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SUMMARY

Pluripotency is highly dynamic and progresses
through a continuum of pluripotent stem cell states.
The two states that bookend the pluripotency contin-
uum, naive and primed, are well characterized, but
our understanding of the intermediate states and
transitions between them remains incomplete. Here,
we dissect the dynamics of pluripotent state transi-
tions underlying pre- to post-implantation epiblast
differentiation. Through comprehensive mapping of
the proteome, phosphoproteome, transcriptome,
and epigenome of embryonic stem cells transitioning
from naive to primed pluripotency, we find that rapid,
acute, and widespread changes to the phosphopro-
teome precede ordered changes to the epigenome,
transcriptome, and proteome. Reconstruction of the
kinase-substrate networks reveals signaling cas-
cades, dynamics, and crosstalk. Distinct waves of
global proteomic changes mark discrete phases of
pluripotency, with cell-state-specific surfacemarkers
tracking pluripotent state transitions. Our data pro-
vide new insights into multi-layered control of the
phased progression of pluripotency and a foundation
for modeling mechanisms regulating pluripotent
state transitions (www.stemcellatlas.org).

INTRODUCTION

Pluripotency describes the developmental potential of a cell to

give rise to derivatives of all three primary germ layers.

Although pluripotency is ephemeral in vivo, pluripotent stem

cells (PSCs), derived from various stages of early embryonic

development, can self-renew indefinitely in vitro under defined

culture conditions while retaining their pluripotent status (Nich-

ols and Smith, 2009). Studies of the early mouse embryo and
Cell Systems 8, 1–1
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PSCs in culture have led to the proposition that embryonic plu-

ripotency is highly dynamic and proceeds through a contin-

uum of pluripotent stem cell states (De Los Angeles et al.,

2015; Hackett and Surani, 2014; Nichols and Smith, 2009;

Rossant and Tam, 2017; Shahbazi et al., 2017; Weinberger

et al., 2016; Wu and Izpisua Belmonte, 2015). At one end of

this continuum is the naive pluripotent state (Nichols and

Smith, 2009), sometimes also referred to as the ground state

(Hackett and Surani, 2014; Marks et al., 2012; Ying et al.,

2008), representing the most unrestricted developmental po-

tential that exists in the pre-implantation mouse embryo from

approximately embryonic day 3.75 (E3.75) to E4.75 (Boroviak

et al., 2014). At the other end of this continuum is the primed

pluripotent state, representing pluripotent cells from post-im-

plantation mouse epiblasts (E5.5–E8.25), which are lineage

primed for differentiation.

Embryonic stem cells (ESCs), derived from the inner cell mass

(ICM) of pre-implantation mouse blastocysts (Figure 1A) and

maintained under defined culture conditions known as 2i+LIF

(Ying et al., 2008), most closely resemble naive epiblasts of the

pre-implantation embryo (Boroviak et al., 2014, 2015). Hence,

ESCs are considered to capture the naive pluripotent state.

Epiblast stem cells (EpiSCs), isolated from pre-gastrulation

(E5.5) to late-bud (E8.25) stage post-implantation mouse epi-

blasts (Brons et al., 2007; Tesar et al., 2007) (Figure 1A), are

developmentally comparable to the late-gastrulation stage

(E7.0) embryo, irrespective of the original developmental stage

(E5.5–E8.25) of their source tissue (Kojima et al., 2014); these

cells are considered an archetypal representative of the primed

pluripotent state. Interestingly, conventional human ESCs

(hESCs), derived from pre-implantation human blastocysts,

exhibit molecular and morphological characteristics that are

more similar to primed EpiSCs than to naive ESCs (Davidson

et al., 2015; De Los Angeles et al., 2015; Hackett and Surani,

2014; Rossant and Tam, 2017; Weinberger et al., 2016; Wu

and Izpisua Belmonte, 2015). Several protocols that reprogram

hESCs back to the ground state have been proposed (Chan

et al., 2013; Gafni et al., 2013; Takashima et al., 2014; Theunis-

sen et al., 2014; Ware et al., 2014), but they each generate
9, May 22, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 1
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Figure 1. High-Temporal-Resolution Profiling of the Proteome, Phosphoproteome, Transcriptome, and Epigenome during ESC to EpiLC

Transition

(A) Developmental events during embryogenesis in mouse embryos. ICM, inner cell mass; ESCs, embryonic stem cells; TE, trophectoderm; PE, primitive

endoderm; EpiLC, epiblast-like cells; EpiSCs, epiblast stem cells; PGCs, primordial stem cells.

(B) Schematic showing EpiLC induction from ESCs grown in 2i+LIF medium. Proteome, phosphoproteome, transcriptome, and epigenome were profiled at

indicated time points. Phase contrast images correspond to representative ESC colony grown in 2i+LIF medium (left) and cells undergoing morphological

changes at 72 h post EpiLC induction (right).

(C) Schematic of mass spectrometry (MS)-based experimental protocols used for proteome and phosphoproteome profiling.

(D) Summary statistics of proteins, phosphosites, transcripts, and epigenetic marks profiled.

See also Figures S1 and S2.
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‘‘naive’’ hESCs with distinct transcriptional profiles (Davidson

et al., 2015; Huang et al., 2014) and fail to recover the naive

epiblast methylation landscape (Pastor et al., 2016). Although

these purported naive hESCs satisfy some features of mouse

criteria for the naive pluripotent state, whether they can be

considered equivalent to naive mouse ESCs remains an open

question.
2 Cell Systems 8, 1–19, May 22, 2019
ESCs are highly competent to form high-contribution mouse

chimeras with germline transmission, following microinjection

intopre-implantationembryos.EpiSCs,however,donot integrate

well into host blastocysts, likely because they correspond to a

developmentally advanced stage compared to the host pre-im-

plantation environment and thus, contribute poorly or not at all

to blastocyst chimeras (Dejosez and Zwaka, 2012; Hackett and
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Surani, 2014; Han et al., 2010; Nichols and Smith, 2009; Wein-

berger et al., 2016; Wu and Izpisua Belmonte, 2015). Conversely,

when grafted into post-implantation (E7.5) embryos inwhole-em-

bryo culture, EpiSCs but not ESCs efficiently incorporate into the

host and contribute to all three germ layers (Huang et al., 2012).

Consequently, primed EpiSCs are considered to be functionally

and developmentally distinct from naive epiblasts and ESCs (De

Los Angeles et al., 2015; Weinberger et al., 2016). While the naive

and primed states, which bookend the pluripotency continuum,

are well characterized (Kojima et al., 2014; Marks et al., 2012),

our understanding of the intermediate pluripotent states and the

transitions between them remains incomplete.

Cell signaling underlies transcriptional and/or epigenetic con-

trol of a vastmajority of cell fate decisions during early embryonic

development (Dejosez and Zwaka, 2012; Hackett and Surani,

2014; Rossant and Tam, 2017; Weinberger et al., 2016). Yet,

our understanding of the signaling dynamics during pluripotent

state transitions and how they instruct epigenetic and/or

transcriptional programs controlling ICM to post-implantation

epiblast differentiation remains poorly understood. Recent ad-

vances inmass-spectrometry (MS)-based proteomics now allow

for near-comprehensive characterization of proteomes (Aeber-

sold and Mann, 2016) and deep phosphoproteome coverage

(Needham et al., 2019). To elucidate the signaling and molecular

dynamics that underlie pluripotent state transitions, here we

generated comprehensive high-temporal-resolution maps of

the phosphoproteome, proteome, transcriptome, and epige-

nome of ESCs transitioning from naive to primed pluripotency.

Our data provide new insights into the multi-layered control of

the phased progression of pluripotency and a foundation for

investigating mechanisms underlying ICM to post-implantation

epiblast differentiation.

RESULTS

High-Temporal-Resolution Maps of the Proteome,
Phosphoproteome, Transcriptome, and Epigenome of
Cells Transitioning from Naive to Primed Pluripotency
To elucidate the temporal dynamics of the phosphoproteome,

proteome, epigenome, and transcriptome during the transition

from naive to primed pluripotency, we employed a previously

validated system to induce naive mouse ESCs to post-implanta-

tion pre-gastrulating epiblast-like cells (EpiLCs) (Buecker et al.,

2014; Hayashi et al., 2011; Kurimoto et al., 2015; Shirane et al.,

2016), which more closely resemble the early post-implantation

epiblast (E5.5–E6.5) compared to EpiSCs (Hayashi et al., 2011).

EpiLCswere induced by plating naive ESCs, grown in the ground

state under serum-free 2i+LIF medium, onto fibronectin-coated

plates in N2B27 medium containing activin A, bFGF, and

knockout serum replacement (KOSR, 1%) (Hayashi et al.,

2011). Consistent with previous reports, within 48 h of EpiLC in-

duction, morphological transformation in the form of flattened

epithelial structures resembling epiblasts was evident (Fig-

ure S1A). RNA analysis using quantitative RT-PCR confirmed

the downregulation of naive pluripotency- and/or ICM-associ-

ated genes (Nanog, Klf4, and Prdm14) accompanied by the in-

duction of post-implantation epiblast-associated genes (Fgf5,

Otx2, and Pou3f1/Oct6) (Figure S1B) (Buecker et al., 2014; Hay-

ashi et al., 2011; Kalkan et al., 2017). Although no dramatic
changes in transcript levels of these marker genes were evident

after 48 h post induction, we included the 72-h time point in our

analyses to capture changes to the proteome that may lag

changes to the transcriptome.

Using advances in MS-based proteomics (Kulak et al., 2014)

and our EasyPhos workflow (Humphrey et al., 2015, 2018),

together with next-generation sequencing, we generated maps

of the phosphoproteome, proteome, transcriptome, and epige-

nome of cells at various time points during the 72-h ESC to EpiLC

transition (Figure 1B; http://www.stemcellatlas.org). To capture

the earliest signaling responses, we profiled the phosphopro-

teome of transitioning cells at high temporal resolution within

the first hour post induction (Figure 1B). All MS experiments

were performed in biological quadruplicates. In addition, to

enhance coverage of the proteome measurements, we pooled

the four biological replicates from each time point and performed

StageTip-based strong cation exchange (SCX) fractionation (Ish-

ihama et al., 2006) of this pooled sample for the proteome runs

(Figures 1C, S2A, and S2B). All MS data were analyzed using

the MaxQuant computational platform (Cox and Mann, 2008;

Tyanova et al., 2016).

Our single-run EasyPhos workflow produced excellent phos-

phopeptide coverage, quantifying over 15,000 phosphopeptides

in every run (Figure S2C). This yielded a total of 30,726 distinct

phosphopeptides from which we identified 37,619 individual

phosphorylation sites (Figure 1D). Phosphosite localization

confidence was high, with >80% (26,180) of the quantified phos-

phosites accurately localized to a single amino acid (mean local-

ization probability for quantified sites: 0.96) (Figure S2D; STAR

Methods). A total of 17,866 phosphosites and over half of the

class 1 phosphosites (14,103) were quantified across all 12

time points analyzed (Figure 1D; Table S1). From our proteome

runs, we identified over 160,000 distinct peptides and quantified

a grand total of 10,597 proteins across all samples and 9,250

proteins in every sample (Figure 1D). Quantification coverage

at the proteome level was also very high, with 9,250 proteins

quantified across all profiled time points (Figure 1D; Table S2).

Using paired-end RNA sequencing (RNA-seq), we mapped the

transcriptome across 8 time points during the 72-h time course

and detected a total of 16,734 transcripts (reads per kilobase of

transcript, per million mapped reads [RPKM] > 1) corresponding

to 13,600 unique genes (Figures 1D and S2E; Table S3). Chro-

matin immunoprecipitation sequencing (ChIP-seq) analyses of

the chromatin, collected from the same 8 time points, using anti-

bodies against common histone modifications (H3K4me1,

H3K4me3, and H3K27ac: associated with the promoters of tran-

scriptionally active genes; H3K27me3 and H3K9me2: associated

with the promoters of silent genes) and RNA polymerase II

(RNAPII) identified several thousand transcriptionally active and/

or poised genes (Figures 1D and S2F; Table S4).

