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Abstract
Heterogeneous populationswithin a tumor have varyingmetabolic profiles, which canmuddle the interpretation of
bulk tumor imaging studies of treatment response. Although methods to study tumor metabolism at the cellular
level are emerging, these methods provide a single time point “snapshot” of tumor metabolism and require a
significant time and animal burden while failing to capture the longitudinal metabolic response of a single tumor to
treatment. Here, we investigated a novel method for longitudinal, single-cell tracking of metabolism across
heterogeneous tumor cell populations using optical metabolic imaging (OMI), which measures autofluorescence
of metabolic coenzymes as a report of metabolic activity. We also investigated whether in vivo cellular metabolic
heterogeneity can be accurately captured using tumor-derived three-dimensional organoids in a genetically
engineered mouse model of breast cancer. OMI measurements of response to paclitaxel and the
phosphatidylinositol-3-kinase inhibitor XL147 in tumors and organoids taken at single cell resolution revealed
parallel shifts in metaboltruic heterogeneity. Interestingly, these previously unappreciated heterogeneous
metabolic responses in tumors and organoids could not be attributed to tumor cell fate or varying leukocyte
content within the microenvironment, suggesting that heightened metabolic heterogeneity upon treatment is
largely due to heterogeneousmetabolic shifts within tumor cells. Together, these studies show that OMI revealed
remarkable heterogeneity in response to treatment, which could provide a novel approach to predict the presence
licenses/by-nc-nd/4.0/).
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of potentially unresponsive tumor cell subpopulations lurking within a largely responsive bulk tumor population,
which might otherwise be overlooked by traditional measurements.

Neoplasia (2019) 21, 615–11
Introduction
There is accumulating evidence that tumor cell populations are
heterogeneous, enabling heterogeneous responses to treatments that
may either enhance or inhibit treatment sensitivity [1–4]. Minority
populations of tumor cells with innate treatment resistance have been
identified, such as CD24+ breast cancer cells, which exhibit resistance
to certain chemotherapies [5,6]. The presence of minority tumor cell
subpopulations with innate resistance to treatment can ultimately
result in tumor recurrence, even under circumstances when the
original tumor, comprised mainly of treatment sensitive cells,
responds to treatment. Clinicians lack the tools necessary to assess
this heterogeneity and to recommend optimal treatment plans for
each individual patient. It is also difficult to study the process by
which tumors evolve to obtain variability in cellular treatment
sensitivity. Current techniques to perform high-throughput in vivo
drug screens and assess heterogeneity are destructive to the cells and
require enormous animal burden. These limitations not only hinder
our understanding of the mechanisms behind tumor heterogeneity
and recurrence, but also obstruct the discovery of novel drugs and
drug combinations that combat the emergence of therapy-resistant
subpopulations of cells. To address these problems, a platform is
needed that faithfully recapitulates and quantifies in vivo cellular
heterogeneity in vitro.

Next-generation single-cell sequencing can be used to characterize
genetic diversity by identifying mutant subclones [7–11], and the
number of subclonal driver mutations has predictive value for a
patient's overall survival [12]. However, the predictive ability of single
cell sequencing in the clinical setting relies on genetic mutations that
are already known. Therefore, the remarkable advances provided by
single-cell sequencing still cannot provide a true predictive analysis of
treatment-resistance tumor cell subpopulations that may lurk within a
larger tumor cell population. Further, the sensitivity of a cell to a
specific drug is a complex combination of both genetic and
nongenetic factors, including cellular metabolism [13,14]. To fuel
aberrant proliferation rates, cancer cells reprogram their metabolic
machinery to incorporate nutrients into required pathways even in
the absence of growth factor signals [15,16]. However, not all cells in
a tumor alter their metabolism in the same manner. In response to
unique levels of oxygen, glucose, pH, cytokines, and extracellular
matrix proteins in their microenvironment, individual cells adapt
appropriately to maximize their survival [14,17]. These mechanisms
of adaptation also affect cell resistance to cytotoxic drugs and
immunotherapies [18,19], resulting in subpopulations of tumor cells
with differing sensitivities to treatment. This highlights the need for a
functional readout of heterogeneity that is based on cell metabolism.

