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Abstract
The third-generation EGFR inhibitor, osimertinib (AZD9291), selectively and irreversibly inhibits EGFR activating
and T790 M mutants while sparing wild-type EGFR. Osimertinib is now an approved drug for non-small cell lung
cancer (NSCLC) patients with activating EGFR mutations (first-line) or those who have become resistant to 1st
generation EGFR inhibitors through the T790 M mutation (second-line). Unfortunately, all patients eventually
relapse and develop resistance to osimertinib. Hence, it is essential to fully understand the biology underlying the
development of resistance to osimertinib in order to improve its therapeutic efficacy and overcome resistance.
Cellular FLICE-inhibitory protein (c-FLIP) is a truncated form of caspase-8 and functions as a key inhibitor of the
extrinsic apoptotic pathway. The current study has demonstrated that osimertinib reduces c-FLIP levels via
facilitating its degradation and enhances apoptosis induced by tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) primarily in NSCLC with activating EGFR mutations. Moreover, modulation of c-FLIP expression
levels, to some degree, also alters the sensitivities of EGFR mutant NSCLC cells to undergo osimertinib-induced
apoptosis, suggesting that c-FLIP suppression is an important event contributing to the antitumor activity of
osimertinib against EGFR mutant NSCLC.
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Introduction
The discovery of epidermal growth factor receptor (EGFR) activating
mutations as an effective therapeutic target represented a paradigm
shift in the treatment of NSCLC. Targeting EGFR activating
mutations, 90% of which present as an exon 19 deletion (Del19) or
exon 21 point mutation (L858R), with first and second generation
EGFR tyrosine kinase inhibitors (EGFR-TKIs; e.g., erlotinib,
gefitinib and afatinib) and the T790M resistance mutation with
third-generation EGFR-TKIs (e.g., AZD9291; osimertinib) has
provided significant clinical benefit in patients with NSCLC
harboring these mutations, representing a successful example for
targeted therapy against lung cancer [1,2]. A recently completed
clinical study showing that AZD9291 also achieved remarkably
positive outcomes in the first-line treatment of EGFR mutation-
positive advanced NSCLC, with median progression-free survival
(PFS) time of 20.5 months [3], resulted in the approval of AZD9291
for the first-line treatment of EGFR mutant NSCLC. However,
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tumors eventually develop resistance in the clinic, resulting in disease
progression; this limits the long-term efficacy of these agents either as
a second-line or first-line treatment option [3]. Hence, fully
understanding the mechanisms of both action of and resistance to
osimertinib is highly desirable and urgently needed in the clinic in
order to enhance osimertinib-based therapy and to develop effective
strategies to overcome osimertinib resistance.

Cellular FLICE-inhibitory protein (c-FLIP) is a truncated form of
caspase-8 that lacks enzymatic activity. It suppresses extrinsic apoptosis
by blocking caspase-8 activation through competing with caspase-8 for
binding to FADD in the death-inducing signaling complex (DISC) [4].
Hence, c-FLIP acts as a key inhibitor of the extrinsic apoptotic pathway
induced by death receptor activation such as tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL)/death receptor ligation.
There are multiple isoforms of c-FLIP, among which only two forms,
short form (FLIPS) and long form (FLIPL), have been well characterized
at the protein level in human cells [4,5]. Both FLIPL and FLIPS are
unstable proteins regulated by ubiquitination/proteasome-mediated
degradation [6–8]. Elevated levels of c-FLIP have been reported in a
number of different cancer types and are often correlated with poor
prognosis [5,9].

Furthermore, c-FLIP has been linked to activation of NF-κB
[10,11], a major survival signaling molecule. It was reported that
silencing c-FLIP sensitized EGFR mutant NSCLCs to the first
generation EGFR-TKI, erlotinib, whereas overexpression of c-FLIP
rescued EGFR-mutant lung cancer cells from erlotinib treatment,
presumably through modulation of NF-κB activity [12]. This study
suggests that c-FLIP may play a role in regulating the response of
EGFR mutant NSCLC cells to erlotinib. However, it is unknown
whether erlotinib and other EGFR-TKIs modulate c-FLIP levels in
NSCLC cells with activating EGFR mutations.