ESCs Exit the Naive Pluripotent State by About 36 h Post
Induction
Principal-component analysis (PCA) and unsupervised hierar-

chical clustering of the transcriptome, proteome, phosphopro-

teome, or epigenome revealed clear time-dependent separation

of the data (Figures 2A–2C and S3), with global changes to the

phosphoproteome evident as early as 5 min post induction

(Figure 2C), suggesting that the clustering is driven largely by
Cell Systems 8, 1–19, May 22, 2019 3
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Figure 2. Temporal Dynamics of the Proteome, Phosphoproteome, and Transcriptome during ESC to EpiLC Transition

(A–C) Principal-component analysis (PCA) of the transcriptome (A), proteome (B), and phosphoproteome (C) during EpiLC induction. Each circle represents data

from a sample collected at a particular time point during ESC to EpiLC transition, with lighter and darker shades of purple denoting earlier and later time points,

respectively. Filled green squares represent transcriptomic data from Kalkan et al. (2017).

(D) Temporal dynamics of global changes in the proteome, phosphoproteome, transcriptome, and epigenome during ESC to EpiLC transition. Changes in the

phosphorylation level of a given phosphosite were normalized to the changes in corresponding protein level.

(E) Density plot showing the distribution of magnitude of changes at the protein, mRNA, and phosphosite level. Changes in phosphosite levels were normalized

as in (D).

(F) Fraction of phosphosites, mRNAs, and proteins dynamically regulated during EpiLC induction, as assessed using ANOVA test. Changes in phosphosite levels

were normalized as in (D).

(G) Venn diagram showing overlap among genes encoding differentially regulated mRNAs, proteins, and/or phosphosites during ESC to EpiLC transition. Only

genes with both protein and mRNA levels quantified were used for this analysis.

See also Figures S3 and S4.
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differences in the underlying biological signal across various time

points. PCA analysis of our transcriptomic data, in conjunction

with the recently published RNA-seq data obtained from ESCs

transitioning out of naive ground-state pluripotency (0 h, 16 h,

25 h-Rex1high, and 25 h-Rex1low) (Kalkan et al., 2017), revealed
4 Cell Systems 8, 1–19, May 22, 2019
temporal concordance of the datasets from the two studies (Fig-

ure 2A), suggesting that the biological signal driving these tem-

poral clusters is highly reproducible. The transcriptome at 24 h

post EpiLC induction clustered with those from 16-h- and

25-h-Rex1high cells (Figure 2A), with the latter previously shown
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to be in a reversible phase preceding extinction of the naive state

(Kalkan et al., 2017). Consistent with 25-h-Rex1high cells, Rex1

(Zfp42) expression in cells at 24 h post EpiLC-induction re-

mained high at the mRNA and protein level (Tables S2 and S3).

In contrast, the transcriptome at the 36-h time point during

ESC to EpiLC transition clustered with that of the 25-h-Rex1low

cells, the primary products of exit from naive pluripotency

(Kalkan et al., 2017). Consistent with 25-h-Rex1low cells that

exited the naive ground state, Rex1 expression was downregu-

lated by�10-fold at 36 h post EpiLC induction (Table S3). Collec-

tively, these data suggest that by about 36 h post induction, cells

had exited the naive pluripotent state.

Phosphoproteome Dynamics Precede Changes to the
Epigenome, Transcriptome, and Proteome
To understand the sequence ofmolecular events and the tempo-

ral kinetics that transform cellular identity, we next examined the

timing, scale, and magnitude of changes to the proteome, phos-

phoproteome, transcriptome, and epigenome as ESCs transition

through various phases of pluripotency. Our analyses revealed

that phosphoproteome dynamics precede ordered waves of

epigenomic, transcriptomic, and proteomic changes (Figures

2D and S4). Notably, about 50% of the regulated phosphosites

are significantly modified within 15 min of EpiLC induction, and

about one-third were altered as early as 5 min (Figures 2D and

S4A). By comparison, <1% of the transcriptome or proteome

undergo significant changes within the first hour (Figures S4B

and S4C). H3K4me3 levels at gene promoters began to change

an hour into EpiLC induction, offering the first indication of

changes to the epigenome, accompanied by gradual and wide-

spread changes to the transcriptome (Figure 2D). While the tran-

scriptome is significantly altered by the sixth hour, widespread

changes to the proteome were not evident until about 12 h

post induction (Figures 2D, S4B, and S4C), presumably because

of the latencies associated with protein synthesis and matura-

tion. These data suggest a pioneering role for signaling in plurip-

otent state transitions.

Widespread Changes to the Phosphoproteome Mark
ESC Transition from Ground-State Pluripotency
We next examined the magnitude of changes to dynamically

regulated phosphosites, transcripts, and proteins. Our analysis

revealed that protein phosphorylation undergoes the greatest

degree of change (3.2median-fold), followed bymRNAs (2.2me-

dian-fold) and proteins (1.8 median-fold) (Figures 2E and S4).

The broader distribution of the magnitude of changes to the

phosphosites (Figure 2E) indicates that the phosphoproteome

is more dynamic than the proteome during this transition.

Systematic elucidation of differentially regulated phosphosites,

mRNAs, and proteins revealed that about half of the phospho-

proteome is dynamically regulated over the time course,

whereas only about a third of the proteome undergoes temporal

regulation (Figure 2F).

To understand the interplay between protein phosphorylation

dynamics and protein abundance, we considered genes whose

mRNA, protein, and/or phosphorylation levels were differentially

regulated. Our analysis revealed that in �28% (925/3,251) of

cases, changes at the protein level were associated with

significant changes in their phosphorylation level. Notably,
among proteins whose abundance was altered, one out of eight

(407/3,251) is associated with a significant change to their phos-

phorylation but not mRNA level (Figure 2G), suggesting a poten-

tial role for phosphorylation in regulating the levels and perhaps

the activities of a substantial fraction of proteins, presumably by

modulating their stability and/or degradation. However, about

60% (1,386/2,385) of the proteins with regulated phosphoryla-

tion sites are not associated with significant changes at the

protein level, suggesting that phosphorylation and/or dephos-

phorylation of these sites may alternatively play a role in altering

protein activity, localization, conformation, or interactions.

Collectively, these data highlight that changes in the phospho-

proteome are rapid, acute, and more widespread than changes

in both the transcriptome and proteome and exemplifies the cen-

tral role that dynamic phosphorylation plays during the phased

progression of pluripotency from the naive to the primed state.

De Novo Reconstruction of Kinase-Substrate Networks
Reveals Insights into Signaling Cascades, Dynamics,
and Crosstalk
To elucidate the set of signaling events, their timing, and order in

which they occur as cells transition through various phases of

pluripotency, we sought to identify active kinases that underlie

signaling cascades. To this end, we used the CLUE algorithm

(Yang et al., 2015) to partition all phosphosites into 12 optimal

clusters based on their temporal profiles (Figures S5A and

S5B). Using known kinase-substrate annotations (Hornbeck

et al., 2012), we identified four of these clusters to be enriched

for substrates with known kinases: ERK/S6K/RSK, mTOR,

p38a, and AKT (Figures 3A, 3B, and S5B; Table S5). An indepen-

dent analysis of substrates with known kinases, using our kinase

perturbation analysis tool KinasePA (Yang et al., 2016b),

confirmed activation and/or inactivation of these same kinases

at various stages during the ESC to EpiLC transition (Figure S5C).

With the assumption that phosphosites with similar temporal

dynamics are more likely to be substrates of the same kinase(s),

we hypothesized that proteins containing the phosphosites

within each of these four clusters aremore likely to be associated

with the same signaling pathway. Consistent with this prediction,

pathway enrichment analysis of the proteins harboring phospho-

sites within each of the four clusters revealed enrichment of

biological processes strongly associated with the respective

kinases (Figure 3C).

Temporal profiles of the phosphosites within the four clusters

revealed the precise timing and order of phosphorylation and/or

dephosphorylation events underlying various signaling cas-

cades (Figure 3B). Notably, substrates within the ERK/S6K/

RSK cluster underwent acute phosphorylation within the first

5 min, which is expected and reassuring given that EpiLC induc-

tion involves release from ERK inhibition in addition to FGF

stimulation of ERK signaling (Figure 1A). Interestingly, however,

putative ERK substrates, which remained phosphorylated for

about an hour after EpiLC induction, reverted to their basal

(0 h) phosphorylation levels by about 6 h (Figure 3B), suggesting

that ERK signaling is inhibited within a few hours after EpiLC in-

duction. Indeed, examination of the phosphorylation dynamics

of kinases ERK1 and ERK2 revealed acute dephosphorylation

beginning at about an hour after induction (Figure 3D). Consis-

tent with our MS-based phosphoproteomics data, western blot
Cell Systems 8, 1–19, May 22, 2019 5



Figure 3. Characterization of Signaling Dynamics during ESC to EpiLC Transition and Prediction of Substrates for Key Kinases Involved

(A) Clustering of phosphosites based on their temporal dynamics. Four clusters (out of the twelve; see Figures S6A and S6B) enriched for known substrates of

ERK and S6K/RSK (blue), mTOR (green), p38a (orange), or AKT (purple) are shown. Select substrates are highlighted. p values, Fisher’s exact test.

(B) Heatmap representation of the data shown in (A).

(C) Gene ontology (GO) analysis of phosphoproteins represented in each of the four clusters in (A). Top five enriched GO categories (biological processes) are

shown. Select phosphoproteins within each group are highlighted at the top.

(legend continued on next page)
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analysis confirmed the transient activation of ERK1/2, with no

major changes occurring at the protein or mRNA levels (Figures

3E and 3F).

ERK signaling is known to be tightly controlled by negative

feedback loops, wherein ERK1/2 activity transcriptionally in-

duces specific ERK1/2 pathway inhibitors, such as dual-speci-

ficity MAPK phosphatases (DUSPs), Sprouty (Spry), and Spred

proteins, which in turn lead to inhibition and inactivation of

ERK1/2 (Caunt and Keyse, 2013; Lake et al., 2016; Ornitz and

Itoh, 2015). To assess whether such negative feedback loops

shape ERK1/2 signaling dynamics as ESCs transition out of

naive pluripotency, we examined the expression dynamics of es-

tablished negative regulators of ERK1/2 signaling.Within an hour

after EpiLC induction, we observed rapid induction of Dusp6 (an

ERK1/2-specific phosphatase), Spry4, and Spred1 (Figure 3G),

all downstream transcriptional targets of ERK1/2 signaling

(Lake et al., 2016; Lanner and Rossant, 2010). These changes

coincided with the acute dephosphorylation of ERK1/2 (Figures

3D and 3G), suggesting that ERK1/2 signaling is conceivably un-

der strict control of negative feedback loops as ESCs transition

from the ground state.

Given the transient activation of ERK1/2 signaling (Figures 3B

and 3D), we hypothesized that ERK1/2 signaling is perhaps

dispensable 6 h after EpiLC induction. To test this idea, we

added an inhibitor of the MEK/ERK pathway (PD0325901) into

the culture medium 6 h after EpiLC induction and assessed

expression changes of naive and primed pluripotency factors

at 48 h post induction. ERK1/2 inhibition, beginning at 6 h, had

no major effect on the induction of factors associated with

primed pluripotency or suppression of naive pluripotency factors

(Figure 3H). However, EpiLC induction in the presence of

PD0325901 severely affected both the induction of primed plu-

ripotency factors and the suppression of naive pluripotency fac-

tors (Figure 3H). Altogether, these data establish that while ERK

signaling is required to trigger the exit from ground-state naive

pluripotency, it is largely dispensable after about 6 h into EpiLC

induction.