Given the limitations of genetic testing on predicting treatment
response, alternative approaches which directly measure drug response in
tumor cells are under investigation. For example, testing treatment
response in mouse patient-derived xenograft models captures in vivo
genetic heterogeneity and can be used to predict patient response tomany
therapies [20]. However, patient-derived xenografts require enormous
numbers of animals for high-throughput drug screening and cannot be
performed in a clinically beneficial time frame. Alternatively, in vitro
cancer organoids can be used to screen drugs directly on patient cells,
alleviating the burdens of time, animals, and cost [21]. Organoids
maintain the genetic, histopathological, and 3-dimensional characteris-
tics, along with the functional surface markers of the original tumor for a
variety of cancer types [22–25]. Additionally, organoids contain stromal
cells that can facilitate therapeutic resistance [26].Many organoids can be
cultured from a single patient biopsy, supporting the feasibility of
screening patient-derived tumor organoids for sensitivity to a variety of
treatments.

Optical metabolic imaging (OMI) is a label-free two-photon
microscopy technique that quantifies single-cell metabolic changes
with treatment both in tumors in vivo [27] and in tumor-derived
organoids [28]. OMI uses the endogenous fluorescent properties of
metabolic coenzymes NAD(P)H and FAD. The optical redox ratio,
or the ratio of the fluorescence intensity of NAD(P)H to that of FAD,
reflects the redox state of the cell [29–31]. The fluorescence lifetimes
of NAD(P)H and FAD are distinct for the free and protein-bound
conformations of both molecules and thus reflect enzyme binding
[32–34]. These OMI variables, integrated to form a composite OMI
index, reflect early metabolic shifts and thus can evaluate drug
response prior to changes in cell viability or tumor size [21,35,36].
The nondestructive nature of this technique allows heterogeneity to
be tracked in organoids over time to analyze the potential for drug
resistance evolution in the original tumor. This is not possible with
other methods for measuring heterogeneity (e.g., flow cytometry,
single-cell sequencing, or immunolabeling) because these standard
methods are destructive.

OMI of cancer organoids has been validated as an accurate
predictor of in vivo drug response in xenograft models generated from
human breast cancer and head and neck cancer cell lines [21,35] and a
mouse model of pancreatic cancer [36], but it is unclear whether the
heterogeneity measured in organoids also accurately mirrors the
original tumor. Here, we investigate whether in vivo heterogeneity is
reflected in vitro in organoids using OMI measurements in vivo and
in organoids derived from the polyomavirus middle T (PyVmT)
mouse model. The PyVmT model closely mimics the stages and
progression of human breast cancer, exhibits more heterogeneity than
human cell line xenografts, and can develop in a fully immunocom-
petent mouse [37]. This study demonstrates that OMI of in vitro
tumor organoids accurately captures in vivo heterogeneous response
to treatment at the single-cell level in a relevant breast cancer model.

Materials and Methods

Orthotopic PyVmT Tumors

Animal research was approved by the Institutional Animal Care
and Use Committees at Vanderbilt University and the University of
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Wisconsin-Madison. Orthotopic tumors were initially generated by
injecting 106 PyVmT cells suspended in 100 μl of a chilled 1:1
mixture of DMEM (Gibco #11965) and Matrigel (Corning
#354234) into the fourth inguinal mammary fat pads of 6-week-old
FVB female mice (The Jackson Laboratory #001800) using a
26-gauge needle. The PyVmT cell line was derived from tumors
isolated from transgenic FVB MMTV-PyVmT mice (The Jackson
Laboratory #002374). Tumors were passaged by mechanically
dissociating an existing tumor, passing the tumor cell suspension
through a 70 μm strainer, and injecting the cells into a new
6-week-old FVB mouse.

