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Abstract
Approximately 50% of prostate cancers harbor the TMPRSS2:ERG fusion, resulting in elevated expression of the ERG
transcription factor. Despite the identification of this subclass of prostate cancers, no personalized therapeutic
strategies have achieved clinical implementation. Kinases are attractive therapeutic targets as signaling networks are
commonly perturbed in cancers. The impact of elevated ERG expression on kinase signaling networks in prostate
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cancer has not been investigated. Resolution of this issuemay identify novel therapeutic approaches for ERG-positive
prostate cancers. In this study, we used quantitative mass spectrometry-based kinomic profiling to identify ERG-
mediated changes to cellular signaling networks. We identified 76 kinases that were differentially expressed and/or
phosphorylated in DU145 cells engineered to express ERG. In particular, the Traf2 and Nck-interacting kinase (TNIK)
wasmarkedly upregulated and phosphorylated onmultiple sites upon ERG overexpression. Importantly, TNIK has not
previously been implicated in prostate cancer. To validate the clinical relevance of these findings, we characterized
expression of TNIK and TNIK phosphorylated at serine 764 (pS764) in a localized prostate cancer patient cohort and
showed that nuclear enrichment of TNIK (pS764) was significantly positively correlated with ERG expression.
Moreover, TNIK protein levelswere dependent uponERGexpression inVCaPcells and primary cells established froma
prostate cancer patient-derived xenograft. Furthermore, reduction of TNIK expression and activity by silencing TNIK
expression or using the TNIK inhibitor NCB-0846 reduced cell viability, colony formation and anchorage independent
growth. Therefore, TNIK represents a novel and actionable therapeutic target for ERG-positive prostate cancers that
could be exploited to develop new treatments for these patients.

Neoplasia (2019) 21, 389–400
Introduction
Prostate cancer is the fifth leading cause of cancer-related deaths in men
worldwide [1].Men that present with early stage prostate cancer are often
successfully treated with active surveillance, prostatectomy and/or
radiotherapy. However, in 20% to 30% of patients, the cancer will
relapse and standard treatment is androgen deprivation therapy (ADT),
with or without docetaxel chemotherapy. Despite an initial response to
ADT, the majority of patients progress to the more aggressive
castrate-resistant prostate cancer (CRPC). Over the last decade the
treatment options for metastatic CRPC have increased with the
introduction of docetaxel, enzalutamide, abiraterone acetate, cabazitaxel,
and radium-223 [2]. Despite these advances, overall survival increments
are measured in months and the majority will eventually die from their
cancer. To improve patient outcomes from lethal metastatic prostate
cancer, we need to identify new therapeutic strategies incorporating
molecular subtyping.

Themost common genetic abnormality in prostate cancer is the fusion
of the 5′ untranslated region ofTMPRSS2 to members of the ETS family
of transcription factors including ETV1, ETV4 and ERG, resulting in
their aberrant androgen receptor (AR)-regulated expression [3]. Indeed,
approximately 50%of prostate cancers harbor theTMPRSS2:ERG fusion
gene and 56% of lethal CRPC cases have ETS re-arrangements, the vast
majority being ERG fusions [3,4]. Moreover, patients with TMPRSS2:
ERG positive prostate cancers have a worse outcome as indicated by
incidence of metastasis and/or death [3].

Overexpression of ERG in prostate epithelial and prostate cancer
cell lines promotes proliferation, migration, invasion and taxane
resistance [5,6]. In addition, knockdown of ERG decreased tumor
growth in mouse xenograft models [6]. However, increased
expression of ERG alone is insufficient to initiate prostate cancer
tumorigenesis in genetically-engineered mouse models, with addi-
tional molecular events such as PTEN loss or AR overexpression
required to drive the development of invasive prostate cancer [3].

Overall, these data indicate that ERG plays a key driver role in
prostate cancer, including CRPC. However, the impact of ERG on
oncogenic signaling networks remains poorly characterized. We
hypothesized that global characterization of kinase signaling pathways
downstream of ERG may reveal potential therapeutic strategies for
targeting this disease subtype. In this report, we have exploited a
powerful mass spectrometry-based kinome profiling platform to define,
for the first time, the ERG-regulated kinome, thereby identifying TNIK
as a novel, actionable target in ERG-positive prostate cancer.