Besides ERK1/2, p38 is another MAPK kinase whose known

and putative substrates are dephosphorylated within about an

hour after EpiLC induction (Figure 3B). Given that ERK1/2-

induced DUSP proteins are also known to dephosphorylate the

p38 family of MAPKs (Caunt and Keyse, 2013; Lake et al.,
(D) Temporal dynamics of relative phosphorylation levels (compared to 0 h) of

quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS

(E) Western blot analysis of total and phosphorylated Erk1/2 during ESC to EpiL

(F) Temporal dynamics of relative protein and mRNA levels (compared to 0 h), as q

ESC to EpiLC transition. Error bars represent SEM.

(G) Same as in (F) but showing data for Dusp6, Spry5, and Spred1, all downstre

(H) RT-qPCR analysis of relative expression of genes associated with naive plurip

naive ESCs (0 h). During the ESC to EpiLC transition (0–48 h), cells were left untre

time period. Data, normalized to Actin, represents mean of n = 3 biological replic

(I) Violin plots showing the distribution of ensemble prediction scores of all profile

five kinases (S6K/RSK, ERK, mTOR, p38a, and AKT); kinases other than these fi

substrate pair was generated using a positive-unlabeled ensemble algorithm (Ya

(J) Sequence motifs enriched within predicted substrates for ERK, S6K/RSK, AK

2009), using precompiledmouse Swiss-Prot sequence composition as the referen

the experimental versus the reference set.

(K) Temporal profiles of predicted substrates for ERK, S6K/RSK, AKT, mTOR, or p

respectively.

See also Figure S5.
2016; Lanner and Rossant, 2010), we examined the temporal dy-

namics of p38a phosphorylation. Within an hour of ERK1/2 acti-

vation, p38a phosphorylation levels decreased by about 4-fold

(Table S1), suggesting a role for ERK1/2-responsive factors in

negatively regulating other pathways, including the p38 MAPK

pathway.

ERK1/2-induced Spry and Spred proteins suppress ERK1/2

signaling, in a negative feedback loop, by inhibiting complex for-

mation between the adaptor protein Grb2 and the FGF receptor

substrate 2 (Frs2). Intriguingly, the FGF-mediated Grb2-Frs2

signal also regulates the PI3K-AKT pathway as well as other

MAPK pathways (p38, JNK) (Lanner and Rossant, 2010; Ornitz

and Itoh, 2015). Thus, it is conceivable that any Spry- and/or

Spred-mediated negative regulation of Grb2-Frs2 complex for-

mation also inhibits the PI3K-AKT pathway, which is distinct

from theMAPK pathways. Indeed, the phosphorylation of known

and putative Akt substrates decreased immediately upon

ERK1/2 activation (Figures 3A and 3B), consistent with pathway

crosstalk between ERK1/2 and PI3K-AKT (Mendoza et al., 2011).

In addition, withdrawal of LIF to induce EpiLCs (Figure 1A) and

subsequent loss of LIF-induced PI3K activation may also have

contributed to dephosphorylation of Akt substrates (Yu and

Cui, 2016).

Activation of the ERK1/2 pathway, as observed during early

stages of ESC transition from the ground state (Figures 3B, 3D,

and 3E), can also activate the mammalian target of rapamycin

complex 1 (mTORC1), an effector molecule downstream of Akt

(Mendoza et al., 2011). Active ERK1/2 phosphorylates p90 ribo-

somal protein S6 kinase (RSK), and together they phosphorylate

TSC2 of the TSC complex (which is at the crossroad of ERK1/2

and PI3K-AKT pathways), leading to the release of TSC inhibition

of the mTORC1 activity (Mendoza et al., 2011). Consistent with

this established link, we find that phosphorylation of known

and putative mTOR substrates follows ERK1/2 activation (Fig-

ures 3B and 3D). To test whether mTORC1 activity is essential

for ESC exit from the ground state, we induced EpiLCs in the

presence or absence of rapamycin, an inhibitor of mTOR that

specifically targets mTORC1, and assessed changes in the

expression of naive and primed pluripotency factors at 48 h

post induction. We detected no significant differences (Fig-

ure 3H), indicating that mTORC1 activity is not required for exit

from naive pluripotency. Taken together, these data fit existing
Erk2 (T183/Y185) and Erk1 (T203/Y205, during ESC to EpiLC transition, as

). Error bars represent SEM.

C transition. Histone H3 is used as loading control.

uantified using LC-MS/MS and RNA-seq respectively, of Erk2 and Erk1 during

am transcriptional targets of Erk1/2 signaling. Error bars represent SEM.

otent state (right) or post-implantation epiblasts in EpiLCs (48 h) compared to

ated or cultured in the presence of PD0325901 or rapamycin for the indicated

ates. Error bars represent SEM. *p < 0.05 (Student’s t test, two-sided).

d phosphosites indicating the likelihood of them being a substrate of one of the

ve were grouped into the ‘‘other’’ category. Ensemble score for each kinase-

ng et al., 2016a). Black crosses (‘‘x’’) represent previously known substrates.

T, mTOR, or p38a kinases. Motifs were identified using IceLogo (Colaert et al.,

ce set. The y axis represents the difference in the frequency of an amino acid in

38a kinases. Mean and the standard deviation are shown as line-plot and range,
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Figure 4. Comparative Analysis of the Proteome and Transcriptome during ESC to EpiLC Transition

(A) Temporal dynamics of correlation (y axis) between fold-changes in protein (compared to 0 h data) and fold-changes in mRNA (compared to 0 h) over time

(x axis). See Figure S6B for the actual scatterplots showing correlation at various time points.

(B) Gene ontology (GO) analysis of genes upregulated or downregulated (at both protein and mRNA levels) at 72 h versus 0 h during ESC to EpiLC transition.

Select GO categories (biological processes) enriched among upregulated or downregulated genes are shown.

(C) Temporal dynamics of relative protein and mRNA levels (compared to 0 h) of select genes. Genes associated with naive pluripotent state (Esrrb, Tfcp2l1, and

Prdm14), primed pluripotent state (Dnmt3a andOtx2), and those whose expression is relatively stable during ESC to EpiLC transition (Jarid2 andOct4) are shown.

Error bars represent SEM.

(legend continued on next page)
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models of canonical pathways and provide insights into the

crosstalk between signaling pathways and their dynamics during

various phases of pluripotency.

Machine Learning Predicts Substrates for ERK1/2,
S6K/RSK, mTOR, AKT, and p38a
Our understanding of signaling pathways that control a vast ma-

jority of cell fate decisions is limited because in many cases only

a fraction of these pathways has been mapped, with many com-

ponents remaining to be discovered. Hence, we sought to iden-

tify hitherto unknown substrates for each of the key kinases

(ERK, S6K/RSK, mTOR, AKT, and p38a) that we had inferred

to be active at various time points during ESC exit from the

ground state. We extended our ensemble machine learning

algorithm (Yang et al., 2016a) that integrates known kinase

recognition motifs and temporal profiles of phosphosites to pre-

dict novel substrates for the five kinases of interest (see STAR

Methods). For each phosphosite and kinase pair, we generated

an ensemble prediction score in the range 0–1, indicating the

likelihood that the phosphosite is a substrate of that kinase.

Tabulation of phosphosites by their prediction scores, for each

kinase, revealed enrichment of known substrates atop the list

(Figure 3I), illustrating the effectiveness of our approach in recov-

ering known substrates.

Using a score cutoff of 0.75, we predicted substrates for ERK,

S6K/RSK, AKT, mTOR, and p38a kinases (Table S6). De novo

sequence analysis of predicted substrates identified consensus

sequence motifs (Figure 3J) resembling the consensus recogni-

tion motifs of the corresponding kinases (Hornbeck et al., 2012).

Despite the similarity between the temporal patterns of predicted

substrates for ERK and RSK/S6K (Figure 3K), which are known

to act on the same substrate and sometimes in concert (Men-

doza et al., 2011), the consensus sequence motifs derived

from their putative substrates are quite different. Conversely,

although the consensus motifs for predicted ERK and mTOR

substrates (or RSK/S6K and AKT substrates) are similar, their

temporal patterns are diametrically opposite. These findings

illustrate the importance of integrating static features (such as

recognition motifs) with dynamic attributes (such as temporal

profiles of phosphosites) for successful prediction of novel

substrates.

Most signaling cascades culminate in the activation of down-

stream transcription regulators controlling gene expression pro-

grams. Hence, we asked whether transcription regulators, in

general, are enriched for dynamically regulated phosphosites.

Using the list of annotated transcription regulators (transcription

factors [TFs], co-factors, and chromatin remodeling enzymes)

(Zhang et al., 2012), we found that transcription regulators are

more likely to contain dynamically regulated phosphosites than

other proteins (odds ratio = 1.91; p = 2.13 10�15; Fisher’s exact
(D) Correlation between changes in protein andmRNA levels (y axis) for individual

(mRNA or protein) expression (72 h versus 0 h) (see STAR Methods). Genes t

(positioned to the left) and those that were substantially upregulated have higher

naive pluripotent state (ESCs), that are downregulated during EpiLC induction are

(EpiLCs), which are upregulated during EpiLC induction are highlighted as filled

entiation are highlighted as filled yellow circles. Prdm14, whose protein levels ar

highlighted as an open circle.

See also Figure S6.
test), suggesting that protein phosphorylation/dephosphoryla-

tion could be a general mechanism for modulating the activity

of transcription regulators that mediate signal transduction dur-

ing the pluripotency progression.

To elucidate transcription and chromatin regulators that

mediate signaling cascades during the ESC to EpiLC transition,

we filtered our list of predicted substrates for known TFs,

co-factors, and chromatin-modifying enzymes and identified

several transcription regulators as putative substrates and

possible downstream effectors of ERK, S6K/RSK, mTOR, AKT,

or p38a signaling (Figure S5D; Table S6). Notably, ERK1/2 is pre-

dicted to phosphorylate key transcriptional regulators including

Lin28a (RNA binding protein), Zscan4c (expressed transiently

in 2-cell embryos and ESCs), EP300 (histone acetyltransferase),

Mta3 (member of the Mi2-NuRD histone deacetylase complex)

and JunD. Phosphorylation of predicted Lin28a phosphosite

(S200) by ERK was recently shown to be an important link be-

tween ERK signaling, post-transcriptional gene regulation, and

cell fate control (Tsanov et al., 2017). Predicted substrates of

mTOR include several chromatin remodeling enzymes with

known roles in ESC biology: Jarid2 and Eed (members of the pol-

ycomb repressive complex PRC2), Smarca4/Brg1 (the ATPase

subunit of the esBAF chromatin remodeling complex), Ino80

(the ATPase subunit of the INO80 chromatin remodeling com-

plex), and Kdm5b (histone H3K4 demethylase). S6K/RSK and

AKT are predicted to phosphorylate histone H3K9 demethylase

Kdm3b and Dnmt3b, respectively.

Comparative Analysis of Changes to the Transcriptome
and Proteome during Pluripotency Progression
The relationship between mRNA and protein levels is indicative

of the combined outcomes of transcription, mRNA stability,

translation, and protein degradation (de Sousa Abreu et al.,

2009). To understand the downstream effects of signaling on

the transcriptome and the extent to which changes at the tran-

script level during ESC to EpiLC transition translate to changes

at the protein level, we examined the temporal dynamics of

mRNA expression and protein abundance. To determine the

extent to which mRNA expression captures protein abundance

as ESCs transition out of ground-state pluripotency, we as-

sessed the concordance between steady-state mRNA and

protein levels at various time points during EpiLC induction. In

agreement with previous studies, which have found a generally

limited correlation between steady-state mRNA and protein

levels in mammalian systems (Schwanh€ausser et al., 2011), we

found correlation between these layers to be rather moderate

and stable across all time points (Pearson, R = 0.48–0.56) (Fig-

ure S6A). However, the correlation between changes in mRNA

levels and changes in protein levels (compared to 0 h) increased

from almost non-existent at 1 h to moderately high over time
genes plotted against their relative rank order (x axis) in terms of change in gene

hat were substantially downregulated at 72 h versus 0 h have smaller ranks

ranks (right). Select transcriptional and chromatin regulators, associated with

highlighted as filled red circles; those, associated with primed pluripotent state

blue circles. Genes whose expression is relatively stable during EpiLC differ-

e relatively stable but whose mRNA levels are dramatically downregulated, is
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(Figures 4A and S6B), suggesting that while absolute mRNA

levels may not be predictive of protein abundance, changes in

transcript level in a perturbed system over a period of time

more closely reflect changes in protein abundance.