FDG-PET/CT Imaging
Mice were randomized and imaged prior to treatment (when

tumors grew to N200 mm3) and then imaged weekly over a 14-day
time course at the University of Wisconsin Small Animal Imaging and
Radiotherapy Facility by trained staff (J.J.J., J.T.S.). 10 mg/kg
paclitaxel (Vanderbilt University pharmacy/University of Wisconsin
pharmacy) was diluted in 150 μl PBS and injected intraperitoneally
twice weekly. 50 mg/kg XL147 (Selleckchem) was suspended in
100 μl 1% DMSO and delivered by oral gavage daily. Control mice
received 100 μl 1% DMSO by oral gavage daily and 150 μl PBS by
intraperitoneal injection twice weekly. Prior to PET/CT imaging,
mice were fasted for 12 hours. One hour prior to imaging,
~9.25 MBq of [18F]FDG was delivered by tail vein injection, and
mice were immediately anesthetized under 4% isoflurane, maintained
at 1.5%, and warmed with a heated bed until the end of the imaging
procedure. The mice were scanned using an Inveon microPET/CT
(Siemens Medical Solutions, Knoxville, TN) in the prone position.
Forty-million counts per mouse were collected for the PET scan to
obtain adequate signal-to-noise. PET data were histogrammed into
one static frame and subsequently reconstructed using ordered-subset
expectation maximization of three dimensions followed by the
maximum a posteriori algorithm, and CT attenuation and scatter
correction were applied based on the NEMA NU 4 image-quality
parameters [38]. Inveon Research Workplace software (Siemens
Medical Solution, Knoxville, TN) was used to measure tumor volume
and glucose uptake. PET and CT images were co-registered, and
manual regions of interest (ROIs) were drawn around each tumor.
FDG uptake was measured as the decay-corrected percent injected
dose normalized by the mass of the tissue (%ID/gtissue) assuming the
density of the ROI tissue is equal to water. Five tumors from five mice
were imaged per treatment group.

Fluorescence Lifetime Imaging
A custom multiphoton fluorescence lifetime system (Bruker

Fluorescence Microscopy) was used to acquire fluorescence images.
A titanium:sapphire laser (Chameleon Ultra II, Coherent) was used
for excitation, while GaAsP photomultiplier tubes (H7422P-40,
Hamamatsu) were used to detect emission photons. A 40x water
immersion objective (Nikon, 1.15 NA) was used with an inverted
microscope (Nikon, TiE). Two-photon excitation of NAD(P)H and
FAD was performed with 750 nm and 890 nm light, respectively. A
440/80 nm filter was used to isolate NAD(P)H fluorescence
emission, and a 550/100 nm filter was used for FAD fluorescence
emission. 256×256 pixel images were acquired using a pixel dwell
time of 4.8 microseconds and a 60-second collection time.
Time-correlated single photon counting electronics (SPC-150,
Becker & Hickl) were used to acquire fluorescence lifetime data
with 256 time bins. A single Fluoresbrite YG microsphere
(Polysciences) was imaged each day as a fluorescence lifetime
standard. The measured lifetime (2.15 ± 0.08 ns, n = 7) was stable
and consistent with previously published values [27,33,35,39,40].
For each field of view, an NAD(P)H image was acquired first followed
immediately by an FAD image.

Intravital OMI
Treatment was initiated when tumors reached N200 mm3.

Forty-eight hours after initial treatment, and 1 hour following final
treatment, mice were anesthetized using isoflurane, and a small
portion of skin was removed to expose the underlying tumor. OMI
was performed on at least four fields of view and at least 450 total cells
per tumor. Following imaging, mice were euthanized while under
anesthesia, and tumors were extracted and fixed. Five tumors from
five different mice were imaged per treatment group.

Tissue Processing and Organoid Culture
Excised tumors were rinsed in PBS and thoroughly minced in

DMEM with dissecting scissors. The resulting cell macrosuspension
was chilled on ice and mixed with Matrigel at a 1:2 ratio, and 100 μl
of the resulting mixture was pipetted into 35 mm glass-bottom dishes
(#P35G-1.5-14-C, MatTek). Gels were allowed to solidify slowly at
room temperature for 30 minutes and then placed in a 37°C, 5%
CO2 incubator for 1 hour before being overlaid with DMEM
supplemented with 10% FBS and 1% penicillin-streptomycin
(Gibco).

Organoid Imaging
Twenty-four hours prior to imaging, organoid media was replaced

with fresh media containing 500 nM paclitaxel, 25 nM XL147, or
0.1% DMSO vehicle. These doses were chosen to replicate in vivo
doses [21]. Organoids were imaged after 24, 48, and 72 hours of
treatment. At least six organoids from each treatment group were
imaged at each time point, containing at least 290 cells in total for
each treatment group. The length of the longest dimension in each
organoid was quantified using ImageJ [41].

OMI Endpoint Images
The optical redox ratio was computed from NAD(P)H and FAD

lifetime images. First, the fluorescence intensities of NAD(P)H and
FAD are determined by the total number of photons detected over
the collection time. Then, the intensity of NAD(P)H is divided by
the intensity of FAD in each pixel. SPCImage software was used to
analyze fluorescence lifetime images (Becker & Hickl) [42]. First,
fluorescence decay curves for NAD(P)H and FAD are generated for
each pixel by assigning all photon events into 256 temporal bins.
Detected photons from the eight neighboring pixels are also included
in each curve to increase photon counts. This decay curve is
deconvolved with the measured instrument response function and fit
with a two-component exponential decay Eq. (1).