Materials and Methods

Cell Lines
DU145 and RWPE1 cell lines stably expressing the vector control

or ERG were previously described in [5]. 22Rv1 cells stably
expressing the vector control or ERG were made by lentiviral
transduction of a GFP sequence or a flag-tagged ERG sequence
encoding TMPRSS2:ERG (a kind gift from Dr. Brenner [7]) cloned
into a pLentiLox lentivirus vector (from University of Michigan
Vector Core). Doxycycline inducible 22Rv1-ERG cells were made by
lentiviral transduction of the flag-tagged ERG sequence encoding
TMPRSS2:ERG cloned into a pCW57.1 vector (a kind gift from Pr.
Giannakakou). 22Rv1 cells were cultured in RPMI 1640 (Gibco)
supplemented with 10% (v/v) FBS (Gemini) and 1% (v/v) penicillin/
streptomycin (Gibco), and kept under puromycin selection (Gibco).
VCaP cells were purchased from ATCC (CRL-2876) and cultured in
DMEM high glucose (Gibco) supplemented with 10% (v/v) FBS
(Serana) and 1 mM sodium pyruvate (Gibco). Cells were tested to be
mycoplasma negative using the MycoAlert Mycoplasma Detection
Kit (Lonza), the Mycoplasma PCR Detection kit (Applied Biological
Materials Inc.) or PCR using forward and reverse primers:
5′-GGGAGCAAACAGGATTAGATACCCT-3′ and 5′-TGCAC
CATCTGTCACTCTGTTAACCTC-3′ respectively [8]. All cells
were used within 20 passages of revival from liquid nitrogen.

Kinome Enrichment and Profiling by Mass Spectrometry
DU145 cells containing the empty vector or stably expressing ERG

[5] were SILAC labeled in RPMI 1640 (RPMI R1780–500 ML,
Sigma) supplemented with 382 μM L-leucine and either 219 μM
L-lysine and 287 μM L-arginine (light labeled) or equal concentra-
tions of L-[13C615N2]-lysine and L-[13C615N4]-arginine (heavy
labeled) (Silantes), 10% (v/v) dialysed FBS (Hyclone) and 1% (v/v)
penicillin/streptomycin (Gibco). The SILAC labels for DU145
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empty vector and ERG expressing cells were switched in the second
biological replicate. Subconfluent cells were harvested on ice into
kinome profiling buffer [9] and cleared lysates adjusted to 1 M NaCl.
Equal amounts (47 mg) of light and heavy labeled cell lysates were
combined and tumbled with beads coupled to kinase inhibitors:
CTx-0294885/KiNet-1 (SYNkinase), Purvalanol B (Tocris),
SU6668 (Biochempartner Chemical) and VI16832 (Evotec) for 2 h
at 4°C [9]. Beads were then washed and eluted kinases subjected to
either in-gel or in-solution digestion, and phosphopeptides enriched
using TiO2 beads, as previously described [9]. Peptides were injected
into an Exactive Plus Orbitrap mass spectrometer (Thermofisher) and
the raw data analyzed using MaxQuant (version 1.5.2.8).

Western Blotting
Protein lysates were subjected to Western blot analysis using the

following antibodies: ERG (Abcam, ab92513), ERG (Abcam,
ab133264), TNIK (Genetex, GTX13141), TNIK (pS764) (Abgent,
AP3276a), MERTK (Abcam, ab52968), MAP4K4 (Cell Signaling
Technology, 3485), Lamin B1 (Cell Signaling Technology, 12586),
AKT (Cell Signaling Technology, 4685), AKT (pS473) (Cell Signaling
Technology, 4058), tubulin (Sigma-Aldrich, T5168), β-actin (Santa
Cruz Biotechnology, sc-69879) and β-actin (MP Biomedicals, 691001).

siRNA Knockdown
VCaP cells were transfected with lipofectamine 2000 (Thermo-

Fisher Scientific) and patient-derived xenograft (PDX) cells were
transfected with DharmaFECT4 (GE Healthcare Dharmacon) 24 h
post seeding. Media was changed 24 h later. The following siRNAs
were used at a final concentration of 40 nM and purchased from GE
Healthcare Dharmacon: siGENOME SMARTpool human ERG
(catalogue no. M-003886-01), siGENOME SMARTpool human
TNIK (catalogue no. M-004542-03) and ON-TARGETplus
SMARTpool human CTNNB1 (catalogue no. L-003482-00). The
ON-TARGETplus (siOTP) non-targeting pool was used as the
control (catalogue no. D-001810-10).

Cytoplasmic and Nuclear Fractionation
Total protein was harvested by washing cells twice with 1× PBS

and lysing into western solubilization buffer (WSB) (0.5 mM EDTA,
20 mM HEPES, pH 7.4, 2% (w/v) SDS). Cytoplasmic and nuclear
fractions were isolated on ice by washing twice with 1× PBS before
lysing into nuclei buffer (NB) [10]. Lysates were then centrifuged at
1000×g for 5 min at 4°C and the supernatant collected as the
cytoplasmic fraction. Pelleted nuclei were then washed twice with NB
and lysed in WSB. Lysates in WSB were passed through a 27-gauge ½
inch needle 15 times to shear the DNA. All lysates were cleared by
centrifugation at 16000×g for 15 min.