Gene Ontology (GO) analysis of the genes that were downre-

gulated at both protein and mRNA levels at 72 h versus 0 h

revealed enrichment for those associated with stem cell mainte-

nance, blastoderm segmentation, and embryo implantation (Fig-

ure 4B). In contrast, upregulated genes were enriched for those

with roles in development and methylation-dependent chro-

matin silencing (Figure 4B), consistent with significant upregula-

tion of de novo DNAmethyltransferases Dnmt3a/b/l (Figures 4C,

4D, and S6C). Rank ordering of genes based on the extent of

fold-changes at the protein and mRNA levels revealed that

dynamically regulated genes, including those associated

with naive pluripotent state (e.g., Esrrb, Tfcp2l1, Nanog, Sox2,

Klf2/4, Tbx3, and Kdm3a/b) and post-implantation epiblasts

(e.g., Otx2, Dnmt3a/b, Zic2, Lin28a, and Lef1), exhibit strong

correlation (R > 0.85) between changes to the transcript and pro-

tein levels (Figures 4C, 4D, S6C, and S6D; Table S7). Intriguingly,

Prdm14, which is expressed in ICM (Yamaji et al., 2008) and

downregulated during EpiLC transition (Hayashi et al., 2011;

Yamaji et al., 2013), is a notable exception with substantial

change at the mRNA but not protein level (Figure 4C; Table

S7). Consistent with our RNA-seq and MS-based proteomic

data, qRT-PCR and western blot analyses confirmed that while

Prmd14 mRNA level decreases by �1,000-fold, its protein level

remains unchanged (Figures S1A and S6E). Genes whose

expression is known to be relatively stable during ESC to EpiLC

transition (e.g., Oct4 and Dnmt1) undergo minimal changes and

thus exhibit a weak correlation (Figures 4C, 4D, and S6C).

Distinct Waves of Global Proteomic Changes Mark
Discrete Phases of Pluripotency
Fuzzy c-means clustering of the temporal profiles of proteins that

were down- and upregulated during the ESC to EpiLC transition

revealed a dynamic transposition of cell identity, involving at

least three major waves of changes (Figure 5A; Table S8). The

first wave, presumably induced by upstream signaling events,

occurs at about 1 h into EpiLC induction and involves downregu-

lation of naive pluripotency TFs including Nanog and Tfcp2l1,

both immediate downstream targets of LIF/Stat3 signaling

(Niwa et al., 2009), and upregulation of epiblast-associated fac-

tors including Otx2, Zic2, Dnmt3l, and Lin28a. The second wave,

at 6–24 h, is characterized by downregulation of TFs specific to

the naive pluripotent state and pre-implantation development

(Esrrb, Sox2, Tbx3, Nr0b1, and Klf2/4/5), coupled with upregula-

tion of Dnmt3a/b. The third wave coincides with exit from the

naive pluripotent state, at around 36 h, when the cells enter an

irreversible phase on their way to establishing a post-implanta-

tion EpiLC identity.

Chromatin dynamics at the promoters of Esrrb and Otx2

exemplify changes to the epigenome and associated transcrip-

tional output (Figures 5B and 5C), which precede changes to

the proteome. Downregulation of Esrrb transcript and transcrip-

tion-dependent histone modifications (H3K4me3 and H3K27ac)

is evident as early as 1 h after EpiLC induction (Figure 5B). Rapid

loss of Esrrb transcription is correlated with marked reduction

in RNAPII levels at its promoter and is followed by the gain
10 Cell Systems 8, 1–19, May 22, 2019
of repressive H3K27me3 and H3K9me2 to maintain the

repressed transcriptional state. The converse is observed for

Otx2, wherein loss of H3K27me3 precedes RNAPII recruitment

and transcription.

H3K9me2 is known to recruit DNAmethyltransferases and is a

precursor to DNA methylation (Estève et al., 2006; Tachibana

et al., 2008). Downregulation of H3K9 demethylases (Kdm3a/b)

(Figure S6C) coupled with global increase in H3K9me2 levels

(Figure 5C) and upregulation of Dnmt3a/b/l (Figures 4C and

S6C) suggest a finely choreographed sequence of events pre-

ceding eventual epigenetic silencing of naive pluripotency fac-

tors by DNA methylation. Together, these data shed light on

the tightly orchestrated temporal regulation of gene expression

programs that coordinate the transition from naive to primed

pluripotency.

Identification of Cell-Surface Marker Proteins
Characteristic of Various Phases of Pluripotency
While transgenic reporters can be used to isolate cell popula-

tions, cell-surface markers allow for prospective identification

and tracking of cell types. Given the deep coverage of the

quantifiable proteome, we next sought to identify cell-surface

proteins characteristic of various phases of pluripotency as

ESCs transition from the ground state. Across the profiled

time points, we identified 78 cell-surface proteins, represent-

ing �20% of all cell-surface proteins (Gray et al., 2015), whose

expression was quantified with high confidence. Of these 78

cell-surface proteins, 49 were differentially expressed at one

or more profiled time points during the ESC to EpiLC transi-

tion, of which 34 were at least 3-fold differentially expressed

between naive ESCs (0 h) and EpiLCs (72 h) (Figure 6A).

Most of these cell-surface proteins exhibit concordant

changes in their transcript levels (Figure S7A), suggesting

that changes in their transcript levels account for much of

the differences in their protein levels. A majority of these

cell-surface proteins undergo a dramatic transformation in

their expression status at around 24–36 h post-EpiLC induc-

tion (Figure S7A), presumably coinciding with when the

cells exit the naive pluripotent state to acquire post-

implantation epiblast-like identity. These data suggest that

the cell-surface proteins captured in our proteomic dataset

can help discriminate pluripotent cells from pre- and post-im-

plantation epiblast of early mouse embryos.

To validate our proteomic data and to define a set of cell-sur-

face markers that can discriminate between naive ESCs and

EpiLCs, we performed flow cytometry analysis of candidate

cell-surface proteins for which antibodies suitable for flow

cytometry were commercially available. Our analysis of individual

markers with fluorescence-conjugated antibodies revealed a

good separation in fluorescence signal between naive ESCs

and EpiLCs (Figures 6B and 6C). Consistent with our MS-based

proteomic data, CD38 (Adprc1), CD105 (Eng), CD54 (Icam1),

CD9, CD146 (Mcam), CD81, and CD205 (Ly75) expression levels

are uniformly high in naive ESCs and low in EpiLCs. Conversely,

CD326 (Epcam), CD317 (Bst2), andCD90.2 (Thy1.2) are detected

at higher levels in EpiLCs compared to naive ESCs. Furthermore,

flow cytometry analysis of these cell-surface proteins during ESC

to EpiLC transition revealed that the expression dynamics of

individual cell-surface proteins faithfully track the phased



Figure 5. Distinct Waves of Global Changes in the Proteome Mark Various Phases of Pluripotency

(A) Temporal profiles of standardized changes in protein levels (compared to 0 h). Top and bottom 20%of the proteins that are themost down- or upregulated (red

and blue, respectively), based on the rank ordering in Figure 4D, are grouped into clusters based on fuzzy c-means clustering (c = 9). Top six clusters, with the

most proteins, are shown. Transcriptional and chromatin regulators, known or implicated to play important roles in ESCs and/or EpiLCs, are highlighted.

(B) Genome browser shots of Esrrb and Otx2 showing temporal profiles of gene expression dynamics (RNA-seq) and ChIP-seq read density profiles for RNAPII

and histone modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K9me2. Gene annotation is shown at the bottom, with an arrow representing the

direction of transcription from the active transcription start site. Regions containing transcriptionally active promoter and known enhancer are highlighted in

yellow and green, respectively.

(C) Temporal profiles of gene expression, RNAPII, and histone modification dynamics of genes associated with naive (ESCs) and primed state (EpiLCs). The top

and bottom 20%of the genes that are themost down- or upregulated, based on the rank ordering in Figure 4D, were considered as naive and primed state genes,

respectively. Median and standard deviation are shown as line-plot and range, respectively. ChIP-seq read density within the promoter region was used for

analysis (RNAPII, H3K4me3, and H3K27ac: ±1 Kb of TSS; H3K4me1, H3K27me3, and H3K9me2: ±2.5 Kb of TSS).
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progression of pluripotency, albeit each protein exhibiting

different dynamics during the 72-h time course (Figures S7B

and S7C). For example, high levels of CD105 andCD38 persisted

until 24 h before undergoing downregulation, whereas downre-

gulation of CD54 was more continuous through the time course.
Conversely, while CD326 expression increased gradually over

time, upregulation of CD90.2 was not evident until 24 h.

Flow cytometry analysis of multiplexed cell-state-specific an-

tibodies showed that combinations of the antibodies can effec-

tively distinguish between naive ESCs and EpiLCs (Figures 6D
Cell Systems 8, 1–19, May 22, 2019 11



Figure 6. Cell-Surface Markers Specific to Naive and Formative/Primed Pluripotent States

(A) Scatterplot showing expression levels of cell-surface proteins in naive ESCs (x axis) versus EpiLCs (y axis). Data for 49 surface proteins that are differentially

expressed at one or more profiled time points during the ESC to EpiLC transition are shown. Based on their distance relative to the diagonal (expressed equally in

(legend continued on next page)
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and S7D). For example, high levels of CD105 and CD38 (or

CD54), characteristic of naive ESCs (Figure 6D), can serve as

excellent markers to identify and isolate naive ESCs from a

heterogeneous population of pluripotent cells. In addition, a

combination of CD105 (or CD54) and CD326, with discordant

expression pattern during ESC to EpiLC transition (Figures

S7B and S7C), can be useful for tracking the phased progression

of pluripotency as ESCs transition from the ground state toward

the primed state (Figure 6D). Altogether, these analyses allowed

us to identify a robust set of cell-state-specific surface proteins,

such as CD38, CD105, CD54, CD205, CD10 (Mme), CD26

(Dpp4), CD117 (Kit), and CD322 (Jam2) in naive ESCs and

CD317, CD326, CD90.2, and CD276 in EpiLCs (Figure 6E).

Comparative Analysis of Mouse and Human Pluripotent
States
While some cell-surface markers specific to ‘‘naive’’ hESCs, such

asCD77 (A4galt) andCD130 (Il6st) (Collier et al., 2017), are alsoex-

pressed in naive mouse ESCs (Figure S7E), we found it intriguing

that several cell-surface markers specific to the naive mouse

ESCs (including CD38, CD105, CD205, CD10, CD26, and

CD117) are not expressed in ‘‘naive’’ hESCs at the mRNA (Fig-

ure 6E) or protein levels (Collier et al., 2017). Similarly, CD75

(St6gal1), a marker specifically expressed in ‘‘naive’’ but not

primed hESCs (Collier et al., 2017), is lowly expressed in naive

mouse ESCs compared to EpiLCs or EpiSCs (Figure S7E). Moti-

vated by this lack of concordance, we asked whether the pur-

ported naive hESCs can be considered equivalent to naivemouse

ESCs. If not, this is of interest because hESCs might represent a

pluripotent state equivalent to an intermediate cell state between

the naive and the primed pluripotent states in mice. To address

this question, we compared the transcriptional states of conven-

tional hESCs, considered to be equivalent tomouse EpiSCs (Ros-

sant and Tam, 2017), and hESCs reset to a putatively naive state

(Chanetal., 2013; Takashimaetal., 2014) to thoseofmouseplurip-

otent cells at various time points during the naive ESC to EpiLC

timecourse; aspointsof reference,wealso includeddata fromhu-

manblastocyst ICM (Yanet al., 2013), E5–E7humanpre-implanta-

tion epiblast (Blakeley et al., 2015; Petropoulos et al., 2016), E5.5

mouse post-implantation epiblast (Boroviak et al., 2015), mouse

EpiSCs (Factoretal., 2014;Fiorenzanoetal., 2016),mouseEpiSCs

reset to a naive-like state (Takashima et al., 2014), EpiLCs (Chen

et al., 2018), and conventional mouse ESCs grown in media con-

taining serum+LIF (Fiorenzano et al., 2016; Marks et al., 2012),

PD03+LIF (Takashima et al., 2014), or serum+2i+LIF (Chen

et al., 2018).

