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Controlling distinct signaling states in cultured cancer
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ABSTRACT:Cancer cells can switchbetween signalingpathways to regulate growthunder different conditions. In the
tumormicroenvironment, this likely helps them evade therapies that target specific pathways.Wemust identify all
possible states and utilize them in drug screening programs. One such state is characterized by expression of the
transcription factorHairy andEnhancer of Split 3 (HES3) and sensitivity toHES3knockdown, and it canbemodeled
invitro.Here,we cultured3primaryhumanbrain cancer cell linesunder 3different culture conditions thatmaintain
low, medium, and high HES3 expression and characterized gene regulation and mechanical phenotype in these
states. We assessed gene expression regulation followingHES3 knockdown in theHES3-high conditions. We then
employed a commonly usedhumanbrain tumor cell line to screen Food andDrugAdministration (FDA)-approved
compounds that specifically target theHES3-high state.We report that cells frommultiple patients behave similarly
when placed under distinct culture conditions. We identified 37 FDA-approved compounds that specifically kill
cancer cells in thehigh-HES3–expression conditions.Ourwork reveals a novel signaling state in cancer, biomarkers,
a strategy to identify treatments against it, and a set of putative drugs for potential repurposing.—Poser, S.W., Otto,
O.,Arps-Forker,C.,Ge,Y.,Herbig,M.,Andree,C.,Gruetzmann,K.,Adasme,M.F.,Stodolak,S.,Nikolakopoulou,P.,
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Cancer cells cultured indifferent conditionsare locked into
different signal transduction states that render them sen-
sitive to different properties. This plasticity likely helps
cells evade therapy (1). Understanding as many of these
states as possible will help us identify tailor-made treat-
ments for each one. Here, we focus on such a state, char-
acterized by expression of the transcription factor Hairy
and Enhancer of Split 3 (HES3) (2) and sensitivity toHES3
RNA interference (3).

The HES3+ state can be maintained in culture using
established protocols that include an inhibitor of Janus
kinase (JAK), a protein that opposes HES3 expression (3,
4). The fact that JAK inhibition promotes cell growth in
these conditions, whereas it opposes them in others (5, 6),
stresses the importance of identifying and characterizing
as many growth options as possible. Because HES3-
expressing cells are found in tumor biopsies (3, 7) un-
derstanding this state is of clinical interest.

We used 3 primary cell lines, each derived from a dif-
ferent patient, cultured under 3 different monolayer con-
ditions:1) common,serum-containingmedium,characterized
by high JAK activity and low HES3 expression; 2) serum-
free medium containing the mitogen epidermal growth
factor (EGF) that maintains cells in an intermediate HES3
expression level (3) [this condition is oftentimes used for 3-
dimensional glioblastoma cell culture systems (8)]; and 3)
serum-freemediumcontaining themitogenbasic fibroblast
growth factor (bFGF) and a JAK inhibitor, characterized by
low JAK activity and high HES3 expression levels (often
usedwithmonolayerprimaryneural stemcell cultures) (4).
The cell culture medium compositions were designed to
maintain cells locked into particular signaling states; they
were not selected for the purpose of studying the effects of
particular components of the medium (e.g., the cytokines
included in them).

We assessed gene expression and mechanical proper-
ties [by real-time deformability cytometry (DC)] in the
different conditions and the response to HES3 RNA in-
terference in the conditions characterized by high HES3
expression.

Finally, we switched to a human brain tumor cell line
(U-87MG) that is commonly used in drug screening eff-
orts to identify Food and Drug Administration (FDA)-
approved compounds that are effective in the HES3-high
state but not effective in the more commonly used serum-
containing state, thus focusing our search on potentially
overlookedputative therapeutics.We chose awidely used
and easily available cell line for these experiments to help
other scientists repeat andreproduceourdata.At the same
time, we were able to demonstrate that U-87MG cells can
also be locked in different signaling states, further show-
casing the robustness of our thesis.