Immunohistochemistry (IHC)
A cohort of archival formalin-fixed paraffin-embedded specimens

was collected from 60 men treated with radical prostatectomy for
localized prostate cancer at St Vincent's Hospital, Sydney. This
project was approved by the St Vincent's Hospital Ethics Committee
(12/231). A mean of 3 biopsies (range 2–5) of prostate cancer
representative of primary, secondary and, if present, tertiary Gleason
grades were used to construct Tissue Microarrays (TMAs). Fresh-cut
sections of TMAs were immunostained for ERG (1:200 dilution,
Epitomics #28051), TNIK (1:2000 dilution, GeneTex GXT13141)
and TNIK (pS764) (1: 50 dilution, Abcam ab135556). All stains
were performed on a Leica Bond autostainer. Sections were dewaxed
using the Bond Dewax Solution and antigen retrieval performed
using the Heat-Induced Epitope Retrieval (HIER) protocol with
Bond Epitope Retrieval solution at 100°C for 20 min for the ERG
protocol and 30 min for the TNIK and TNIK (pS764) protocols.
The secondary detection was performed using the Bond Polymer
Refine system with DAB chromagen. The TMAs were scored for the
3 immunostains. For ERG staining, nuclear staining was scored as a
percentage of the total number of cancer cells. ERG-positive cases
were classified as maximum nuclear staining for ERG across the cores
(median 90%, range 5–99%). For total TNIK, cytoplasmic staining
was scored as a percentage of the total number of cancer cells. For
TNIK (pS764), nuclear staining was scored as a percentage of the
total number of cancer cells. PDX tissue was stained with
hematoxylin and eosin (H&E) for pathological assessment. IHC to
detect ERG (3.26 μg/ml, Abcam Ab92513) was performed using the
Leica Bond-MAX™ automated system. TNIK and TNIK (pS764)
staining was performed as described previously.

Patient-Derived Xenografts (PDXs)
Prostate cancer tissue was obtained from a dural metastasis during

post-mortem autopsy according to approved human ethics (Peter
MacCallum Cancer Centre, 15/98, 97_27). Tumor tissue was
established as xenografts with approval from the Monash Animal
Ethics Committee (MARP/2014/085). Tumor grafts were implanted
under the renal capsule of immunodeficient male mice (NSG)
according to our previously published protocol [11] and then grown
subcutaneously. PDX tissue were digested and cultured in organoid
media [12] before being used for in vitro studies.

TCF Reporter Assays
HEK293T cells (1.5 × 106) were seeded in 6 well plates in DMEM

(Sigma) supplemented with 1% (v/v) penicillin/streptomycin (Sigma), 2
mM L-glutamine (Sigma) and 10% (v/v) FBS (Gibco). The media was
replaced 24 h later with freshmedia before the addition of the transfection
mix containing 1250 ng 7xTCF lentiviral vector (a gift from Roel Nusse,
Addgene plasmid # 24309, http://n2t.net/addgene:24309; RRID:
Addgene_24309) [13], 1250 ng packaging vector (psPAX2) (a gift
from Didier Trono (Addgene plasmid # 12260; http://n2t.net/
addgene:12260; RRID:Addgene_12260), 250 ng envelope vector
(VSVG) (a gift from Didier Trono (Addgene plasmid # 12259; http://
n2t.net/addgene:12259; RRID:Addgene_12259) and FuGENE® 6
(Promega) (8.75 μl per 1250 ng lentiviral vector). The 6 well plate was
then centrifuged at 1000×g for 30 min at room temperature and
incubated overnight in a humidified incubator with 5%CO2 atmosphere
at 37°C. The media was replaced with fresh media supplemented with
30% (v/v) FBS 20 h later. Viruses were harvested 48 h and 72 h post
transfection, pooled and stored at −80°C until use. PDX cells stably
expressing the 7xTCF lentiviral vector were generated by incubating cells
with 7xTCF virus and 0.5 μg/ml polybrene overnight, followed by
selection with 1μg/ml puromycin for 96 h. Cells were seeded into 96well
plates 24 h after siRNA transfection. Cells were washed with 1x PBS,
lysed in passive lysis buffer and assayed for luciferase activity 72 h post
transfection using 50 μl of luciferase assay reagent from the
Dual-Luciferase Reporter Assay System (Promega). Luminescence was
detected using the CLARIOstar microplate reader (BMG LABTECH).