PCA and unsupervised hierarchical clustering revealed

distinct clusters of cells corresponding to various pluripotent
both cell types), cell-surface proteins have been categorized as naive specific or p

expression dynamics during ESC to EpiLC transition.

(B and C) Histograms of flow cytometry analysis using fluorophore-conjugated a

(red) and EpiLCs (blue). Data for cell-state-specific proteins in naive ESCs (B) an

(D) Flow cytometry contour plots and dot plots of pairwise antibody combinations

columns).

(E) Relative gene expression of selected cell-surface proteins in mouse and huma

this study (0 h, 1 h, 6 h, 12 h, 24 h, 36 h, 48 h, and 72 h), RNA-seq data frommouse

(hESCs) and reset ‘‘naive’’ hESCs (Takashima et al., 2014). To facilitate direct co

changes relative to expression in mouse EpiSCs are shown.

See also Figure S7.
states (Figures 7A and 7B). With much of the variation (35%)

captured in the first principal component (PC1), PC1 primarily

discriminates between naive and primed pluripotent states. Con-

ventional hESCs, generally considered as primed (Rossant and

Tam, 2017), clustered alongside EpiSCs, considered archetypal

representative of primed pluripotency (Rossant and Tam, 2017;

Smith, 2017). Interestingly, reset hESCs, reprogrammed to

closely resemble mouse naive ESCs, did not cluster anywhere

near naive mouse ESCs, although they clustered alongside cells

from human blastocyst ICM. A closer examination of naive

pluripotency-associated factors in reset hESCs revealed that

while the expression of some factors including Klf4, Klf5, Stella,

Prdm14, and Zfp42 was reset or upregulated to levels compara-

ble to those in naive mouse ESCs, many key factors including

Nanog, Esrrb, Nr0b1, Nr5a2, Tfcp2l1, and Klf2 were not

upregulated to appropriate levels (Figure 7C). Conversely, the

expression of many post-implantation epiblast-associated or

lineage-specific genes including Dnmt3a, Dnmt3b, Lin28a,

Krt18, Sox4, and mir-302b was not fully downregulated in reset

hESCs (Figure 7D). Together, these data suggest that while

chemical and/or genetic manipulation of primed hESCs induces

molecular features of naive pluripotency in hESCs, reset hESCs

are not identical to naive mouse ESCs.

DISCUSSION

Through integrative analysis of the proteome, phosphopro-

teome, transcriptome, and epigenome of ESCs transitioning

from naive to primed pluripotency, we have elucidated the

sequence of molecular events that underlie the phased progres-

sion of pluripotency. Our data provide new insights into the

multi-layered control of developmental transformation from

pre- to post-implantation epiblast differentiation and will serve

as a rich resource for further investigation of themechanisms un-

derlying ICM to post-implantation epiblast differentiation.

While previous studies haveprovided important insights into the

proteomes and phosphoproteomes of ESCs inmice (Christoforou

et al., 2016; Li et al., 2011; Nagano et al., 2005; Pines et al., 2011)

and human (Brill et al., 2009; Rigbolt et al., 2011; Swaney et al.,

2009; Van Hoof et al., 2009), signaling dynamics that underlie

pluripotent state transitions remain unexplored. Deeper coverage

of the proteome and the phosphoproteome, coupled with high

temporal resolution, allowed us to elucidate signaling dynamics

that underlie pluripotent state transitions. Our findings that rapid,

acute, and widespread changes to the phosphoproteome pre-

cede any changes to the epigenome, transcriptome, and prote-

ome highlight the prominent role signaling plays in cell fate deci-

sions during embryonic development.
rimed specific (darker shades of red and blue, respectively). See Figure S7A for

ntibodies showing separation in the fluorescence signal between naive ESCs

d EpiLCs (C) are shown.

in ESCs and EpiLCs (first column) and over the ESC to EpiLC time course (other

n pluripotent cells based on RNA-seq data from ESC to EpiLC time course from

EpiSCs (Factor et al., 2014), and RNA-seq data from conventional human ESCs

mparison, all datasets were processed similarly and quantile normalized. Fold
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Figure 7. Comparative Analysis of Mouse and Human Pluripotent States

(A) PCA of RNA-seq data from this study (shades of gray; 0 h, 1 h, 6 h, 12 h, 24 h, 36 h, 48 h, and 72 h) and previously published studies (in color) (Blakeley et al.,

2015; Boroviak et al., 2015; Chan et al., 2013; Chen et al., 2018; Factor et al., 2014; Fiorenzano et al., 2016; Marks et al., 2012; Petropoulos et al., 2016; Takashima

et al., 2014; Yan et al., 2013). To facilitate direct comparison, all datasets were processed similarly and quantile normalized. Each data point represents a

biological replicate. mESC, mouse ESC; hESC, human ESC.

(B) Heatmap showing unsupervised hierarchical clustering of pairwise Pearson correlations between the RNA-seq datasets used in (A).

(C) Relative expression of genes associated with naive pluripotency. Fold changes relative to expression in mouse EpiSCs are shown.

(D) Same as in (C) but showing genes associated with formative and/or primed pluripotency.
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De novo reconstruction of kinase-substrate networks from our

phosphoproteomic data allowed us to elucidate signaling dy-

namics and provide insights into the crosstalk between various

signaling pathways during pluripotent state transitions. Consis-

tent with previous studies showing that ERK signaling is required

to induce ESCs to a state that is responsive to inductive cues

(Kunath et al., 2007), we found that ERK signaling is required

to trigger exit from ground-state naive pluripotency. What was

most revealing, however, was the acute dephosphorylation of

ERK and its substrates within about 6 h into EpiLC induction.

This, together with our finding that ERK signaling is largely

dispensable after about 6 h into EpiLC induction, suggests that

transitioning ESCs do not depend on ERK signaling beyond

the initial phase of exit from naive pluripotency and that the

timing and duration of the transient ERK activation are probably

under strict control during pluripotency progression. Indeed, a

recent study reported that genetic depletion or chemical inhibi-

tion of RSK1, an ERK substrate and a negative regulator of

ERK, is sufficient to increase levels of phosphorylated ERK1/2

and alter the kinetics of ESC differentiation (Nett et al., 2018).

Conversely, while short-term suppression of ERK signaling helps

maintain ESCs in an ICM-like naive state in vitro, prolonged sup-

pression of this pathway compromises the epigenetic and

genomic stability as well as the developmental potential of

ESCs (Choi et al., 2017).

We also found that mTORC1 activity is not required for exit

from naive pluripotency, consistent with studies showing that

mTORC1 activity is not required for cell fate transition (Bet-

schinger et al., 2013). However, inhibition of both mTORC1

and mTORC2 complexes has previously been shown to

induce reversible pausing of mouse blastocyst development

and ESCs in culture (Bulut-Karslioglu et al., 2016). Taken

together, these findings suggest a requirement for mTORC2

but not mTORC1 for exit from naive pluripotency.

Our analysis of the phosphoproteome data using a machine

learning approach allowed us to predict substrates for key

kinases that are active at various phases during pluripotency

progression. Our predictions include a number of transcription

and chromatin regulators, some of which, we surmise,

may have a potential role in mediating or modulating signaling

cascades controlling gene expression programs. Further

studies are required to validate the predicted substrates,

and determine their role, if any, in linking external signals to

epigenetic and/or transcriptional programs controlling cell

fate transition.

Deep coverage of the proteome, coupled with high temporal

resolution, allowed us to uncover distinct waves of global

changes to the proteome that mark discrete phases of pluripo-

tency. The initial wave of changes, likely triggered by the loss

of LIF/Stat3 signaling and/or activation of ERK signaling, marks

the onset of downregulation of key naive pluripotency factors

Nanog and Tfcp2l1 along with the activation of post-implantation

epiblast markers Otx2 and Zic2. This is immediately followed by

the second wave of changes characterized by downregulation of

other naivemarkers (Esrrb, Sox2, Tbx3, Nr0b1, Rex1, and Klf2/4/

5) and upregulation of Dnmt3a/b, setting the stage for rewiring of

the gene regulatory network and remodeling of the epigenome

(Buecker et al., 2014; Kurimoto et al., 2015; Shirane et al.,

2016). The final wave of changes, which coincides with the exit
from the ground state, likely reflects the completion of the

dismantling of the naive pluripotency network and acquisition

of post-implantation epiblast identity. These findings shed the

first light on proteome-wide changes during the phased progres-

sion of pluripotency.

Because EpiLCs more closely resemble the early post-implan-

tation epiblast (E5.5–E6.5) than do EpiSCs (Hayashi et al., 2011),

they have been proposed to represent the ‘‘formative’’ pluripo-

tent state (Rossant and Tam, 2017; Smith, 2017), hypothesized

to be an intermediate state (between the naive and primed states)

that serves as the launching pad for multi-lineage differentiation

(Smith, 2017). Although EpiLC induction from ESCs is a direc-

tional and progressive process thatmirrors epiblast development

(Hayashi et al., 2011), the formative state characterized by

EpiLCs is transient and cannot be captured in stable self-renew-

ing cell lines using current culture conditions (Hayashi et al.,

2011). Given that ESCs exit the naive pluripotent state at about

36 h post EpiLC induction (Figure 2A) and that the transcriptome

of cells 72 h post EpiLC induction more closely resemble EpiSCs

(Figures 7A and 7B), we surmise that cells �36–48 h post EpiLC

induction are representative of the formative pluripotent state.

Our observation that Dnmt3l is transitorily expressed during

ESC to EpiLC transition (Figure 7D), coupled with its expression

in the epiblast (E4.5–6.5) (Smith et al., 2012) but not in EpiSCs

(Veillard et al., 2014), suggests that it could be an excellent

marker to isolate formative PSCs from a heterogeneous popula-

tion of pluripotent cells. It will be of future interest to determine

whether the formative phase can be captured as a stem cell state

in culture, as achieved for naive ESCs and EpiSCs.

Cell-surface proteins specific to ‘‘naive’’ and primed hESCs

are known (Collier et al., 2017), but surface markers specific to

the ground state, as in naive ESCs, remain to be characterized.

Our proteomic data allowed us to identify cell-surface proteins

that are specific to naive ESCs and EpiLCs. Flow cytometry anal-

ysis using a cohort of antibodies confirmed that the inferred

state-specific cell-surface markers accurately track pluripotent

state transitions, with individual proteins exhibiting different

temporal dynamics during the ESC to EpiLC transition. The iden-

tified cell-surface proteins can enable isolation of specific PSC

populations during ESC differentiation and induced PSC (iPSC)

reprogramming without having to rely on transgenic reporters.