We found distinct gene expression patterns associated
with the 3 different culture conditions that were shared
among all 3 patient-derived tumor cell lines. The me-
chanical assessment shows strong correlation between the
HES3-high state and small cell size or increased deform-
ability. Suchmechanical properties have been observed in
cells with metastatic competence and cancer stem cell
properties and following dedifferentiation (9–12). Finally,
we demonstrate, in a proof-of-concept manner using a

library of 1600 FDA-approved compounds, that drug
screening the samecell lineunderdifferent conditions and,
particularly, the HES3-high condition identifies new pu-
tative therapeutics for oncology.

MATERIALS AND METHODS

All methods were performed in accordance with the relevant
guidelines and regulations. Gene expression data in cancerous
tissues was obtained using the Human Protein Atlas (http://
www.proteinatlas.org). Human figure schematics were generated
using BioDigital (http://www.biodigital.com).

Cell culture

We used previously established human cell lines: U-87MG from
American TypeCulture Collection (ATCC;Manassas, VA,USA)
and 3 primary human brain tumor cell lines (3, 13). For the pri-
mary lines, materials in excess of pathologic evaluation were
used for research purposes in accordance with protocols ap-
proved by the Institutional Review Board of the U.S. National
Institutes of Health (NIH; Bethesda, MD, US). Written consent
had been obtained, and all research tumor tissues were deiden-
tified. No animals were used in this work. All methods were
performed in accordance with the relevant guidelines and
regulations.

Three primary human brain tumor cell lines (X01, X04, and
X08) were used in this work. X01 andX04 are from patients with
glioblastoma multiforme, whereas X08 is from a patient with
gliosarcoma (13, 14). The cell lines were previously established
fromacutely resected human tumor tissues.All human tissues in
this studywere obtainedduring surgical resections frompatients
with newly diagnosed or recurrent tumors.Materials in excess of
pathological evaluation were used for research purposes in ac-
cordance with protocols approved by the Institutional Review
Board of theNIH.Written consentwas obtained, and all research
tumor tissues were deidentified (3). Resected tissue was tritu-
rated inN2mediumcontaining20ng/mlEGFwith a1mlpipette
until no tissue clamps were seen; the triturate was allowed to
settle for 1min, and the supernatant was collected, diluted in N2
containing EGF, and plated. Cells were expanded in serum-free
DMEMandF12medium (10-090-CV;Mediatech,Manassas,VA,
USA) with N2 supplement and EGF (20 ng/ml; R&D Systems,
Minneapolis,MN,USA) for 5 d under 5%oxygen conditions and
were replated fresh or from frozen stocks at 1000–10,000 cells/
cm2. Thiswas repeated for several passages. For the experiments,
frozen stocks were thawed and expanded as previously de-
scribed, and, upon passaging, they were replated into different
culture conditions, as described in the Results section. Gene ex-
pression and mechanical analysis were performed after 5 d in
culture. For a complete protocol, see Poser et al. (15).

We also used the human brain tumor cell line U-87MG [HTB-
14; American Type Culture Collection (ATCC)]. This was prop-
agated in serum-containing Roswell Park Memorial Institute
(RPMI) medium. It was then replated in different medium
according to experimental needs, as described in the Results.

Gene expression profiling by RNA sequencing

RNA was extracted using the High Pure RNA Isolation Kit
(Roche, Basel, Switzerland), and samples were subjected to the
standard workflow for strand-specific RNA sequencing library
preparation (UltraDirectional RNALibrary Prep; NEB, Ipswich,
MA, USA). Libraries were equimolar, pooled, and sequenced on
an Illumina (SanDiego, CA,USA)HiSeq 2500, resulting in about
26–35 million single-end reads per library. After sequencing,
FastQC (http://www.bioinformatics.babraham.ac.uk/) was used to
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perform a basic quality control on the resulting reads. As an
additional control, librarydiversitywas assessed by redundancy
investigation in the reads. Reads were aligned to the human
reference (GRCh38) using GSNAP (v.2014-12-17) (16), and
Ensembl (http://dec2014.archive.ensembl.org/index.html) gene anno-
tation v.78 was used to detect splice sites. The uniquely aligned
readswere countedwith featureCounts (v.1.4.6) (17) and the same
Ensembl annotation. Normalization of the raw read counts based
on the library size and testing for differential expression between
conditions was performed with the DESeq2 R package (v.1.6.2)
(18). Experiments addressing the effect of cell culture medium
composition were performed in triplicates; effects addressing
the effect of HES3 RNA interference were performed in
quadruplicates.