In this study, we assessed whether osimertinib as well as other
EGFR-TKIs modulate c-FLIP levels in EGFR mutant NSCLC cells
and determined the underlying mechanisms. Moreover, we studied
the effect of osimertinib on TRAIL-induced apoptosis and the impact
of c-FLIP modulation on cell response to osimertinib. Our results
clearly show that osimertinib decreases c-FLIP levels through
enhancing its protein degradation and augments TRAIL-induced
apoptosis in some EGFR mutant NSCLC cell lines.

Materials and Methods

Reagents
The sources and preparation of osimertinib, CO1686, erlotinib,

MG132, actinomycin D (Act D), and cycloheximide (CHX) were the
same as described previously [13,14]. Soluble recombinant human
TRAIL was purchased from PeproTech, Inc. (Rocky Hill, NJ).
Afatinib was obtained from the Pharmacy of the Winship Cancer
Institute. EGF816 was purchased from Selleckchem (Houston, TX).
Pelitinib was ordered from AdooQ Bioscience (Irvine, CA). c-FLIP
mouse monoclonal antibody (7F10) was purchased from ENZO Life
Sciences, Inc. (Farmingdale, NY). Other antibodies were the same as
described in our previous studies [13–16].

Cell Lines and Cell Culture
All cell lines used in this study and culture conditions were the

same as described previously [13,14]. PC-9 cells expressing ectopic
FLIPL (PC-9/FLIPL), FLIPS (PC-P/FLIPS) and empty vector (PC-9/V)
were established by infecting PC-9 cells with lentiviruses carrying
FLIPL, FLIPS and vector, respectively, followed with puromycin
selection as described previously [17]. Pooled cell populations were
used.

Cell Survival and Apoptosis Assays
Cells were seeded in 96-well cell culture plates and treated the next

day with the given agents. Viable cell numbers were determined using
sulforhodamine B (SRB) assay as described previously [18].
Combinational index (CI) for drug interaction (e.g., synergy) was
calculated using the CompuSyn software (ComboSyn, Inc.; Paramus,
NJ). Apoptosis was evaluated with an annexin V/7-AAD apoptosis
detection kit (BD Biosciences; San Jose, CA) according to the
manufacturer's instructions. Caspase and PARP cleavage were also
detected by Western blot analysis as additional indicators of
apoptosis.

Western Blot Analysis
Preparation of whole-cell protein lysates and Western blot analysis

were described previously [13,14].

Quantitative Real-Time PCR (qRT-PCR)
Preparation of total cellular RNA, reverse transcription of cDNA

and quantitative PCR reaction were performed as described
previously [19] with the same primers for c-FLIP and GAPDH
used in our previous studies [7,19].

Protein Stability Assay
c-FLIP protein stability was determined with CHX chase assay as

described previously [7,20].

Gene Knockdown with Small Interfering RNA (siRNA)
Control and c-FLIP siRNAs and transfection of these siRNAs were

the same as described previously [21,22].

Results

Osimertinib and Other EGFR-TKIs Decrease c-FLIP Levels in
NSCLC Cell Lines with Activating EGFR Mutations

We first determined whether osimertinib alters c-FLIP levels in
NSCLC cell lines with and without EGFR mutations. As presented
in Figure 1A, osimertinib at concentrations ranging from 0.01 μM to
1 μM decreased the levels of c-FLIP including both FLIPL and FLIPS
in several NSCLC cell lines with EGFR mutations including
those with T790M mutation (PC-9/GR and H1975). Osimertinib
at 1 μM high concentration decreased c-FLIP levels to some degree
in H226 cells with wild-type (WT) EGFR but did not do so in other
EGFR WT cell lines including H596 EKVX, H322M and H522.
These EGFR WT NSCLC cell lines were all insensitive to
osimertinib, particularly at concentrations of b0.1 μM (Figure 1B).
c-FLIP reduction was observed at 2 h in HCC827 and at 4 h in PC-9
cells post osimertinib treatment (Figure 1C), indicating an early
event. Other EGFR-TKIs including erlotinib (1st generation),
afatinib (2nd generation), EGF816 and CO1686 (3rd generation)
also decreased c-FLIP levels in both PC-9 and HCC827 cells, similar
to osimertinib (Figure 1D).