Cell Viability Assays
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Cells were seeded into 96 well plates and viability determined using
CellTiter96 Aqueous One Solution Cell Proliferation Assay (Promega)
following the manufacturer's instructions. Absorbance was determined
using the PHERAstar microplate reader (BMG LABTECH).

Quantitative Real-Time PCR
RNA was extracted from cells 72 h post siRNA transfection using

the RNeasy Mini Kit (Qiagen). cDNA was synthesized from 400 ng
of RNA using the RT2 First Strand Kit (Qiagen). Real-Time PCR
was performed using RT2 SYBR Green qPCRMastermix (Qiagen) in
RT2 Profiler PCR array 384-well plates for the Human WNT
signaling Pathway (Qiagen, catalogue no. 330231 PAHS-243ZA) in a
CFX384 Touch Real-Time PCR detection System (Bio-Rad)
following the manufacturer's instructions. Three biological replicates
per cell line were performed. The threshold value was set at 20 and the
data analyzed using Qiagen's online Data Analysis Center. GAPDH
and RPLP0 were selected automatically from the house keeping gene
panel and used for normalization of the VCaP and PDX data
respectively. P-values were calculated using Student's t-test.

Generation of Stable TNIK Knockdown Cells
PDX cells were transduced with MISSION lentiviral transduction

particles (SHCLNV, Sigma-Aldrich): shTNIK-A (clone ID:
TRCN0000234733) and shTNIK-B (clone ID: TRCN0000234734)
using a MOI of 5. The pLKO.puro vector (SHC002V, Sigma-Aldrich)
was used as the control. Transduced cells were selected with 1 μg/ml of
puromycin for 3 days.

Clonogenic Assay
Cells were seeded into 24 well plates at 500 cells per well. After 11 to

13 days, cells were washed twice with 1× PBS, fixed with 100% (v/v)
methanol for 2 min, stained with 0.4% (w/v) crystal violet/20% (v/v)
ethanol for 20 min and destained with distilled water. Images were
taken with a FinePix F100fd digital camera (Fujifilm) and colonies
counted using cell counter on ImageJ 1.48v (http://imagej.nih.gov/ij).

NCB-0846 Treatment
NCB-0846 (SelleckChem) was reconstituted in DMSO. For

Western blotting, PDX cells were treated with 0–10 μM NCB-0846
for the indicated time before lysing in WSB. For viability assays, cells
were treated with NCB-0846 24 h post seeding and viability
determined at the indicated days. For clonogenic and anchorage
independent growth assays, NCB-0846 was changed twice a week
together with fresh media.

Anchorage Independent Growth in Soft Agar
A base layer of organoid media containing 0.7% (w/v) agar was

prepared in 24 well plates. Cells (1000 cells per well) in organoid
media containing 0.3% (w/v) agar was then layered on top of the set
base layer. The next day, 400 μl of organoid media containing
NCB-0846 was applied to the cells. After 4 weeks, cells were stained
with 0.005% (w/v) crystal violet/10% (v/v) ethanol for 2 h and
destained with distilled water. Images were taken with a FinePix
F100fd digital camera (Fujifilm). Colony number and size was
analyzed using ImageJ 1.48v (http://imagej.nih.gov/ij).

Statistical Analysis
Statistical t-tests were performed using GraphPad Prism 7 version 7.0b.
Results and Discussion
A global survey of how ERG alters intracellular signaling in prostate
cancer cells has not been conducted. Our group has established a
kinome profiling platform that uses a novel broad spectrum kinase
inhibitor, CTx-0294885/KiNet-1 [9], in combination with other
capture reagents (Purvalanol B, SU6668 and VI16832), to enrich
kinases from cell lysates. When combined with a quantitative,
SILAC-based mass spectrometry (MS) workflow, this enables global
interrogation of the expressed kinome at the level of both protein
expression and phosphorylation (Figure 1A).