Systems biomedical analysis (experiments under
different culture conditions)

For the RNA sequencing data analysis, we performed principal
component (PC) analysis (PCA) to investigate the presence of
gene expression patterns related with the experimental culture
conditions and the cell lines in a nonbiased (unsupervised)
manner (19). PCA is an unsupervisedmachine learningmethod,
by which original multiple variables (here, genes) are converted
into a set of linearly uncorrelated orthogonal variables (PCs) in
such a way that the first PC (PC1) accounts for the largest vari-
ability of the data, and the succeeding PCs account for the vari-
ance in decreasing order under the constraint that each
component is orthogonal to the preceding ones (20).

For the heat map generation, PC1 loadings were normalized
according to the maximum absolute value to21 and 1. The top
1% most significantly regulated genes (the list of which is re-
ported in Supplemental Table S1) were selected for further
analysis. For the x axis, sampleswere ordered fromX01, X04, and
X08 for each culture condition. For the y axis, the genes were
ordered according to an unsupervised machine learning
technique, minimum curvilinear embedding (MCE), by using
the Euclidean distance (19, 21). The color bar indicates the
expression as the log10 (1+ raw expression read counts). The
name of the ordered genes from 1 to 400 are presented in
Supplemental Table S1.

Mechanomics network

To determine the main functions related to the top 1% most sig-
nificantly regulated genes, we performed functional annotation
analysis in Database for Annotation, Visualization and In-
tegrated Discovery (DAVID; https://david.ncifcrf.gov/) (22, 23) us-
ing Ensemble geneID. Then, we considered all the significant
Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG; https://www.genome.jp/kegg/) pathways
that achieved a Benjamini-corrected P value lower than 0.05
(SupplementalTableS2). Because thehighest significantGOterm
(GO:0008092 ; cytoskeletal protein binding) and the highest
significant pathway (hsa04510: focal adhesion) were related to
cell mechanics, we decided to further investigate the list of genes
contained in the top 20 significant cell mechanics–related GO
annotations. To this aim, we proceeded to the construction of a
mechanomic protein-protein interaction (PPI) network in which
only those genes belonging to the top 20 significant cell
mechanics–relatedGO annotationswere considered (201 unique
geneswere retrieved fromthe original list of the top1%regulated
genes thatwere 400). Nearly half of the top 1%most significantly
regulated genes are involved with cell mechanics. The Search
Tool for the Retrieval of Interacting Genes/Proteins (https://
string-db.org/) was used to build the PPI network (24). To select
reliable interactions, only links validated by experimental

evidenceandhigher thana0.7 cutoffwereconsidered tobuild the
network. For visualization purposes, we used the Cytoscape
software (25). The bigger the node size, themore interactions the
node has. Green-filled gene names are significantly differently
expressed between EGF and basic fibroblast growth factor plus
Janus kinase inhibitor (FGFJI), and their interaction is indicated
by thick green lines. The interaction between a green node and a
gray node is indicated by thicker lines than the interaction be-
tween gray nodes to highlight the potential functional interac-
tions of these significant green-node genes.Round rectanglewith
blue boundary genes are cell surfacemarkers, whereas diamond
shapes with red boundary nodes are transcription factors.
According to the top 20 significant cell mechanics–related func-
tional annotations, the nodes belonging to the most significant
GO term and the most significant KEGG terms are identified by
means of a dashed-line rectangle; genes not included in the re-
spective rectangles are identified with a star symbol of the same
rectangle color. Some genes belonging to the dashed-line rect-
angles also belong to the modules at the center of the image.
These genes are indicated only in themodules to avoid repetition
in the image. These genes are indicated with a start whose color
matches the dashed rectangle they also belong to. Another 3
genes belonging to the pin rectangle are also associated with the
ubiquitin C gene, and these are marked by a pink star and are
only placed around ubiquitin C. Core functional subnetwork
modules differentially activated between FGFJI and EGF were
identified, and the elements (genes) of each module were char-
acterized according to their top functional annotation term in the
top20 listusingdifferent symbols. To reflect thedifferenceof each
module between the FGFJI and EGF, the average expression by
considering the whole included genes in each module were
represented with a bar plot beside themodule. To correct for the
magnitude discrepancy of each gene (forcing an equal contribu-
tionofeverygene to the finalpattern), theexpressionof everygene
is, first, normalized by dividing the sum of this gene’s expression
in FGFJI or EGF in the investigated module, and then all the
composedgenesof thismodule inFGFJIorEGFstateareaveraged
to get the general expression of the particular state.