Osimertinib Decreases c-FLIP Levels Through Facilitating
Proteasome-Mediated Protein Degradation

c-FLIP, including both FLIPL and FLIPS, are rapidly turned over
proteins regulated by proteasome-mediated degradation [6–8]. In this
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Figure 1. Osimertinib (A-C) and other EGFR-TKIs (D) decrease c-FLIP levels primarily in the sensitive EGFR mutant NSCLC cell lines (A-D),
but not or minimally in the insensitive EGFR WT NSCLC cell lines (A and B). A, C and D, The indicated cell lines were exposed to different
concentrations of osimertinib for 8 h (A), to 100 nM osimertinib for different times (C), or to 200 nM different EGFR-TKIs for 12 h (D). The
given proteins were analyzed by Western blotting. B, The indicated cell lines were exposed to 10 nM osimertinib for 3 days. Cell numbers
were estimated with the SRB assay. Data are means ± SDs of four replicate determinations.
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study, we failed to detect c-FLIP mRNA reduction in cells treated
with osimertinib (Figure 2A). Therefore we further investigated
whether osimertinib facilitates c-FLIP degradation, resulting in c-
FLIP reduction in EGFR mutant NSCLC cells. In three tested cell
lines, PC-9. PC-9/GR and HCC827, osimertinib decreased c-FLIP
levels as we demonstrated above in the absence of MG132, a widely
used proteasome inhibitor, but failed to do so in the presence of
MG132 (Figure 2B), suggesting that osimertinib induces proteasomal
degradation of c-FLIP. Moreover, chase assays conducted in both
HCC827 and PC-9/GR cell lines showed that both FLIPL and FLIPS
were degraded much faster in osimertinib-treated cells than in control
cells exposed to DMSO (Figure 2, C and D), further supporting our
notion that osimertinib decreases c-FLIP levels through enhancing its
proteasomal degradation.

Osimertinib Cooperates with TRAIL to Augment Induction of
Apoptosis in Some EGFR Mutant NSCLC Cell Lines
Given that c-FLIP is the sole inhibitor of TRAIL/death receptor-

induced apoptosis [4,23], we assumed that c-FLIP reduction will
sensitize cancer cells to TRAIL, a well-known death ligand with
cancer therapeutic potential [24,25]. Hence we examined the effects
of osimertinib in combination with TRAIL on cell survival and
apoptosis in several NSCLC cell lines with EGFR mutations. The
combination of osimertinib and TRAIL was clearly more potent than
either agent alone in decreasing cell survival (CIb 1) in PC-9, PC-9/
GR and H1975 cells, although this effect was minimal in HCC827
cells (Figure 3A). In agreement, the combination of osimertinib and
TRAIL was more effective than each agent alone in inducing
apoptosis (Figure 3B) including cleavage of caspase-8, caspase-3 and
PARP (Figure 3C) in these cell lines. Hence, osimertinib cooperates
with TRAIL to augment the induction of apoptosis in some EGFR
mutant NSCLC cell lines.

Enforced Expression of Ectopic c-FLIP Attenuates Apoptosis
Induced by Osimertinib, but Abolishes Augmented Induction of
Apoptosis by Osimertinib and TRAIL Combination

Finally, we examined the effects of ectopic c-FLIP expression on
apoptosis induction by osimertinib alone or in combination with TRAIL.
As presented in Figure 4A, both ectopic FLIPL and FLIPS were well
detected, indicating successful expression of these tested proteins. Upon
treatment with osimertinib, reduced amounts of cleaved PARP, caspase-8
and caspase-3 were detected in PC-9/FLIPL and PC-9/FLIPS cells
compared with those in PC-9/V control cells (Figure 4A). Accordingly,
significantly fewer annexin-V positive cells were detected in PC-9/FLIPL