I tð Þ ¼ α1 exp−t=τ1 þ α2 exp−t=τ2 þ C ð1Þ
I(t) represents the fluorescence intensity measured at time t following
a laser pulse; α1 and α2 represent the percentage of the overall signal
made up by the short and long lifetime components, respectively; τ1
and τ2 are the short and long lifetime components, respectively; and
C represents background light. The use of a two-component fit was
chosen in order to differentiate the free (τ1) and bound (τ2) states of
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NAD(P)H and the free (τ2) and bound (τ1) states of FAD [32,43].
The mean lifetime (τm) of NAD(P)H and FAD for each pixel is the
weighted average of the free and bound lifetimes Eq. (2).

τm ¼ α1 � τ1 þ α2 � τ2 ð2Þ
A CellProfiler routine was written to automatically distinguish

between individual cell cytoplasms and the nuclei they encircle
[44,45]. For each cytoplasm detected, values for the redox ratio and
all NAD(P)H and FAD lifetime variables were calculated by averaging
the incorporated pixels within the cytoplasm.

OMI Index
The redox ratio, NAD(P)H τm, and FAD τm were normalized to

average values in control cells for the OMI index calculation. In vivo,
values are normalized to averages of all cells imaged in all control mice
on the same day. In vitro, values are normalized to averages of all cells
from all control organoids imaged on the same day. In both cases, the
OMI index is calculated for each cell using a linear combination of the
control-normalized redox ratio, NAD(P)H τm, and FAD τm with
coefficients of (1, 1, −1), respectively. A decrease in OMI index
correlates with drug sensitivity [21].

Heterogeneity Analysis
Histograms were generated for all cells within a group using

individual cell OMI indices. The histogram is fit to Gaussian mixture
distribution models containing one, two, or three components using
an iterative expectation maximization algorithm. Each component
represents a distinct subpopulation of cells. Goodness of fit for each
model was evaluated using the Akaike information criterion [46], and
only the model with best fit was implemented. For each group, this
process is repeated 1000 times. For visual comparison, example
distributions are normalized to have equal areas under the curve.
Similar numbers of cells were imaged in each tumor and in each
organoid treatment group to provide similar power to identify
subpopulations in each distribution [47]. The heterogeneity index is a
validated metric for quantifying heterogeneity in a population
[27,48]. Here we present a modified version, the weighted
heterogeneity index (wH-index), which also takes into account the
standard deviations of all subpopulations.

wH‐index ¼
X

1−pi ln pi þ 1ð Þð Þ � σ i þ diÞð ð3Þ

Here, i represents each subpopulation, d represents the distance
between the median of each subpopulation and the median of the
entire distribution, p represents the proportion of all cells belonging
to that subpopulation, and σ is the standard deviation.

Histological Analysis
Immediately following in vivo tumor imaging at 48 hours of

treatment, tumors were collected and fixed in 10% neutral buffered
formalin for 48 hours. Tumors were oriented and paraffin embedded
such that 5 μm slices were taken from the imaged portion of the
tumor. Also immediately following imaging at 72 hours of treatment,
Matrigel droplets containing organoids were detached from glass
coverslips and encased in agarose. These agarose gels were placed in
10% neutral buffered formalin for 48 hours, paraffin embedded, and
sliced into 5 μm sections starting from the center. Organoid histology
experiments were duplicated and results were combined. Tumors and
organoid sections were stained using immunohistochemistry (IHC)
for CD45 (ab10558, Abcam, 32 minutes), vimentin (ab92547,
Abcam, 32 minutes), alpha smooth muscle actin (αSMA) (ab5694,
Abcam, 32 minutes), wide-spectrum cytokeratin (ab9377, Abcam,
28 minutes), polyoma virus middle T antigen (sc-53,481, SantaCruz,
60 minutes), Ki67 (ab15580, Abcam, 28 minutes), cleaved caspase 3
(9661, Cell Signaling, 28 minutes), phospho-histone H3 (9701, Cell
Signaling, 16 minutes), and phospho-PRAS40 (2997, Cell Signaling,
12 minutes). Positive staining was visualized with diaminobenzidine
(DAB) and counterstained with hematoxylin.