Pathway analysis (cell culture
condition experiments)

Pathway analysis was done using 2 different methods. First, GO
term and KEGG pathway enrichment of differentially expressed
genes (adjusted P , 0.05) were calculated using DAVID Bio-
informatics Resource (22) based onEnsembl IDs. The background
set consistedof all genes passed toDESeq2. Second, theRpackage
fgsea (https://github.com/ctlab/fgsea) was used for a full gene set
enrichment analysis based on all genes; –log10(P value) 3
log2(fold-change) was used as rank function, and 100,000 per-
mutations were done for enrichment P value calculation. KEGG
pathways were plotted using the R package pathview (26).

Comparison of growth medium experiment with
HES3 small interfering RNA knockdown experiment

Raw gene read counts of all samples were regularized loga-
rithmic transformedusingDESeq2Rpackage (18). Sampleswere
clustered using Spearman rank correlation, Pearson correlation,
andEuclideandistance basedon transformed counts of all genes.
Cluster heat maps were drawn using the ComplexHeatmap R
package (27).

Real-time DC

Real-time DC was performed as previously described (28, 29).
Briefly, it allows a marker-free, continuous cell mechanical
characterization of large cell populations with analysis rates
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.100 cells/s. Cells are flowed through a microfluidic channel
constriction and deformedwithout contact by shear stresses and
pressure gradients. Cell size and deformation is extracted from
the high-speed camera images in real time and can be trans-
formed into an elastic modulus (of stiffness of a cell) by applying
an analytical model relating geometrical parameters to material
properties (29). Statistical data analysis was carried out utilizing
mixed models (30, 31) by assuming random as well as fixed ef-
fects for the experimental repeats.

HES3 small interfering RNA transfection of X0
glioblastoma cells

Cells were plated into 6-well plates containing N2 medium
supplemented with 20 ng/ml FGF and 200 nM Jak inhibitor
(FGFJI). Forty hours later, cells were transfected with either
scrambled control small interfering RNA (siRNA) (SC37007;
Santa Cruz Biotechnology, Dallas, TX, USA) or HES3 siRNA
(SC88003; Santa Cruz Biotechnology) using Lipofectamine
RNAiMax (Thermo Fisher Scientific, Waltham, MA, USA)
transfection reagent asdescribedby themanufacturer.Cellswere
collected 24 h post-transfection, and total RNA was isolated us-
ing a HighPure RNA Isolation Kit (Roche). Experiments were
performed in quadruplicates for each cell line and siRNA trans-
fection. RNA quality was assessed using an Agilent 2100 Bio-
analyzer (Agilent Technologies, Santa Clara, CA, USA).