We applied this approach to DU145 prostate cancer cells expressing
ERG or the corresponding empty vector. This MS-based kinomic
profiling workflow identified 215 kinases from the total peptide and
phosphopeptide data sets. A change in expression or phosphorylation of
≥1.2-fold, when compared to the empty vector control, was implemented
to classify 76 kinases as being ERG-regulated in terms of expression (21
kinases), phosphorylation (136 phosphorylation sites from 65 kinases) or
both (10 kinases) (Figure 1, B and C). ERG-regulated kinases were
derived from all kinase family groups (Figure 1C), with the greatest
contributions to the upregulated kinases from STE (23.2%), TK
(14.0%), AGC (14.0%) andCMGC (14.0%) kinase families (Figure 1D,
top left). Most downregulated kinases were from the CMGC (27.8%),
STE (19.4%) and TK (19.4%) kinase families (Figure 1D, top right).
CKI and atypical kinases were the least impacted by ERG expression. In
terms of phosphorylation sites, over 50% of ERG-mediated upregulated
phosphorylation events occurred on members of the STE (31.6%) and
CAMK (23.7%) kinase families (Figure 1D, bottom left). Members of
the CMGC kinase family contributed to approximately 50% of
downregulated phosphorylation events mediated by ERG overexpression
(Figure 1D, bottom right).

The main biological processes and signaling pathways regulated by
ERG expression, through either altered kinase expression or
phosphorylation, were mRNA splicing (16.6%), MAPK signaling
(14.6%), DNA repair and cell cycle regulation (12.7%) and
cytoskeletal remodeling (11.5%) (Figure 2). Prominent alterations
included multisite modulation of CDK12 and CDK13 (implicated in
regulation of mRNA splicing and transcriptional control), MARK2
and MARK3 (cytoskeletal regulation and Wnt signaling), STK10
(cell migration and cell cycle control) and TNIK (Wnt signaling).

While our study focused on kinase expression and phosphoryla-
tion, we noted some similarities with data from transcriptomic and
proteomic screens. Specifically, characterization of the ERG-regulated
transcriptome identified changes associated with regulation of cell
migration, consistent with our identification of cytoskeletal modeling
as a prominent functional category [14]. Proteomic analyses of
ERG-positive prostate cancer specimens and VCaP cells, identified
the cytoskeletal regulatory kinases PAK1–4 and cell cycle regulators
CDK1 and CDK2 as downstream ERG targets [15]. In our study, we
detected increased PAK4 phosphorylation at T207 in
ERG-overexpressing cells, as well as a decrease in Thr14 and Tyr15
inhibitory phosphorylation events on CDK1 (Figure 2).

Kinases exhibiting the greatest changes in expression/phosphory-
lation included EPHA4, TNIK, MERTK, MELK, LIMK1, and
MAP4K4 (Figure 3, A and B). Aside from TNIK, these are all
implicated in prostate cancer development and progression. In
addition, therapeutic drugs against TNIK, MERTK and MELK are
currently under preclinical development. Consequently, our data
supported our hypothesis that ERG-regulated kinases may be novel
therapeutic targets. Amongst the ‘top-ranked’ kinases, TNIK
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Figure 1. Profiling the ERG-regulated prostate cancer kinome. (A) Workflow for quantitative MS-based kinomic profiling. (B) Summary of
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exhibited the second highest increase in expression (2.4-fold).
Moreover, of the top 25 up-regulated phosphosites, 7 belonged to
TNIK (Figure 3B indicated by a star). The profound impact of ERG
on TNIK, and the identification of TNIK as a ‘driver’ kinase in
specific human cancers by a recent meta-analysis of cancer genome
sequencing studies [16], led us to focus on this kinase for further
validation and functional characterization.
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Figure 2. Biological processes and pathways associated with ERG-regulated kinases. Kinases from Figure 1C were categorized using
information from Genecards. Red circles indicate kinases with increased expression. Green circles indicate kinases with decreased
expression. Gray circles indicate kinases with no change in expression. Upregulated phosphorylation sites indicated in red.
Downregulated phosphorylation sites indicated in green.
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To confirm the changes in TNIK detected by MS, we undertook
Western blot analysis. While phosphospecific antibodies against
identified TNIK phosphorylation sites were not available, blotting
with a pS764-selective antibody revealed an approximately 2-fold
increase in phosphorylation on this site in ERG-overexpressing DU145
cells, and blotting with an antibody specific for TNIK confirmed
enhanced TNIK expression (Figure 3C). In addition, this approach
confirmed thatMERTK andMAP4K4 levels were also elevated in these
cells, as well as in AR-positive RWPE1 prostate epithelial cells
programmed to overexpress ERG (Figure 3C). TNIK and TNIK
(pS764) were not convincingly detected in the latter cells. However, we
were able to confirm ERG-regulated TNIK expression and S764
phosphorylation in AR-positive 22Rv1 cells that stably express ERG,
when compared to the empty vector control (Figure 3D). Furthermore,