Histology Imaging and Quantification
Multispectral image cubes were acquired using a Nuance

multispectral imaging microscope and software (Perkin Elmer)
[49]. Images of transmitted light were taken from 420 nm to
720 nm with 20-nm steps and converted to optical densities using a
blank reference image. Image cubes were unmixed using a spectral
library to isolate individual stains and exclude background signals.
Individual cells (stained with DAB and counterstained with
hematoxylin) in tumor and organoid images were automatically
segmented using inForm Cell Analysis software (Perkin Elmer). In
organoid images, machine learning was used to train a
feature-recognition algorithm to automatically recognize and distin-
guish between individual cellular organoids, extracellular matrix, and
background regions. For each stain, a random selection of 10% of all
images was used as a training set. Organoid, background, and
extracellular matrix regions were manually defined in this set, which
was then used to train a segmentation algorithm until it had N92%
accuracy. Finally, this algorithm was used to segment all images. For
tumors, algorithms were similarly trained to distinguish between
tumor and stromal compartments. Next, individual cells were
automatically segmented by thresholding the intensity of the nuclear
hematoxylin counterstain. Only cells in tumor or organoid
compartments were quantified. Individual cells were scored as
positive or negative for a particular target antibody by thresholding
for the mean pixel intensity of DAB within each cell. At least four
random fields of view were acquired per stain per tumor, for a total of
at least 23 images per stain per treatment group. Organoids
containing less than five cells were rejected from analysis, and at
least 35 organoids were quantified per stain per treatment group.

Statistical Analysis
Normalized tumor volumes and glucose uptake values were

compared using a Student t‐test with Bonferroni correction for
multiple comparisons. Significant differences in OMI variables,
wH-indices, IHC percentages, and organoid longest dimensions
between treatment groups were tested using a Wilcoxon rank-sum
test. Treatment effect size was calculated with Glass's Δ [50], with
directionality determined by the response of HER2+ cell line
xenografts to trastuzumab [21]. Preliminary data from our group
show that an OMI index treatment effect size threshold of 0.75 in
tumor-derived organoids accurately classified pancreatic cancer
patients based on their recurrence-free survival time during adjuvant
therapy [51]. This is similar to a previously suggested cutoff of 0.8 for
large effect sizes [52].

Results

PET/CT of In Vivo Treatment Response
Response to treatment with paclitaxel and XL147 was measured in

orthotopic PyVmT allograft tumors and tumor organoids. Paclitaxel
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is an FDA-approved chemotherapy for breast cancer that has been
shown to reduce tumor growth rates in orthotopic PyVmT tumors
[53]. XL147, an inhibitor of the phosphatidylinositol-3 kinase family
(PI3K), was also chosen due to the dependence of the PyVmT model
on PI3K activity [54–56] and for its use in clinical trials for breast
cancer. To verify response to treatment, FDG-PET measurements
were taken of tumors treated with paclitaxel, XL147, and
combination (P + X) over 14 days (Figure 1). Subsequent CT
measurements were also taken in order to better visualize the tumor in
the mammary fat pad and distinguish tumor-associated signal from
background (Figure 1A). While XL147 alone and paclitaxel alone did
not affect tumor growth after 2 weeks, the combination of both drugs
significantly decreased tumor growth vs. vehicle (P b .05, Figure 1B).
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OMI index compared with vehicle controls (P b .0001, Figure 2C).
Histograms of cell OMI indices were fit to Gaussian mixture
distribution models (Figure 2D, plotted separately in Supplementary
Figure S2). Vehicle-treated tumors exhibited higher degrees of
variance in their single-cell OMI index distributions compared to
P + X treated tumors. The smallest subpopulation detected in tumors
represented 29.0% of the overall population (vehicle). The degree of
heterogeneity in each tumor is quantified using a modified form of
the heterogeneity index [27,48] with an additional term added for the
standard deviation of each individual subpopulation (wH-index).
P + X treatment was found to significantly decrease the in vivo
wH-index vs. vehicle (P b .05, Figure 2E).
OMI of Cellular Metabolic Heterogeneity in Organoids
Next, responses to the same therapies were measured in PyVmT

tumor-derived organoids to determine if organoid heterogeneity is similar
to PyVmT tumors in vivo. Representative images demonstrate the size
and morphology of the organoids and the OMI endpoint spatial
distributions (Figure 3A). Single therapies were tested in parallel to P + X
combined therapy, and OMI index was calculated at the single-cell level
after 24, 48, and 72 hours of treatment. Organoids treated with P + X
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of spatial variance compared toNAD(P)H, which is present throughout
the mitochondria and cytoplasm. Thus, FAD intensity values for
individual cells can vary depending on how many mitochondria are
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concentration. This is evident in the lower CV values for FAD lifetime
variables.