Wewere surprised that several cell-surface proteins specific to

naive ESCs (CD38, CD105, CD205, CD10, CD26, andCD117) are

not expressed in ‘‘naive’’ hESCs (Collier et al., 2017), raising the

question of whether the purported naive hESCs can be consid-

ered equivalent to naive mouse ESCs. The naive pluripotent state

captured in mouse ESCs may be very transient or non-existent in

human embryos (Rossant and Tam, 2017). Given the lack of a uni-

versal criterion for testing naive pluripotency in a human system,

unlike murine ESCs where chimera contribution to blastocysts is

the benchmark, assigning naive status to reset or reprogrammed

hESCs is generally based on a molecular but not functional basis

(De Los Angeles et al., 2015; Hackett and Surani, 2014). Based on

the findings from our comparative analysis of the transcriptional

profiles of mouse and human pluripotent states (Figure 7), we

propose that the reprogrammed or reset hESCs are more similar

to the formative state EpiLCs than to the ground-state naive

mouse ESCs and probably lie somewhere along the develop-

mental axis between the naive and the formative state.
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In summary, our studies provide a comprehensive molecular

description of the phased progression of pluripotency. Our

data, togetherwith the complementary data describing sequence

of molecular events inherent to reprogramming somatic cells into

iPSCs (Cacchiarelli et al., 2015; Chronis et al., 2017; Polo et al.,

2012; Schwarz et al., 2018), provide a foundation for investigating

mechanisms that regulate pluripotent state transitions. The

general framework we employed to gain insights into the multi-

layered control of pluripotent cell fate transitions is a paradigm

that can readily be used to investigate any differentiation process.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CD105-APC Biolegend 120413; RRID:AB_2277915

Anti-CD146-PE-Cy7 Biolegend 134713; RRID:AB_2563108

Anti-CD205-PE Biolegend 359203; RRID:AB_2562438

Anti-CD317-APC Biolegend 127015; RRID:AB_1967101

Anti-CD326-Pac-Blue Biolegend 118225; RRID:AB_2563983

Anti-CD38-Pac-Blue Biolegend 102720; RRID:AB_10613468

Anti-CD54-PE Miltenyi Biotech 130-104-215; RRID:AB_2658683

Anti-CD81-PE Biolegend 104905; RRID:AB_2076267

Anti-CD9-PE Biolegend 124805; RRID:AB_1279327

Anti-CD90.2-FITC Biolegend 105305; RRID:AB_313176

Anti-Erk1/2 Cell Signaling 9102; RRID:AB_330744

Anti-pErk1/2 Cell Signaling 9101; RRID:AB_331646

Anti-H3K4me1 Abcam ab8895; RRID:AB_306847

Anti-H3K4me3 Abcam ab8580; RRID:AB_306649

Anti-H3K9me2 Abcam ab1220; RRID:AB_449854

Anti-H3K27ac Abcam ab4729; RRID:AB_2118291

Anti-H3K27me3 Millipore 07-449; RRID:AB_310624

Anti-Histone H3 Abcam ab1791; RRID:AB_302613

Anti-Prdm14 EMD Millipore AB4350; RRID:AB_11213870

Anti-Ran BD Bioscience 610341; RRID:AB_397731

Anti-RNA Polymerase II 8WG16 Covance/Biolegend MMS-126R; RRID:AB_10013665

IRDye 800CW Goat anti-Mouse IgG LI-COR Biotechnology 925-32210; RRID:AB_2687825

IRDye 800CW Goat anti-Rabbit IgG LI-COR Biotechnology 925-32211; RRID:AB_2651127

IRDye 680CW Goat anti-Mouse IgG LI-COR Biotechnology 925-68020; RRID:AB_2687826

IRDye 680CW Goat anti-Rabbit IgG LI-COR Biotechnology 925-68021; RRID:AB_2713919

Chemicals, Peptides, and Recombinant Proteins

2,2,2-Trifluroethanol Sigma 96924

2-Chloroacetamide Sigma C0267

Acetone Fisher Scientific A929

Acetonitrile Fisher Scientific A955-4

Accutase Sigma A6964

Activin A Peprotech 120-14

Ammonium acetate Merck 5438340100

Ammonium bicarbonate Sigma 09830

Ammonium hydroxide Merck 5330030050

B27 Supplement Invitrogen 12587-017

bFGF Peprotech 450-33

BSA fraction V, 7.5% Invitrogen 15260-037

CHIR99021, Gsk-3 inhibitor Selleckchem S2924

DMEM Thermo Fisher 11965-084

DMEM/F12 Invitrogen 21041-025

DNase I Worthington LS002139

DNase I, Amplification grade Thermo Fisher 18068015

Dynabeads (protein G) Pierce 88847

Dynabeads (protein A) Pierce 88846
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REAGENT or RESOURCE SOURCE IDENTIFIER

EDTA Gibco 15575-038

EGTA Bioworld 40520008-2

FGFR Tyrosine Kinase Inhibitor Selleckchem S1470

Fibronectin Millipore FC010

Formaldehyde Sigma F8775

Formic acid Fisher Scientific A11750

Gelatin Sigma G1890

Glycerol Sigma G5516

Glycine Sigma G8898

Guanidine hydrochloride Sigma RDD001

GlycoBlue Ambion AM9515

HEPES Sigma H3375

IGEPAL CA-630 Sigma I-3021

KCl Sigma P9541

KSR Invitrogen 10828-028

Laminin BD Biosciences 354232

L-glutamine 200mM Invitrogen 25030-081

LiCl Sigma 62476

LIF Millipore ESG1107

LIVE/DEAD Fixable Near-IR dye Invitrogen L34976

LysC Wako Chemicals 129-02541

MgCl2 Sigma M2670

N-Lauroylsarcosine MP Biomedicals 190110

N2 Invitrogen 17502048

NaCl, 5M Sigma S5150

NaHCO3 Sigma S6014

Neurobasal Medium Invitrogen 12348-017

NuPAGE Protein Gel Thermo Fisher NP0321BOX

PBS Made in house N/A

PD0325901, MEK inhibitor S1036 Selleckchem

PMSF Sigma P7626

Poly L-ornithine Sigma-Aldrich P3655

Protease Inhibitors Roche 4693159001

Proteinase K Invitrogen 25530049

PVDF membranes Thermo Fisher IB24002

QIAzol Lysis Reagent Qiagen 79306

RNase cocktail Ambion AM2286

SDS, 20% Fisher Scientific BP166

Sodium Deoxycholate Sigma 30970

SsoFast EvaGreen supermix Bio-Rad 1725201

TCEP Thermo Fisher PG82080

Trifluroacetic acid (TFA) Merck 8082600100

Tris HCL Sigma T2663, T6066

Triton X-100 Sigma X100

Trypsin Sigma T6567

Critical Commercial Assays

iScript cDNA Synthesis Kit Bio-Rad 1708891

miRNeasy Mini Kit Qiagen 217004

TruSeq stranded total RNA library prep gold Illumina 20020598

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

Mouse ESCs (E14Tg2a) ATCC CRL-1821

Oligonucleotides

Primers used for RT-qPCR This paper Table S9

Deposited Data

Mouse ESCs (2i + LIF) 0h, RNA-Seq This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, RNA-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, RNA-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, RNA-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, RNA-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, RNA-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, RNA-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, RNA-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + 2i) 0h, RNA-Seq Kalkan et al., 2017 ArrayExpress: E-MTAB-5305

Mouse ESCs (N2B27) 16h, RNA-Seq Kalkan et al., 2017 ArrayExpress: E-MTAB-5305

Mouse ESCs (N2B27) 25h-Rex1high, RNA-Seq Kalkan et al., 2017 ArrayExpress: E-MTAB-5305

Mouse ESCs (N2B27), 25h-Rex1low, RNA-Seq Kalkan et al., 2017 ArrayExpress: E-MTAB-5305

Mouse ESCs (t2iL), RNA-Seq Takashima et al., 2014 ArrayExpress: E-MTAB-2857

Mouse ESCs (t2iL + Gö), RNA-Seq Takashima et al., 2014 ArrayExpress: E-MTAB-2857

Mouse ESCs (PD03 + LIF), RNA-Seq Takashima et al., 2014 ArrayExpress: E-MTAB-2857

Mouse EpiSCs, RNA-Seq Factor et al., 2014;

Fiorenzano et al., 2016

GEO: GSE57409 and GSE79796

Mouse E5.5 postimplantation epiblast, RNA-Seq Boroviak et al., 2015 ArrayExpress: E-MTAB-2958

Human blastocyst ICM, RNA-Seq Yan et al., 2013 GEO: GSE36552

Human ESCs (hESCs), RNA-Seq Chan et al., 2013;

Takashima et al., 2014

ArrayExpress: E-MTAB-2031 and E-MTAB-2857

Reset hESCs (t2iL + Gö), RNA-Seq Takashima et al., 2014 ArrayExpress: E-MTAB-2857

Human ESCs (hESCs, 3iL), RNA-Seq Chan et al., 2013 ArrayExpress: E-MTAB-2031

Human E5 epiblast, RNA-Seq Petropoulos et al., 2016 GEO: GSE74155

Human E6 epiblast, RNA-Seq Petropoulos et al., 2016 GEO: GSE74155

Human E7 epiblast, RNA-Seq Petropoulos et al., 2016 GEO: GSE74155

Human E6-E7 epiblast, RNA-Seq Blakeley et al., 2015 GEO: GSE66507

Mouse ESCs (2i + LIF) 0h, H3K4me1 ChIP-Seq This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, H3K4me1 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, H3K4me1 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, H3K4me1 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, H3K4me1 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, H3K4me1 ChIP-Seq

This paper GEO: GSE117896

(Continued on next page)
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Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, H3K4me1 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, H3K4me1 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (2i + LIF) 0h, H3K4me3 ChIP-Seq This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, H3K4me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, H3K4me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, H3K4me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, H3K4me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, H3K4me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, H3K4me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, H3K4me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (2i + LIF) 0h, H3K27ac ChIP-Seq This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, H3K27ac ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, H3K27ac ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, H3K27ac ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, H3K27ac ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, H3K27ac ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, H3K27ac ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, H3K27ac ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (2i + LIF) 0h, H3K27me3 ChIP-Seq This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, H3K27me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, H3K27me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, H3K27me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, H3K27me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, H3K27me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, H3K27me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, H3K27me3 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (2i + LIF) 0h, H3K9me2 ChIP-Seq This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, H3K9me2 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, H3K9me2 ChIP-Seq

This paper GEO: GSE117896

(Continued on next page)
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Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, H3K9me2 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, H3K9me2 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, H3K9me2 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, H3K9me2 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, H3K9me2 ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (2i + LIF) 0h, RNAPII ChIP-Seq This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, RNAPII ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, RNAPII ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, RNAPII ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, RNAPII ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, RNAPII ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, RNAPII ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, RNAPII ChIP-Seq

This paper GEO: GSE117896

Mouse ESCs (2i + LIF) 0h, Control input DNA This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 1h, Control input DNA

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 6h, Control input DNA

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 12h, Control input DNA

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 24h, Control input DNA

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 36h, Control input DNA

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 48h, Control input DNA

This paper GEO: GSE117896

Mouse ESCs (N2B27 + Activin A + bFGF +

1% KSR) 72h, Control input DNA

This paper GEO: GSE117896

Software and Algorithms

R 3.3.2 R Development Core Team, 2016 https://www.R-project.org/

MaxQuant 1.5.3.29 Cox and Mann, 2008 http://www.biochem.mpg.de/5111795/maxquant

Bowtie 0.12.8 Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml

STAR 2.5.2a Dobin et al., 2013 https://github.com/alexdobin/STAR

Bedtools 2.26.0 Quinlan, 2014 http://bedtools.readthedocs.io/en/latest/

HTSeq 0.6.1 Anders et al., 2015 http://www-huber.embl.de/HTSeq/doc/overview.html

ComBat (SVA R package 3.24.0) Johnson et al., 2007 https://www.bu.edu/jlab/wp-assets/ComBat/

Abstract.html

Limma 3.32.2 Ritchie et al., 2015 https://bioconductor.org/packages/release/bioc/

html/limma.html

edgeR 3.16.5 Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/

html/edgeR.html

(Continued on next page)
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DESeq2 1.16.1 Love et al., 2014 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

Clue 1.2 Yang et al., 2015 https://CRAN.R-project.org/package=ClueR

directPA 1.3 Yang et al., 2014 https://CRAN.R-project.org/package=directPA

Kinase-substrate Prediction Yang et al., 2016a https://github.com/PengyiYang/KSP-PUEL

KinasePA Yang et al., 2016b http://shiny.maths.usyd.edu.au/KinasePA/

IceLogo Colaert et al., 2009 https://github.com/compomics/icelogo
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Dr. Raja Jothi (jothi@

nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse ESC Culture and EpiLC Induction
Mouse ESCs (E14Tg2a; male) were grown in serum free N2B27-based medium, supplemented with 2i (MEK inhibitor PD0325901,

1.0 mM and Gsk3b inhibitor CHIR99021, 3.0 mM) and LIF (1000u/ml) in tissue culture (TC) plates coated with poly L-ornithine and

laminin (Hayashi et al., 2011). For EpiLC induction, ESCs, adapted for a minimum of 4 passages in 2i+LIF, were plated on TC dishes

coated with human plasma fibronectin (5mg/ml) in N2B27 medium containing activin A (20 ng/ml), bFGF (12mg/ml) and KSR (1%)

(Hayashi et al., 2011).