Figure 3. Positive association of TNIK expression and/or phosphorylation with ERG in prostate cancer. (A) Kinases exhibiting the largest
expression change in response to ERG. (B) Top 25 kinase phosphorylation sites upregulated by ERG overexpression. Expression is
indicated relative to the empty vector control. TNIK indicated by star. (C) Confirmation of MS data by Western blotting. SILAC labeled
DU145 cells and exponentially growing RWPE1 cells engineered to overexpress ERG, or the empty vector, were immunoblotted with the
indicated antibodies. (D) ERG-regulated expression of TNIK and TNIK (pS764) in 22Rv1 cells. 22Rv1 cells containing the empty vector or
expressing ERG, and 22Rv1-ERG inducible cells treated with 10 μg/mL doxycycline (Dox) for 48 h, were immunoblotted with the indicated
antibodies. (E) Regulation of TNIK by ERG in VCaP cells. ERG and TNIK expression was reduced using siRNAs. Cells were lysed 72 h post
transfection and immunoblotted with the indicated antibodies. (F) TNIK localization in DU145 cells overexpressing ERG, or the empty
vector. TNIK and TNIK (pS764) localization was determined by Western blotting. Lamin B and tubulin were used as nuclear and
cytoplasmic markers, respectively.
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this ERG-dependent increase in TNIK and TNIK (pS764) expression
was validated in 22Rv1 cells engineered to express ERG upon
doxycycline induction (Figure 3D). ERG-regulated expression of
TNIK was further validated in the ERG and AR-positive prostate
cancer cell line VCaP, where knockdown of ERG expression reduced
both TNIK and TNIK (pS764) expression by 1.9- and 2.1-fold
respectively (Figure 3E). We then examined whether ERG overexpres-
sion promoted TNIK localization to the nucleus. In DU145 cells,
TNIK largely localized to the cytoplasm, with a modest increase in



Figure 4. Expression of ERG, total TNIK and TNIK (pS764) in localized prostate cancer. (A) Panels represent IHC for ERG, TNIK and TNIK
(pS764) in 3 sequential sections of the same prostate cancer specimen: i) Nuclear and cytoplasmic expression of ERG. ii) Cytoplasmic
expression of total TNIK. iii). Nuclear and cytoplasmic expression of TNIK (pS764). Panels iv-vi) demonstrate lack of ERG, TNIK and TNIK
(pS764) expression in 3 sequential sections of the same prostate cancer specimen. (B) Expression of total TNIK (cytoplasmic) in
ERG-negative and -positive prostate cancers. (C) Expression of TNIK (pS764) (nuclear) in ERG-negative and -positive prostate cancers.
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TNIK andTNIK (pS764) expression observed in the nuclear fraction of
ERG overexpressing cells (Figure 3F).

We next sought to validate the localization of TNIK in prostate
cancer specimens. Immunostaining for ERG, TNIK and TNIK
(pS764) were performed on TMAs constructed from a cohort of 60
men treated with radical prostatectomy for localized prostate cancer
(Figure 4A). Overall, 50% of the prostate cancer specimens were
ERG-positive (Figure 4, A and B). Total TNIK expression
(cytoplasmic) was high in prostate cancer cases irrespective of
ERG-status (Figure 4B). However, there was a significant positive
correlation between ERG-positivity and nuclear expression of TNIK
(pS764), with only 13% (4/30) of ERG-negative prostate cancers
expressing nuclear TNIK (pS764) compared to 53% (16/30) of
ERG-positive prostate cancers (Figure 4C, P = .02, χ2 test).

In colorectal cancer cells, TNIK binds directly to β-catenin and the
TCF4 transcription factor, via its intermediate and kinase domain
respectively, phosphorylates TCF4 at S154 in the nucleus, and
thereby promotes transcription of Wnt signaling target genes [17,18].
Phosphorylation of TNIK at S764 in the intermediate domain is a
β-catenin-dependent event and S764-phosphorylated TNIK
co-localizes in the nucleus with TCF4, indicating that it is positively
associated with β-catenin-induced transcription [18]. This highlights
a positive feedback circuit whereby β-catenin promotes TNIK
activation, which then further promotes β-catenin-regulated tran-
scription. These findings raised the possibility that TNIK may
contribute to the known positive regulation of Wnt signaling in
prostate cancer by ERG [19]. The role of TNIK in mediating TCF
transcriptional activity in prostate cancer was determined using
primary cells derived from a patient-derived xenograft (PDX) of
CRPC with the TMPRSS2:ERG fusion. The PDX was positive for
ERG, TNIK and TNIK (pS764), with TNIK phosphorylated at
S764 localizing mainly in the nucleus (Figure 5A). Cells derived from
this PDX maintained ERG and TNIK expression as confirmed by
Western blotting (Figure 5B). Silencing of ERG using siRNA resulted
in reduced TNIK and TNIK (pS764) expression, indicating that
ERG is required for TNIK expression and phosphorylation in these
cells (Figure 5B). As expected, β-catenin knockdown in these cells
markedly reduced TCF reporter activity, however, knockdown of
TNIK expression had no significant effect. The change in TCF
activity upon β-catenin knockdown was not due to differential cell
viability between conditions (Figure 5C). Of note, the ERG-positive
PDX cells used in our study harbor a β-catenin S45F mutation that
prevents its phosphorylation by GSK3β and subsequent degradation.
In the colon epithelial cell line Ls174T, which also harbors a
stabilizing mutation in β-catenin, silencing of TNIK expression
reduced TCF activity [17]. Therefore, the lack of effect of TNIK
knockdown on TCF reporter activity in our PDX cells either reflects
the specific β-catenin mutation present, or the different cellular