Drug screening

White Corning 384-well plates (3570) were coated with 40 ml of
4950 mg/ml polyornithine (P-365; MilliporeSigma, Burlington,
MA, USA) at 37°C overnight. The next day, the plates were
washed 5 times with water using a BioTek (Winooski, VT, USA)
EL 406 plate washer. The plates were then coated with 40 ml of
1mg/ml fibronectin (1030-Fn; R&DSystems) for 2 h at 37°C and
thenwashed 2 times with PBS. Either 15 or 50 nl of either 10mM
library compounds (MicroSource Pharmakon library; Micro-
source Discovery Systems, Gaylordsville, CT, USA) or 100%
DMSO as negative control or 1 mM Staurosporine (ACROS
328532500) were dispensed with a Labcyte (San Jose, CA, USA)
Echo 550 to screen the library at 3 and 10 mM, respectively. U87
cells were seeded in the plates with a WellMate drop dispenser
(Thermo Fisher Scientific) at a density of 3000 cells per well in
50ml N2medium and incubated for 20 h at 37°C in 5%CO2. Cell
viability was assayed using Perkin Elmer (Waltham, MA, USA)
ATPLite (6016731) according to vendor’s instructions. For the
dose-dependent verification assay, cells were seeded in N2 me-
dium with or without serum to test the specificity of compound
action. The 6 compounds that were selected for the dose curve
experiment were Ebselen (ab142424; Abcam, Cambridge, MA,
USA), Ramelteon (S1259; Selleckchem, Houston, TX, USA),
Raloxifene HCl (S1227; Selleckchem), Triclosan (S4541;
Selleckchem), Clioquinol (S4601; Selleckchem), and Micona-
zole Nitrate (S1956; Selleckchem).

Computational analysis of selected compounds

Compound structures were downloaded from PubChem (https://
pubchem.ncbi.nlm.nih.gov/) on August 7, 2017, in spatial data file
format and compared using the Score Matrix Service with stan-
dard settings of 2D Tanimoto similarity. The heat map was gen-
erated with the Heatplus package v.2.8.0 in R 3.0.2 with
hierarchical clustering over average distances. Drug targets were
retrieved from Binding Database (BindingDB; https://www.
bindingdb.org/bind/index.jsp), drug disease relations from Ther-
peutic Target Database (TTD; https://db.idrblab.org/ttd/), and

protein structures from Protein Data Bank (PDB; https://
www.rcsb.org/). The corresponding drug-target-disease networks
were visualized with Cytoscape v.3.5.1. The drug-target network
shows only targets with 2 or more compounds.

RESULTS

Prior to the treatments described, the primary cell lines
used here had never been exposed to serum or other un-
defined culture medium supplements. Their tumorigenic
potential was previously established (13). For standard
expansion and passaging, cell lines were cultured in
monolayer form in the presence of EGF (Fig. 1A) based on
previously published methods (3, 15). Each cell line was
split into separate flasks and cultured in 3 distinct condi-
tions for 5 d, containing either 10% fetal bovine serum
(Serum), EGF, or bFGF including a JAK inhibitor
(bFGF+JAK Inhibitor = FGFJI), all in a 5% oxygen in-
cubator. The 3 conditions maintain the cells under differ-
ent signal transduction states, all of which allow for
efficient growth (3). Serum contains many strong activa-
tors of the JAK–signal transducer and activator of tran-
scription (STAT) signaling pathway that oppose HES3
expression (4). EGF is a relatively mild activator of the
JAK-STAT pathway andmaintains these cells in a state of
intermediateHES3 expression; FGFJI suppresses the JAK-
STAT pathway and strongly promotes HES3 expression.
Following culture under each specific condition, cellswere
collected for RNA sequencing (32) or real-time DC (28).

Gene expression regulation under different
culture conditions

We performed a PCA and found that PC1 is related to
culture conditionandPC2 is related to the cell line (each cell
line is derived from a different patient) (Fig. 1B). The data
showanundisputablegroupdiscrimination (evident linear
separations) based on PC1, suggesting that all 3 cell lines
respond similarly in terms of gene expressionwhen placed
under each culture condition. The Serum culture condition
is separated from the other 2 conditions by a largermargin
(support vector machine maximum margin computation
values, FGFJI to EGF: 0.2; EFG to Serum: 1.0) (33). A heat
mapgenerated fromthe top;1%discriminativegenes (top
400 genes that represent the top ;1% of genes with the
highest absolute PC1 loading values) is presented in Fig.
1C. The list of genes is in Supplemental Table S1.

