distance travelled during the last trial of the Barnes maze correlated with the expression of 724 

EAAT2 in the CA1 area. (C) Plaque load analysis revealed a larger area of the CA1 covered with 725 

plaques in ELS compared to Ctrl APPswe/PS1dE9 mice. This was again normalised by chronic riluzole 726 

treatment. N=8-9/group. (D) No correlation was observed between plaque load and distance 727 

travelled in the last trial of the Barnes maze.  728 

 729 
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