Figure 5. Lack of a role for TNIK in Wnt signaling in prostate cancer. (A) Expression of ERG, TNIK and TNIK (pS764) in PDX tissues. H&E, ERG,
TNIK, and TNIK (pS764) staining of PDX tissue. (B)Requirement of ERG for TNIK expression and phosphorylation. ERGexpressionwas knocked
down in PDX cells using siRNAs, with siOTP as the non-targeting control. Cells were harvested 72 h post transfection and immunoblotted with
the indicated antibodies. (C) TCF reporter assays. TNIK and β-catenin expression were knocked down in PDX cells stably expressing the 7xTCF
lentiviral vector and luciferase activity and viabilitymeasured. Error bars indicate SEM, n=5. Unpaired t-test, ****P b .0001 (D) and (E) Effect of
TNIK knockdown on expression of known Wnt pathway target genes in PDX and VCaP cells, respectively. Real-time PCR comparing TNIK
knockdown to the non-targeting control (siOTP) was performed on a panel of 84 Wnt signaling target genes. Volcano plot with a 2-fold cut-off
implemented and indicated by the dotted line. Bold vertical central line indicates no change in gene expression. Horizontal bold line indicates P
value of 0.05, n = 3. (F) TNIK knockdown does not affect AKT activation. TNIK expression was knocked down in PDX cells using siRNAs. Cells
were harvested 72 h post transfection and immunoblotted with the indicated antibodies.
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context. To interrogate this issue further, we determined how
reducing TNIK expression impacted the gene expression of 84 Wnt
signaling targets in either our PDX model, or in VCaP cells, where no
Figure 6. Functional characterization of TNIK in ERG-positive PDX cells.
puro vector control were immunoblotted with the indicated antibodies.
with stable TNIK knockdown were grown for 11–13 days before being
Unpaired t-test, **P b .01. (C) PDX cells were treated with 0–10 μMNC
the indicated antibodies. (D)NCB-0846 reduces cell viability. Cells were
1). Cell viability was measured at days 1, 3 and 5. Error bars indicate SE
colony formation. Cells were treatedwith NCB-0846 24 h after seeding.
crystal violet. Error bars indicate SEM, n = 4. Unpaired t-test, ****P b .
size in soft agar. Cells seeded in soft agarwere treatedwithNCB-0846 fo
n = 9. Unpaired t-test. **P b .01, ****P b .0001.
mutations in β-catenin have been reported (CCLE database). In the
PDX cells, only 4 genes were up- or downregulated by more than
2-fold upon TNIK knockdown, and these did not reach statistical
(A)Cells with stable TNIK knockdown (shTNIK-A and -B) or the pLKO.
(B) TNIK knockdown reduces colony formation. Colonies from cells
fixed and stained with crystal violet. Error bars indicate SEM, n = 9.
B-0846 for 24 h before harvesting. Lysates were immunoblotted with
seeded into 96well plates and treatedwith NCB-0846 24 h later (day
M, n = 3. Unpaired t-test, *P b .05, **P b .01. (E) NCB-0846 reduces
Colonieswere grown for 12 days before being fixed and stainedwith
0001 (F) TNIK inhibition by NCB-0846 reduces colony formation and
r 4weeks before stainingwith crystal violet. Error bars indicate SEM,
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significance (Figure 5D). Moreover, in VCaP cells, 10 genes were
either up- or downregulated by more than 2-fold upon TNIK
knockdown, and of these, only the elevated levels of FGF7 reached
statistical significance (Figure 5E). Since overexpression of fibroblast
growth factor 7 (FGF7) in normal prostate epithelial cells promotes
cell proliferation and migration [20], the biological relevance of this
finding is unclear. Of note, in contrast to the minimal impact of
TNIK silencing observed in this study, ERG knockdown in VCaP
cells markedly reduces expression of Wnt pathway genes [19]. Taken
together, these data indicate that while ERG promotes Wnt signaling
in prostate cancer, TNIK is either not required for Wnt pathway
activation in this malignancy or the requirement is dependent on the
genetic background of the prostate cancer cells.
Our finding that TNIK knockdown does not impact Wnt pathway