Comparison of Drug Treatment Effect Sizes on OMI Variables
The effect size of drug treatment on individual OMI variables was

calculated for all cells in tumors and organoids using Glass's Δ [50]
(Figure 4). P + X treatment had large effects (Δ N 0.75) on the redox
ratio and OMI index at 24, 48, and 72 hours in organoids (Figure 4,
A-C) and in tumors at 48 hours (Figure 4D). P + X did not have a
large effect on individual lifetime variables, except at 48 hours in
tumor-derived organoids. XL147 alone also had a large effect on the
OMI index and redox ratio at all time points in organoids. Paclitaxel
alone had a large effect on the redox ratio at only 24 hours in
organoids, and did not have a large effect on OMI index at any time
point. The correlation between Glass's Δ values with P + X treatment
in vivo at 48 hours versus organoids at 24, 48, and 72 hours was
significant at all time points (P b .05, Pearson's correlation),
indicating that changes in OMI variables with P + X treatment in
organoids faithfully mirror in vivo changes.

Characterization of Cell Types in PyVmT Tumors and
Organoids

Histology of PyVmT tumors and organoids was performed to
determine if the distinct cell subpopulations measured in Figures 2
and 3 were comprised of different cell types, cells undergoing
apoptosis or proliferation, or cells simply employing unique metabolic
strategies. Expression of vimentin and αSMA and loss of wide
spectrum cytokeratin expression in all tumors and organoids indicate
that cells had undergone epithelial to mesenchymal transition prior to
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Quantification of Potential Sources of Heterogeneity in
PyVmT Tumors and Organoids

Machine learning algorithms were trained using inForm software
to distinguish between individual cellular organoids in histology
images, and to identify cells and quantify expression both in
organoids and in vivo. The expression of Ki67 and phospho–histone
H3 (pHH3), two proliferation markers, was quantified along with
cleaved caspase 3 (CC3), a marker of apoptosis. Ki67 is expressed in
the S, G2, and M phases of the cell cycle, while pHH3 is specific to
cells in M phase [57]. The percentage of cells expressing Ki67 was
similar between tumors and organoids and did not change after
48 hours of treatment in either setting (Figure 6A). Likewise, the
percentage of cells in apoptosis was similar between tumors and
organoids (both b20%) and did not change after 48 hours of
treatment in either setting (Figure 6B and Supplementary Figure
S6A). pHH3 was expressed in significantly fewer cells in tumors and
organoids compared to Ki67 (Figure 6C and Supplementary Figure
S6B). Significantly fewer of these cells in M-phase were found in
P + X treated tumors compared to vehicle controls (P b .05), but
treatment did not significantly change the number of M-phase cells in
organoids. Small subpopulations of CD45+ leukocytes were present
in both tumors and organoids (Figure 6D and Supplementary Figure
S6C). A smaller percentage of CD45+ leukocytes were present in
organoids compared to the original tumors, and fewer were present in
P + X treated organoids compared to vehicle (P b .05). A majority of
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cells in organoids and tumors were positive for αSMA (Figure 6E and
Supplementary Figure S6D). The percentage of αSMA+ cells was not
significantly different between organoids and tumors and did not
significantly change with treatment in either setting. The variance of
positive staining of all markers across all fields of view (FOVs) and
organoids was not affected by treatment. Overall, these cell fates and
cell types are unlikely to be responsible for the decrease in OMI index
and its heterogeneity with P + X treatment because none of the
positive percentages of these markers significantly changed with
treatment in both tumors and organoids.