The GO enrichment analysis of these genes revealed
that both the most significant GO term (GO:0008092 ;
cytoskeletal protein binding, correctedP, 0.0001) and the
most significant pathway (hsa04510:Focal adhesion, cor-
rected P , 0.0001) are related to cell mechanics (Supple-
mental Table S2).

For the GO term analysis, the 400 top genes were used
for DAVID annotation analysis (using Ensemble geneID).
We focused on mechanics-related GO terms, which were
sorted by Benjamini multiple correction; the top 20 GO
terms were chosen for further network construction.
For the network construction, the genes belonging to
mechanics-related GO terms from the list of 400 genes
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were selected (201 unique genes). Search Tool for the Re-
trieval of InteractingGenes/Proteinswasused tobuild the
PPI network (200 genes recognized). Experimental evi-
dence with a high confidence score (0.7) was used. The
network includes genes whose products are directly reg-
ulated by mitogens, including those used in our culture
conditions (bFGF, EGF), small G proteins, and cell surface
markers implicated in cancer growth. Although we
adopted stringent criteria to select the genes and build a
mechanomic-related network, we still identified 5 core
functional subnetworkmodules differentially represented
between FGFJI and EGF (Fig. 2). Among them, module 3
appearsmore complete (9 genes in total) andwell defined,
and it is strongly related to the regulation of cytoskeletal
properties, which is important in the modulation of cell-
mechanical phenotypes. In particular, we note that this
module is composed of 2 different types of nodes that are
highlighted in the bar plot beside the PPI. The first type
(which comprises 2 genes) is composed of EGFR and
microtubule-associated protein 2, share the same pattern,
and are more highly expressed in FGFJI than EGF. The
second type (which comprises 7 genes) is composed of all
the other genes in the module and is expressed at lower
levels in FGFJI than in EGF.

These results point to distinct differences between cells
cultured in the presence of FGFJI vs. EGF.

Mechanomics regulation under different
culture conditions

Our gene expression data showed that the culture condi-
tions we used regulate cell mechanics pathways. To

address this further, we performed an analysis of the me-
chanical phenotype using real-timeDC (28) to quantify cell
size (cross-sectional area) and deformation under hydro-
dynamic shear stress in a microfluidic channel in each cell
line and in each culture medium. Example images dem-
onstrate the specific manner by which all 3 cell lines re-
spond to the 3 different culture conditions (Fig. 3A). The
different cell culture conditions were associated with a
specificmorphologicphenotype,whichwassimilaramong
the 3 different cell lines. In FGFJI, cells from all 3 patients
were smaller in size; inEGF, all 3were larger; and in serum-
containing medium, all 3 were significantly larger still.

When the data is plotted as deformation vs. cell area,
again, there is an obvious grouping depending on cell
culture medium (Fig. 3B, C and Supplemental Fig. S1),
meaning that cell culture conditions affect the mechanical
phenotype of the cells similarly across different cell lines.

The specific manner in which culture conditions affect
both gene expression and mechanical phenotype promp-
ted us to quantify this correlation. Because the size of the
cell and itsdeformation in the channel arenot independent,
we calculated the apparent elastic modulus for each cell (a
means of combining size and deformation into 1 value),
assuming an isotropic, homogeneous elastic object,
according to Mietke et al. (29). We plotted the average
elastic modulus vs. PC1 for each condition (Fig. 3D) to
determine a possible correlation (linear regression of the
normalized PC1 vs. elastic modulus variables). The analy-
sis demonstrates significant correlation (P , 0.001; linear
regression correlation coefficient R = 0.92) between the 2
variables, indicating a high correlation between the geno-
micpatternand the cellmechanics. Indeed, therewasagain
a grouping of all 3 cell lines based on culture condition.