Image of Figure 1
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Figure 2. Osimertinib does not decrease c-FLIP mRNA levels (A), but facilitates proteasomal degradation of c-FLIP (B-D). A, The indicated
cell lines were treated with 100 nM osimertinib for 8 h and then harvested for extraction of total cellular RNA and subsequent qRT-PCR. B,
The given cell lines were pretreated with 10 μg/mLMG132 for 30 minutes and then co-treated with 100 nM osimertinib for an additional 4
h. The cells were then harvested for Western blotting. C and D, The indicated cell lines were exposed to 100 nM osimertinib for 8 h
followed with the addition of 10 μg/ml CHX. The cells were then harvested at the indicated times for Western blotting to detect the
indicated proteins. Band intensities were quantified by NIH image J software and FLIPL and FLIPS levels were presented as a percentage
of levels at 0 time post CHX treatment.
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and PC-9/FLIPS cells than in PC-9/V cells exposed to osimertinib alone
albeit with limited degrees (Figure 4B). Hence, the enforced expression of
c-FLIP in part protects EGFR mutant NSCLC cells from osimertinib-
induced apoptosis.

In contrast, the combination of osimertinib and TRAIL augmented the
induction of apoptosis in PC-9/V cells, but not in PC-9/FLIPL and PC-9/
FLIPS cells as assayed by detection of both annexin-V positive cells and
caspase and PARP cleavage (Figure 4, B and C). It is clear that enforced
expression of either FLIPL or FLIPS abolishes the augmented induction of
apoptosis induced by the osimertinib and TRAIL combination.

Osimertinib Loses its Ability to Decrease c-FLIP Levels and to
Enhance TRAIL-Induced Apoptosis in EGFR Mutant Cell
Lines with Acquired Resistance to Osimertinib

To determine whether c-FLIP modulation plays a role in the
development of acquired resistance to osimertinib, we assessed the effects
of osimertinib on c-FLIP modulation in several osimertinib-resistant cell
lines including PC-9/AR, HCC827/ER, HCC827/AR and PC-9/3M
established in our previous studies [13,14]. As shown in Figure 5, A–C,
osimertinib failed to decrease the levels of c-FLIP in these resistant cell
lines even at high concentrations up to 1 μM, although it reduced c-FLIP
levels even at 10 nM in their corresponding parent cell lines (PC-9 and
HCC827), indicating that osimertinib loses its ability to decrease c-FLIP
levels in cells resistant to AZD9291.

PC-9 cells were very sensitive toTRAIL and could be further sensitized to
TRAIL-dependent killing or apoptosis by inclusion of osimertinib (Figure 5,
D and E). However, both PC-9/AR and PC-9/3 M cell lines became less
sensitive to TRAIL and could not be further sensitized even in the presence
of osimertinib (Figure 5, D and E). Therefore, cell lines with acquired
resistance to osimertinib show some degree of cross-resistance to TRAIL,
which cannot be overcome by the osimertinib and TRAIL combination.

Enforced c-FLIP Suppression Through Gene Knockdown
Sensitizes Osimertinib-Resistant Cells to Undergo Apoptosis

To further demonstrate the impact of c-FLIP modulation on
osimertinib-induced apoptosis and the development of resistance to

Image of Figure 2
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Figure 3.Osimertinib cooperates with TRAIL to decrease survival (A) and to augment induction of apoptosis in some EGFRmutant NSCLC
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osimertinib, we used c-FLIP siRNA to knock down c-FLIP in
PC-9/3M cells and then analyzed its impact on osimertinib-induced
apoptosis. c-FLIP knockdown per se induced a degree of apoptosis in
PC-9/3M cells. Treatment of these cells with osimertinib significantly
enhanced apoptosis as evaluated by detection of PARP cleavage
(Figure 6A) and by assaying annexin V-positive cells (Figure 6B). In
PC-9/AR cells, we generated similar results albeit with a limited degree
(Figure 6, C andD). As a control, c-FLIP knockdown in PC-9/AR cells
substantially sensitized the cells to undergo apoptosis upon TRAIL
treatment, as evidenced by the disappearance of total PARP (Figure 6C)
and increase in annexin V-positive cell populations (Figure 6D).
Therefore, the enforced suppression of c-FLIP in osimertinib-resistant
cells, to some degree, sensitizes the cells to undergo osimertinib-induced
apoptosis.
Discussion
Although the modulation of c-FLIP expression through genetic
manipulation (e.g., overexpression and gene knockdown) alters the
responses of EGFR mutant NSCLC cells to erlotinib treatment [12],
there are no reports documenting the downregulation of c-FLIP by
EGFR-TKIs. The current study has clearly shown that osimertinib
and other EGFR-TKIs decrease the levels of c-FLIP (both FLIPL and
FLIPS forms) primarily in the sensitive EGFR mutant NSCLC cell
lines (Figure 1). This finding hence represents the first evidence that
EGFR-TKIs modulate (i.e., decrease) the levels of endogenous c-FLIP
in NSCLC cell lines with activating EGFR mutations, suggesting the
possible involvement of c-FLIP modulation in mediating therapeutic
efficacy of osimertinib as well as other EGFR-TKIs against EGFR
mutant NSCLCs. This notion is supported by the following findings:
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1) c-FLIP levels were substantially reduced by osimertinib primarily
in osimertinib-sensitive EGFR mutant NSCLC cell lines, but not or
minimally in osimertinib-insensitive EGFR WT NSCLC cell lines
(Figure 1, A and B); 2) Enforced overexpression of c-FLIP in part
protected the sensitive EGFR mutant NSCLC cells from undergoing
apoptosis induced by osimertinib (Figure 4); 3) Several osimertinib-
resistant NSCLC cell lines lost response to osimertinib-induced c-
FLIP downregulation (Figure 5); and 4) Enforced c-FLIP downreg-
ulation by siRNA-mediated gene knockdown significantly enhanced
the sensitivity of osimertinib-resistant cells to osimertinib-induced
apoptosis, albeit to limited degrees (Figure 6).