METHOD DETAILS

Phosphoproteome Sample Preparation
All MS experiments were performed in biological quadruplicates. Phosphopeptides were enriched using the EasyPhos workflow as

described previously (Humphrey et al., 2015). Briefly, cells were lysed in GdmCl buffer (6M Guanidine hydrochloride, 100 mM Tris

pH 8.5, 10mMTCEP, 40mM2-Chloroacetamide) and heated for 5min at 95�C. Lysateswere cooled on ice for 15minutes, sonicated,

and acetone precipitated overnight by addition of 4X volumes of -20�C acetone. Precipitated protein was collected by centrifugation,

and pellets washed 1X with 4 mL -20�C 80% (v/v) acetone. Washed pellets were air-dried for 10 min at room temperature, resus-

pended in 500 mL TFE digestion buffer (10% TFE (2,2,2-Trifluroethanol), 100 mM ammonium bicarbonate), and sonicated (Bioruptor

(Diagenode), 4�C for 2X 5 min cycles) until a homogenous suspension was formed. Protein concentration was determined by BCA

assay (Thermo Fisher Scientific). Aliquots corresponding to 1 mg protein were diluted to 500 mL in TFE digestion buffer for phospho-

peptide enrichment, and 20 mg protein was used for proteome analysis. Protein was subsequently digested by the addition of 1:100

LysC and Trypsin overnight at 37�C with rapid agitation (2,000 rpm).

Proteome Sample Preparation
As with phosphoproteome, all MS experiments were performed in biological quadruplicates. In addition, to enhance coverage of the

proteome measurements, we pooled the four biological replicates from each time-point and performed StageTip-based Strong

Cation Exchange (SCX) fractionation (Ishihama et al., 2006) of this pooled sample for the proteome runs (Figures 1C, S2A, and

S2B). Proteome samples were processed using an in-StageTip (iST) protocol (Kulak et al., 2014), and 10 mg (or 20 mg) protein material

was used for single-shot or fractionated samples, respectively. For fractionated samples, equal quantities (5 mg per biological repli-

cate) of protein were pooled prior to digestion. Precipitated protein was reconstituted in iST lysis buffer (6M GdmCl, 100 mM Tris

pH 8.5), diluted to 10-fold in iST dilution buffer (10% acetonitrile, 25mMTris pH 8.5), and digested with 1:100 LysC (Wako Chemicals)

and Trypsin at 37�C overnight directly in StageTips containing SDB-RPS (Styrene Divinyl Benzene Reverse Phase Sulfonate)

(3X plugs, Empore 3M) (iST-SDB-RPS) or Strong Cation Exchange (SCX) (6X plugs, Empore 3M) (iST-SCX), for single-shot or frac-

tionated samples respectively. For single-shot iST-SDB-RPS samples, StageTips were washed once with 100 mL 0.2% (v/v) Trifluro-

acetic acid (TFA), and subsequently eluted with 60 mL 5% (v/v) ammonium hydroxide, 80% (v/v) acetonitrile. For fractionated ist-SCX

samples, peptides were eluted in 5X fractions (50 mM, 75 mM, 125 mM, 200 mM, 300 mM) of ammonium acetate, 20% (v/v) Aceto-

nitrile, 0.5% (v/v) formic acid, followed by a final elution with 5% (v/v) ammonium hydroxide/80% (v/v) acetonitrile.

LC-MS/MS Measurement
Peptides and phosphopeptides were loaded onto a 40 cm column with a 75 mM inner diameter, packed in-house with 1.9 mM C18

ReproSil particles (Dr. Maisch GmbH), and column temperature was maintained at 50�C using a homemade column oven. An

EASY-nLC 1000 system (Thermo Fisher Scientific) was interfaced with a Q Exactive HF benchtop Orbitrap mass spectrometer
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(Thermo Fisher Scientific) using a NanoSpray Flex ion source (Thermo Fisher Scientific). For all samples, peptides were separated

with a binary buffer system of 0.1% (v/v) formic acid (buffer A) and 60% (v/v) acetonitrile/0.1% (v/v) formic acid (buffer B), at a

flow rate of 300 nL/min. For phosphoproteome analysis peptides were eluted with a gradient of 5% - 25% buffer B over 85 minutes

followed by 25% - 55% buffer B over 45 minutes, and peptides were analysed with one full scan (300-1,600 m/z; R=60,000 at

200 m/z) at a target of 3e6 ions, followed by up to five data-dependent MS/MS scans with HCD (target 1e5 ions; max IT 120 ms;

isolation window 1.6m/z; NCE 25%; 40% underfill ratio), detected in the Orbitrap detector (R=15,000 at 200m/z). Dynamic exclusion

(40 s) and Apex trigger (4 to 7 s) were switched on. For single-run proteome analysis, peptides were eluted with a gradient of

4% - 32% buffer B over 180 minutes followed by 32% - 47% buffer B over 40 minutes, and for pooled SCX-fractionated samples,

peptides were elutedwith a gradient of 4% - 32%buffer B over 90minutes followed by 32% - 47%buffer B over 20minutes. Peptides

were analysed, with one full scan (300-1,600 m/z; R=60,000 at 200 m/z) at a target of 3e6 ions, followed by up to 10 (for single-run

samples) or 15 (for fractionated samples) data-dependent MS/MS scans with HCD (target 1e5 ions; max IT 100 ms for single-run

samples, 25 ms for fractionated samples; isolation window 1.6 m/z; NCE 25%; 30% underfill ratio), detected in the Orbitrap detector

(R=15,000 at 200 m/z). Dynamic exclusion (30 s) was switched on.

Quantitative RT-PCR
Quantitative RT-PCR was performed as previously described (Oldfield et al., 2014). Briefly, Total RNAs were prepared from cells

using Qiazol lysis reagent (Qiagen), and cDNAs were generated using the iScript kit (Bio-Rad) according to the manufacturer’s in-

structions. Quantitative PCRs were performed on the Bio-rad CFX-96 or CFX-384 Real-Time PCR System using the Bio-rad SsoFast

EvaGreen supermix. Three or more biological replicates were performed for each experiment. Data are normalized to Actin expres-

sion, and plotted as mean +/- S.E.M. See Table S9 for primers used in RT-qPCR analysis.

RNA-Seq
Total RNA was extracted with Qiazol lysis reagent (Qiagen) treatment and purified using miRNeasy Kit. The samples were then

treated with DNase I, Amplification grade (Invitrogen) and stranded libraries were prepared using the TruSeq stranded RNA kit

(Illumina) with RiboZero depletion (Gold kit) and sequenced on Illumina HiSeq system.

ChIP-Seq
ChIP was performed as previously described (Oldfield et al., 2014). Briefly, mouse ESCs (1x107) were cross-linked with 1% formal-

dehyde in DMEM for 10 min, and the reaction was quenched by the addition of glycine at a final concentration of 125 mM for 5 min.

Cells were washed twice with PBS, and resuspended in 1ml of lysis buffer A (50mMHEPES pH 7.5; 140mMNaCl; 1 mMEDTA; 10%

Glycerol; 0.5% IGEPAL CA-630; 0.25% Triton X-100; 1x Complete protease inhibitor mixture, 200 nM PMSF). After 10min on ice, the

cells were pelleted and resuspended in 1 ml of lysis buffer B (10 mM Tris-HCl pH 8.0; 200 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 1x

protease inhibitors, 200 nM PMSF). After 10 min at room temperature, cells were sonicated in lysis buffer C (10 mM Tris-HCl pH 8.0;

100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 0.1% sodium deoxycholate; 0.5% N-lauroylsarcosine; 1x protease inhibitors, 200 nM

PMSF) using Diagenode Bioruptor for 16 cycles (30 sec ON; 50 sec OFF) to obtain �200–500 bp fragments. Cell debris were pre-

cleared by centrifugation at 14,000 rpm for 20 min, and 8 mg (or 20 mg) of chromatin was incubated with antibodies against specific

Histone modifications (or RNA Pol II, respectively) overnight at 4 C. Protein A/G-conjugated magnetic beads (Pierce Biotech) were

added the next day for 2 hours. Subsequent washing and reverse cross-linking were performed as previously described (Heard

et al., 2001).

Western Blot
Western-blots were performed as previously described (Oldfield et al., 2014). Briefly, Cell pellets, lysed in RIPA buffer (25 mM Tris-

HCl, pH 7.4, 150 mM NaCl, 1% IGEPAL, 1% Sodium deoxycholate) with protease inhibitors, were sonicated using Bioruptor

(Diagenode) for three cycles (30 sec ON; 50 sec OFF). The lysate was boiled with SDS-PAGE sample buffer, loaded onto NuPAGE

gel, and transferred to 0.22 mM PVDF membranes. The membranes were pre-wet in 100%methanol and rinsed with ultrapure water

before being washed for 5 min in 1x PBS. The membranes were then blocked with Odyssey blocking buffer for 1 h at room temper-

ature with gentle shaking. Each membrane was treated with appropriate primary and secondary (IRDye) antibodies. The membranes

were then washed in PBS (0.1% Tween 20), rinsed with PBS and scanned and quantified on an Odyssey imaging system.

Flow Cytometry
Cells were dissociated into single cells with Accutase, washed and passed through 40 mmcell strainers. Cells were washed with PBS

and stained with LIVE/DEAD Fixable Near-IR dye (Invitrogen) to stain dead cells (1 x 106 to 2 x 106 cells per reaction). Cells were

washed 2X with flow buffer (2% FBS in PBS, 1MmEDTA, 25ug/ml Dnase I). Conjugated antibodies were mixed with 50 mL flow buffer

and applied to 50 mL of cells. Cells were incubated for 30 minutes at 4�C in the dark and washed 2X with buffer (2% FBS in PBS) and

centrifuged at 300xg for 5 minutes. Data was analyzed using FlowJo V10 software or FACSDiva (BD Biosciences).

Phosphoproteomics Data Analysis
Raw MS files from phosphoproteomics experiments were processed using MaxQuant (version 1.5.3.29) (Cox and Mann, 2008) for

phosphosite identification using mouse UniProt (August 2015 release). In total, 37,619 phosphorylation sites were identified, which
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are classified into Class I (27,381), II (6,265) and III (3,973) based onMaxQuant reported confidence of localization scores (Figure S2A,

left panel). Phosphorylation level of each site was quantified using LFQ intensity from MS and logarithm (base 2) transformed.

Denoting the 12 profiled time points as ti (i= 0, 5m, 15m, 30m, 1h, 3h, 6h, 12h, 24h, 48h, 72h) and the number of times a phosphor-

ylation sites (p) quantified at a given time point as qp(ti). Phosphorylation sites from Class I were filtered to require at least 4 valid

values in any one of the 12 time-points (i.e. d i such that qp(ti)=4). Subsequently, only phosphorylation sites with at least 12 out

of 48 quantified values (12 time-points, four replicates) were retained (i.e.
P

iq
pðtiÞR12) for further analysis. This resulted in

17,866 phosphorylation sites passing the above stringent filtering criteria. This filtered data was thenmedian-normalized with respect

to each of the 12 time-points and remaining missing quantifications within these data were subsequently imputed using a two-step

procedure. In the first step, for each phosphorylation site with two or more quantified values out of the four biological replicates in

each time point (i.e.d i such that qp(ti)R2), we calculated the mean (mp
ti
) and standard deviation (sdp

ti
) for that p at ti using quantified

replicates and imputedmissing data for p at ti using a Gaussianmodel parameterised bymp
ti
and sdp

ti
. In the second step, we imputed

the remaining missing values using the heuristic random-tail method described previously (Robles et al., 2017). Specifically, for each

time point ti the grandmean (m,
ti
) and grand standard deviation (sd,

ti
) across all phosphorylation sites were calculated and a Gaussian

model were utilised to impute missing data in each ti by down-shifting m,
ti
by 1.6 and with a standard deviation of sd,

ti
3 0.6. Phos-

phoproteomics data were subsequently corrected for batch effects usingComBat (Johnson et al., 2007), and finally data was normal-

ized by the total proteome.