Discussion
To optimize a treatment plan for an individual cancer patient, a
clinician must understand how various drug options will affect all the
cells in a patient's uniquely heterogeneous tumor. While recent
technological advances have improved our fundamental understand-
ing of intratumoral heterogeneity, we still lack tools for cancer
treatment planning that incorporate distinct metabolic subpopula-
tions. Cancer organoids allow for rapid, high-throughput drug
screening directly on tumor cells in a relevant three-dimensional
microenvironment [21,23,35,36,58]. Current methods for evaluating
drug response in organoids either damage the sample, overlook
cellular heterogeneity, or do not directly screen drugs on
patient-derived cells. To address these limitations, we have developed
OMI to noninvasively quantify metabolic heterogeneity within living
organoids using the fluorescent properties of metabolic coenzymes
NAD(P)H and FAD [21,35]. OMI detects minority metabolic
subpopulations of drug-resistant cells within organoids, and this
information can predict long-term tumor drug response. These
capabilities have been confirmed in breast [21,47] and head and neck
[35] cell line xenografts and in a pancreatic cancer mouse model [36].
However, cell line tumors in immunocompromised mice do not
capture the cellular heterogeneity of primary human tumors, and it
remains unclear whether metabolic heterogeneity in primary
tumor-derived organoids mirrors the heterogeneity of the original
tumor. In this study, OMI was used to compare subpopulations of
cell metabolism in tumors and tumor-derived organoids of the
immunocompetent PyVmT breast cancer model. We confirm that
organoids accurately capture in vivo metabolic heterogeneity,
demonstrating the feasibility of using organoids to study tumor
response to treatment.
CT images confirmed that P + X treatment reduced PyVmT

tumor volume in vivo over 14 days in immunocompetent allografts
(Figure 1). Tumor volume did not change over the first week of
treatment, and FDG uptake did not change with therapy over 2
weeks. However, OMI was sensitive to metabolic treatment response
in only 48 hours (Figure 2). This highlights the enhanced sensitivity
of OMI to early metabolic changes compared to traditional methods
of measuring treatment response, in agreement with previous reports
in immunocompromised xenografts [27].
Intravital OMI was performed in mice treated with vehicle or

P + X for 48 hours (Figure 2). Variation in mean OMI index
between P + X treated tumors may be due to slight variations in
tumor sizes and vascularization, and/or variations in drug absorption,
especially for the final dose that was given 1 hour prior to imaging.
The degree of heterogeneity within each tumor was characterized by
the wH-index. P + X treated tumors exhibited a significantly lower
degree of heterogeneity compared to control tumors (P b .05),
further suggesting that this treatment combination could be
beneficial. OMI was also used to measure response to P + X in
PyVmT tumor-derived organoids (Figure 3). Paclitaxel and XL147
single therapies were also screened with low additional effort and cost,
underlining the high-throughput nature of organoid versus animal
drug screens. Additionally, due to the noninvasive nature of OMI,
measurement of response was performed at 24, 48, and 72 hours in
the same set of organoids.

OMI measurements at 72 hours in organoids, of all the time points
acquired, most accurately replicated in vivo heterogeneity. This agrees
with previous reports that early metabolic drug response at 72 hours
in organoids predicts long-term in vivo tumor drug response [21].
The wH-index is low for control organoids at 24 and 48 hours and
P + X treated organoids at 72 hours because the populations of cells
at these time points were best fit by only one Gaussian component,
giving d = 0 in Eq. (3). The wH-index gives significant weight to
heterogeneous distributions that are best fit by multiple Gaussians,
and thus, these single-component populations have low wH-indices.
A potential explanation for the increase in heterogeneity in
vehicle-treated organoids from 48 to 72 hours is a significant increase
in organoid size between time points (Supplementary Figure S7).
These larger organoids may have developed metabolic heterogeneity
due to gradients of drug delivery, fuel sources, and metabolic waste.
The higher degree of heterogeneity in organoids at 72 hours
posttreatment for single-agent treatments compared to P + X
treatment (Figure 3) may explain why single therapies alone did
not reduce overall tumor growth (Figure 1) despite a decrease in mean
OMI index. It is possible that only a subpopulation of the cells was
sensitive, which led to disease progression. In contrast, P + X treated
organoids exhibited a lower wH-index at 72 hours compared to
controls and single therapies (Figure 3D), which suggests that this
drug combination worked synergistically to overcome the resistance
to single-agent treatments. The higher fold change in wH-index with
P + X treatment in organoids compared to in vivo tumors may be due
to differences in efficiency of drug delivery. While drug gradients
caused by drug diffusion do exist in large organoids, this may not
completely capture the irregularity of drug diffusion throughout solid
tumors. Additionally, while drug doses in vivo and in vitro were
chosen to be as analogous as possible, differences in effective dose may
also explain why the decrease in weighted heterogeneity in organoids
at 72 hours of treatment required less time to occur in tumors
(48 hours).