activation in the prostate cancer models tested is consistent with the
work of Yu et al [21], who found that TNIK amplification in gastric
cancer was not associated with β-catenin nuclear localization, and that
TNIK knockdown in TNIK-amplified cells did not affect expression of
Wnt pathway genes. Instead, through TNIK inhibition and knock-
down studies, they determined that TNIK impacted the AKT and
autophagy pathways [21]. The possibility that TNIK regulates
additional pathways is also supported by the work of other groups,
who have demonstrated that TNIK positively regulates the JNK
pathway [22,23]. However, TNIK knockdown in our PDX cells did
not affect AKT S473 phosphorylation, and JNK phosphorylation was
undetectable in these cells (Figure 5F and data not shown).
Consequently, further work is required to delineate the signaling
mechanism of TNIK in prostate cancer.
The biological role of TNIK in ERG-positive prostate cancers was

interrogated in ERG-positive PDX cells. To characterize the
functional role of TNIK, we generated stable knockdown pools
using two independent shRNAs targeting TNIK (Figure 6A).
Reducing TNIK expression led to a significant decrease in colony
formation (Figure 6B). The functional role of TNIK was also
characterized using the small molecule TNIK inhibitor NCB-0846
[24]. NCB-0846 robustly decreased both TNIK and TNIK (pS764)
levels after 24 h of treatment (Figure 6C). This reduction in TNIK
expression by NCB-0846 was also reported by Masuda et al [24].
Inhibition of TNIK by NCB-0846 significantly decreased cell
viability and colony formation in 2D (Figure 6, D and E).
Furthermore, treatment of cells with NCB-0846 also significantly
reduced anchorage-independent growth in soft agar, leading to fewer
and smaller colonies (Figure 6F). Therefore, these data identify TNIK
as a potential therapeutic target in ERG-positive CRPC.
In prostate cancer cells, ERG overexpression increases levels of

Wnt-16, LRP6, β-catenin and LEF1 and GSK3β phosphorylation,
promotes expression of Wnt signaling target genes including c-Myc and
Cycl in D, and enhances prol i ferat ion, invas ion and
epithelial-mesenchymal transition (EMT) through LEF1 [19,25].
While our data do not support a role for TNIK in Wnt pathway
activation in prostate cancer, we did identify several kinases that may
contribute to the known role of ERG in regulating this pathway [19].
CSNK1D phosphorylates AXIN and APC, thus contributing to the
negative regulation of β-catenin. Interestingly, in our screen, an increase
in the phosphorylation of S328 and S331 on CSNK1D was detected
(Figures 1 and 2), and these phosphorylation events all act to reduce the
activity of CSNK1D [26]. In addition, we identified ERG-mediated
upregulation of PKCα expression, and this kinase phosphorylates and
negatively regulates CSNK1D (S328) in vitro [26]. Moreover, MARK2
and MARK3 also exhibited ERG-mediated multisite phosphorylation.
While these kinases function in cytoskeletal modeling, they also
phosphorylate Dvl, resulting in activation of the Wnt signaling pathway
[27]. Taken together, our screen has identified multiple kinases that may
be working in unison to activate the Wnt signaling pathway in an
ERG-dependent manner.

High expression of TNIK is associated with poor prognosis in
pancreatic and colorectal cancer [28,29]. In addition, hepatocellular
carcinoma patients positive for nuclear TNIK (pS764) staining
exhibit a greater tendency for metastasis and a decrease in disease free
and overall survival [30]. Thus, it will be interesting to determine
whether TNIK (pS764) nuclear expression represents a novel
biomarker to identify prostate cancer patients with poorer outcomes.
Our study is the first to identify a role for TNIK in prostate cancer
and its potential as a therapeutic target for ERG-positive prostate
cancers. While both small molecule and peptidomimetic ERG
antagonists have recently been reported, TNIK kinase inhibitors are
also in pre-clinical development and have demonstrated activity
against Wnt signaling and cancer cell EMT in vitro, and tumor
growth and cancer stem cell activity in colon cancer xenograft models
[24,31–33]. Therefore, future treatments that selectively inhibit ERG
function, TNIK activity or both in combination may lead to
improved personalized treatment of patients with ERG-positive
prostate cancer.
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