Proteomics Data Analysis
Like the phosphoproteome data, raw MS files from total proteome experiments were processed using MaxQuant (1.5.3.29) for pro-

tein identification using mouse UniProt database (August 2015 release). After filtering to remove common protein contaminants and

reverse matches, we identified a total of 10,597 proteins. Protein abundance was quantified using LFQ intensity and log (base 2)

transformed. Since the fractionated samples have fewer missing values (Figures S2B and S2C), we took advantage of themore com-

plete quantitation from fractionated samples to guide the imputation of missing values in the single-run samples. Denoting the 9 pro-

filed time points in proteomics experiment as ti (i= 0, 30m, 1h, 3h, 6h, 12h, 24h, 48h, 72h) and a protein (P) that is quantified at a given

time point in the fractionated sample as sP(ti), protein identifications from fractionated samples were filtered to require at least 5 valid

values out of the 9 time-points (i.e.
P

is
PðtiÞR5). Then, for fractionated samples we calculated the means (mS

ti
) and the standard

deviations sdS
ti
at each time point ti and imputed the missing values in the fractionated samples at each time point by downshifting

mS
ti
by 1.8 and with a standard deviation of sdS

ti
3 0.3 as in Beck et al. (2015). After filtering and imputing data specifically for fraction-

ated samples, we first calibrated the single-run samples with respect to fractionated samples at each time point and then imputed

missing values by using the means mS
ti
and standard deviations sdS

ti
30:3 calculated from fractionated samples. Then, batch effect

correction was applied using ComBat (Johnson et al., 2007 Biostatistics) for subsequent analysis. Fuzzy c-means clustering (c = 9)

was used to partition the proteins that are the most down-regulated or up-regulated into clusters based on their temporal expression

profiles (Figure 5A). Resulting clusters were ranked by the cluster size (number of proteins) from large to small, and the top six

clusters, with the most proteins, are shown (Figure 5A).

RNA-Seq Data Analysis
Pair-end 51 bp reads weremapped to themouse (mm9) genome using STAR (version 2.5.2a) (Dobin et al., 2013), allowing up to three

mismatches, retaining only reads that align to unique locations, and permitting a maximum intron length of 100,000. For visualization

on theUCSCGenomeBrowser and generation of screenshots,mapped readswere normalized to reads permillion (RPM) and plotted

as histograms usingBedtools version 2.26.0 (Quinlan, 2014). For gene expression analysis,mapped readswere subsequently used to

quantify Ensembl/Refseq transcript and gene models (Flicek et al., 2012) using HTSeq version 0.6.1 (Anders et al., 2015). Raw read

counts per gene were normalized using the DESeq2 R package version 1.16.1 (Love et al., 2014), batch effect corrected by ComBat,

and transformed using a regularized log function implemented in DESeq2. Gene length was extracted from BioMart Database (Dur-

inck et al., 2005), and edgeR package version 3.18.1 (Robinson et al., 2010) was used to calculate RPKM for each gene. RNA-Seq

data from Kalkan et al. (2017) were processed similarly (as described above) and normalized together with RNA-Seq data generated

for this study using DESeq2 to facilitate principal component analysis (PCA) (Figure 2A). For comparison of RNA-Seq data from

mouse and human cells (Figures 6E, 7C, and 7D), RPKM data for genes were log2 transformed (after adding 1) and quantile normal-

ized. For PCA and unsupervised hierarchical clustering of RNA-Seq data frommouse and human cells, only geneswith the samegene

symbol inmouse and human transcriptomeswere considered. After filtering out low-expression genes (mean expression (log2 RPKM)

across the eight ESC to EpiLC time-points < 1.5, a threshold that was empirically derived from the distribution ofmeans), coefficient of

variation for each gene was calculated as a measure of variability in gene expression. To explore the data in an unbiased manner, we

carried out dimensionality reduction using the top 1000 genes with the highest variability in expression (Figures 7A and 7B).

ChIP-Seq Data Analysis
Single-end 51 bp reads were mapped to the mouse (mm9) genome using Bowtie version 0.12.8 (Langmead et al., 2009), allowing

up to two mismatches, retaining only reads that align to unique locations. For visualization on the UCSC Genome Browser and

generation of screenshots, mapped reads were normalized to reads per million (RPM) and plotted as histograms using Bedtools
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version 2.26.0 (Quinlan, 2014). Enrichment of individual histone modifications (except for H3K9me2) or RNAPII at gene promoters

(Figure 1C) was called based on normalized ChIP-Seq read density within the promoter region (±2 Kb of TSS) compared to input

read density with the same region (>3-fold and FDR<0.01). For H3K9me2, given its broader footprint, ChIP-Seq read density within

gene body instead of the promoter was used. For PCA unsupervised hierarchical clustering of histonemodifications and RNAPII data

(Figures S3A and S3F), ChIP-Seq signal for were quantile normalized to account for differences in signal-to-noise ratios.

Correlation Analysis of Protein and mRNA Expression
Global correlation between protein and mRNA expression for each time-point (Figure S6A) was calculated using Pearson correlation

coefficient using only genes that were quantified at both the mRNA (log10 RPKM) and the protein level (log10 LFQ intensity). Global

correlation between protein andmRNA fold-changes (compared to 0h data) for each time-point was calculated similarly (Figure S6B)

and fitted using a local polynomial regression (Loess) model (Figure 4A). The correlation between mRNA and protein expression

across the time-course, for individual genes, was calculated using Pearson correlation coefficient (Figures 4C, 4D, and S6D). To

determine the relevance of each gene to ESCs and EpiLCs, we first rank-ordered the genes based on their mRNA (or protein)

fold-changes in EpiLC (72h) vs ESC (0h) and then obtained the final rank-ordering of the genes (Figures 4D and S6C) based on

the average of their two ranks (mRNA/protein expression-based).

Comparative Analysis of Multi-ome Dynamics
Differentially regulated mRNAs, proteins and phosphosites at one or more time points (compared to 0h data) were determined using

ANOVA test with multiple testing correction (FDR<0.01) (Figure S4). Volcano plots were used to visualize dynamic regulation by plot-

ting the log2 fold change against –log10 of the permutation FDR adjusted p-value of the t-test on each mRNA, protein and phospho-

site, respectively, at each time point. A scatter parameter of 0.1 (Tusher et al., 2001) which takes into account the log2 fold change and

the statistical significance was used to identify dynamically regulated mRNAs, proteins, and phosphosites, respectively, at each time

point. Percentage of dynamically regulatedmRNAs, proteins, phosphosites and enriched H3K4me3 and H3K27me3were calculated

for each time point and scaled to themaximumpercentage on transcriptome, proteome, phosphoproteome and epigenome layers. A

local polynomial regression (Loess) was fitted to the scaled percentage calculated for each time point (Figure 2D). Magnitude of

change for each mRNA, protein and phosphosite (Figure 2E) was determined by taking the highest absolute fold-change observed

at all time points (compared to 0 h data): maxðabsðxi=x0ÞÞ; i = 1.n;where xi (and x0) denotes the normalized value quantified at the ith

(or 0 h) time-point for each mRNA, protein, or phosphosite.

Gene Ontology Analysis
GeneOntology (GO) analysis of differentially expressed genes (72h vs 0h; Figure 4B) was performed using only genes that were up- or

down-regulated at both the mRNA and protein levels. To identify such genes, we integrated the proteomics and transcriptomics

data using a previously published strategy (Yang et al., 2014) to group genes into eight classes based on the following criteria:

(I) up-regulated at both the mRNA and protein levels, (II) up-regulated at the mRNA level but unchanged at the protein level, (III)

up-regulated at the mRNA level but down-regulated at the protein level, (IV) unchanged at the mRNA level but down-regulated at

the protein level, (V) down-regulated at both the mRNA and protein levels, (VI) down-regulated at the mRNA level but unchanged

at the protein level, (VII) down-regulated at the mRNA level but up-regulated at the protein level, and (VII) unchanged at the

mRNA level but up-regulated at the protein level. Class I (up-regulated) and class V (down-regulated) genes were analyzed for

enriched GO categories (Figure 4B) using GO annotations (Gene Ontology Consortium, 2015).

Kinase Activity Inference
To infer kinases active during ESC to EpiLC transition, we used CLUE (Yang et al., 2015), a fuzzy c-means clustering algorithm,

to partition all phosphosites into 12 optimal clusters based on their temporal profiles (Figures S5A and S5B), and identified, for

each cluster, kinases whose known substrates are enriched within that cluster. Known kinase-substrate relationships

annotated in the PhosphoSitePlus database (Hornbeck et al., 2012) were used as a reference, and Fisher’s exact test was

used to assess statistical significance of over-representation. Four out of the 12 clusters were found to be enriched for sub-

strates with known kinases ERK/S6K/RSK, mTOR, p38a, and AKT (Figures 3A and 3B). An independent kinase perturbation

analysis (Figure S5C) was performed using KinasePA (Yang et al., 2016b) to infer kinases active/regulated at various time-points

during ESC to EpiLC induction, based on known kinase-substrate relationships annotated in PhosphoSitePlus database (Horn-

beck et al., 2012).

Pathway Enrichment Analysis
Pathway enrichment analysis (Figure 3C) was performed using the list of genes that encode for proteins containing the phosphosites

from each of the inferred cluster. Pathway enrichment within a set of genes was evaluated by comparing that set of genes against

genes within known pathways, as annotated in the Reactome database (https://reactome.org). Fisher’s exact test was used to

assess statistical significance of over-representation.
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Substrate Prediction and Motif Analysis
Substrate prediction for ERK, mTOR, AKT, RSK/S6K and p38a was performed using an extendedmulticlass prediction version of the

positive-unlabeled ensemble learning (Yang et al., 2016a). Briefly, the ensemble learning algorithm obtains the positive training in-

stances by extracting known kinase-substrates fromPhosphoSitePlus database and combines themwith negative training instances

obtained by randomly sampling from the rest of all identified phosphorylation sites using a positive-unlabeled learning technique.

Throughout the training and prediction steps, the ensemblemodel integrates both the dynamic features extracted from time-resolved

phosphoproteomics temporal profiles and the kinase recognition motif compiled from known substrates of each kinase and subse-

quently performs a multiclass classification to predict novel substrates for each kinase. Prediction results from the model were

visualized as three-dimensional scatter plots with rainbow gradient colors from red to purple indicating most to least probable sub-

strates of each kinase (Figure S5D, inset). Prediction results were also clustered to show their proximity to other predicted substrates

of the same or a different kinase (Figure S5D). Consensus sequence motifs enriched within predicted substrates (Figure 3J) were

identified using IceLogo (Colaert et al., 2009), using precompiled mouse Swiss-Prot sequence composition as the reference set.

QUANTIFICATION AND STATISTICAL ANALYSIS

See Methods Details for details of quantification and statistical analysis.

DATA AND SOFTWARE AVAILABILITY

Mass spectrometry data generated for this study have been deposited to the ProteomeXchangeConsortium (http://proteomecentral.

proteomexchange.org/cgi/GetDataset), via the PRIDE (Deutsch et al., 2017) partner repository under PRIDE: PXD010621. RNA-Seq

and ChIP-Seq data generated for this study have been deposited in the GEO repository under the accession number GEO:

GSE117896. The processed data can be explored at http://www.stemcellatlas.org.
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