Evaluating the degree of drug response heterogeneity in organoids
using the wH-index was a better predictor of long-term tumor growth
than the average response across all cells. P + X treatment also had
similar effects on individual OMI variables in tumors and organoids,
including a large effect on the optical redox ratio, and small effects on
FAD lifetime variables (Figure 4). These parallels suggest that
cellular-level drug response in tumor-derived organoids can be used to
analyze heterogeneous responses to treatment in the tumor of origin.

We next assessed potential sources of the shifts in heterogeneity
found in tumors after 48 hours of treatment and in organoids after
72 hours of treatment using IHC (Figure 5). These results indicate
that PyVmT tumors in this study progressed to a mesenchymal
phenotype at the time of imaging, closely resembling basal-like
human breast cancer [59]. Organoid cultures successfully captured
these mesenchymal properties of the original tumor (Figure 5).

Traditional IHC measures of therapeutic response (CC3, Ki67,
pHH3) were also evaluated as potential sources of metabolic
heterogeneity (Figure 6) because metabolic activities are linked to
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apoptosis and proliferation [60,61]. PyVmT tumor allografts
incorporate the host's acquired immune system, which is an
advantage over cell line xenografts grown in athymic nude mice.
Immune cells and tumor cells have distinct metabolic properties
[19,62] and thus could also contribute to OMI heterogeneity. A small
subset of CD45+ leukocytes was found in both tumors and organoids
using IHC, and P + X treatment significantly reduced the percentage
of leukocytes in organoids but not in vivo. This may be because
organoid culture conditions were not optimized to maintain mouse
leukocytes. Finally, mesenchymal transition can also affect cellular
drug response and metabolism [63], but our IHC results indicate that
this mesenchymal phenotype is nearly homogenous and consistent
with treatment, and thus not the cause of OMI index heterogeneity.

None of the markers tested changed significantly in both tumors
and organoids, indicating that apoptosis, proliferation, and the
presence of immune cells and αSMA+ cells are unlikely to be
responsible for the decreases in OMI index and its heterogeneity with
P + X treatment. These markers are likely not associated with the
high OMI index subpopulations in control organoids at 72 hours and
control tumors, which were affected by P + X treatment. Overall, we
did not identify a marker of cell type or cell fate that accounted for the
metabolic heterogeneity detected with OMI. These results suggest
that the subpopulations identified with OMI are likely due to
metabolic differences between cells. Future studies could confirm this
finding using emerging single-cell mass spectrometry on dissociated
tumors and organoids, but these techniques are still in development
[64,65]. Single-cell RNA analysis of dissociated tumors and organoids
could also support our findings but does not offer a comparable
measure to the more downstream metabolic activity of cells that OMI
provides. Similarly, fluorescent reporters can quantify metabolic
properties within single live cells that are correlated with the optical
metabolic variables reported here (e.g., glucose uptake [66], pH [67],
membrane potential [68], hypoxia [69], NADH/NAD+ redox state
[70]). Overall, comparison of OMI with IHC highlights that OMI
provides an early measure of tumor response compared to traditional
markers, consistent with previous results [35].

This study validates OMI of primary tumor-derived organoids as a
unique, powerful tool to study in vivo tumor metabolic heterogeneity.
This tool could also improve clinical treatment decisions because
minority subpopulations of treatment-resistant cells within an
otherwise responsive tumor can initiate patient recurrence [2,3,21].
These results are the first to show that in vitro organoids capture the
early metabolic changes in heterogeneity that occur in vivo with
treatment in an immunocompetent tumor. OMI of organoids
quantifies single-cell response to many drugs in a relevant
three-dimensional microenvironment, using a single tissue sample,
and can be performed longitudinally to track the evolution of
heterogeneity over time. This technology could provide a personal-
ized medicine platform to perform high-throughput screening of
drugs directly on patient cells, and detect metabolic heterogeneity.
This would allow clinicians to quickly analyze cellular heterogeneity
in response to numerous treatment options for an individual patient
to more robustly inform on treatment decisions. Additionally, this
technique could reduce the animals and time required to develop new
therapeutic strategies that overcome tumor heterogeneity and achieve
better outcomes in patients.
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