The development of acquired resistance to EGFR-TKIs, including
osimertinib, remains the major obstacle in the clinic that prevents
patients from experiencing long-term remission, resulting in eventual
treatment failure [26,27]. Therefore, strategies to effectively
overcome acquired resistance are urgently needed in the clinic. Our
current findings together with the previous study suggest that
suppression of c-FLIP may be an effective strategy to enhance the
therapeutic efficacy of osimertinib against NSCLCs with acquired
resistance to this agent. Further study in this direction is warranted.

c-FLIP, including both FLIPL and FLIPS, are known to be unstable
proteins subject to regulation through ubiquitination/proteasome-
mediated protein degradation [6–8]. Many agents decrease c-FLIP
levels through enhancing protein degradation [6–8]. In this study,
osimertinib facilitated c-FLIP degradation rates as demonstrated by
the CHX chase assay (Figure 2, C and D). Moreover, the presence of
the proteasome inhibitor, MG132, rescued c-FLIP reduction induced
by osimertinib (Figure 2B). In agreement, osimertinib did not
decrease c-FLIP mRNA levels (Figure 2A). Thus, osimertinib
decreases c-FLIP levels in EGFR mutant NSCLC cells through
enhancing c-FLIP proteasomal degradation.

TRAIL (e.g., recombinant TRAIL) possesses cancer therapeutic
potential based on its characteristic as a potent apoptosis-inducer in
sensitive cancer cells [24,28]. Importantly, endogenous TRAIL,
which is primarily secreted or produced by immune cells such as
cytotoxic T cells, plays a key role in eliminating cancer cells by our
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immune defense mechanism through TRAIL/death receptor-induced
apoptosis [29,30]. As a critical inhibitor of this extrinsic apoptosis
pathway, enhanced c-FLIP downregulation or degradation is often
associated with enhancement of TRAIL-induced apoptosis [5]. In this
study, osimertinib cooperated with TRAIL to augment the induction
of apoptosis in several EGFR mutant NSCLC cell lines (Figure 3).
Once these cells became resistant to osimertinib, they exhibited some
degree of cross resistance to TRAIL (Figure 5). Moreover, osimertinib
failed to decrease c-FLIP levels and to augment TRAIL-induced
apoptosis in these resistant cell lines (Figure 5). Therefore it is
plausible to speculate that osimertinib, beyond its direct effect on
inducing apoptosis of EGFR mutant NSCLC cells as we recently
documented [13], may exert its anticancer activity via an indirect
effect on activating the endogenous immune defense mechanism that
eliminates cancer cells through TRAIL/death receptor-mediated
apoptosis. Accordingly, escape from endogenous immune clearance
due to resistance to TRAIL-induced apoptosis may be a critical
mechanism accounting for the development of acquired resistance to
osimertinib. Future research in this regard is also warranted.
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