Figure 1. Modeling different
cell growth states in vitro. A)
Three different primary brain
tumor cell lines (each from a
different patient) were estab-
lished following surgical excision
and propagated in serum-free
medium containing EGF. Cells
were then passaged into new
flasks, each containing the same
base medium formulation but
supplemented with different fac-
tors (FGFJI, EGF, or serum).
After 5 d, cells were collected
for either gene expression pro-
filing or real-time DC. B) Plot of
PCA shows a patient discrimina-
tive pattern of culture condition
(PC1) vs. patient cell line (PC2).
Numbers indicate support-vector
machine maximum-margin com-
putation values among the 3
culture condition groups. C)
Heat map of the top 1% regu-
lated genes.

DRUGS AGAINST THE HES3+ CANCER CELL STATE 5

Downloaded from www.fasebj.org by Boston Univ Med Library (128.197.229.194) on May 31, 2019. The FASEB Journal Vol. ${article.issue.getVolume()}, No. ${article.issue.getIssueNumber()}, primary_article.



Gene expression regulation by HES3
RNA interference

HES3 RNA interference opposes the growth of all 3 pri-
mary cell lines used here when cultured in FGFJI (3),
pointing to possible core molecular mechanisms that may
be targeted in oncology. Here, we set out to identify the
genes and signaling pathways affected by HES3 RNA in-
terference in vitro that are common in all 3 cell lines and
which may provide therapeutically amenable putative
drug targets and biomarkers.

We cultured the X01, X04, and X08 cell lines under the
FGFJI conditions (i.e., under conditions thatmaintain high
HES3 expression). We then performed RNA interference
with an siRNA that has been previously validated to op-
pose HES3 expression and cell viability (3). Twenty-four
hours later, we collected RNA for transcriptomics analysis
by RNA sequencing methods.

HES3 RNA interference induced gene-expression
changes in all 3 cell lines. We focused on those genes that
were significantly regulated at least 2-fold from control
(scrambled) siRNA (log2-fold change cutoff, with an
adjusted P , 0.05). There were 290 differentially
regulated genes for X01, 449 for X04, and 56 for X08.
Twenty-five genes were common to all 3 cell lines (triple-
common) (Fig. 4A–C and Table 1).

We found 3 GO term categories that were regulated
in all 3 cell lines by HES3 siRNA (GO:0005654 ; nu-
cleoplasm, GO:0005515 ; protein binding, GO:
0005737 ; cytoplasm). Additional GO terms were
found regulated when only the X01 and X04 cell lines

were used in the analysis, of which GO:0006260 ;
DNA replication, GO:0051301; cell division, and GO:
0006281;DNA repair are noteworthy (Supplemental
Fig. S2 and Supplemental Table S3).

An unsupervised comparison of the 2 experiments
(gene regulation by cell culture condition and gene regu-
lation byHES3RNA interference) allows us to identify the
major determinants of gene expression (Fig. 4D). The data
reveal that culture conditions induce vast differences in
gene expression but that HES3 RNA interference also in-
duces significant changes across the 3 cell lines.

Comparative drug screening in 2
culture conditions

The different gene expression and mechanomics proper-
ties that the cells exhibit when placed in different condi-
tions suggested that their response to treatmentwith small
molecules may also differ under different culture condi-
tions. Drug screening the same cell line under different
culture conditions may help identify putative drugs that
would otherwise be missed.

To address this hypothesis, we used the widely avail-
able human brain tumor cell line U-87MG. We chose 2
cell culture conditions: FGFJI and the commonly
used serum-supplemented RPMI medium (i.e., the 2
culture conditions with the largest difference in HES3
expression).

U-87MG cells grow efficiently in both medium formu-
lations. Figure 5A shows image examples from 1- and
8-d cultures in bothmediums. Themorphology of the cells

Figure 2.Mechanomics network based on genes regulated by culture conditions. Gene network diagram generated by the top 1%
regulated genes between FGFJI vs. EGF that belong to mechanics-related functional terms. Green color denotes the differentially
expressed functional subnetwork modules of genes and gene links that are significantly different between FGFJI and EGF culture
conditions in all 3 cell lines (each from a different patient). Blue borders denote cell surface proteins. Red borders denote
transcription factors. Dashed lines depict the most significant functional terms, and the stars indicate the primary functional
terms to which each gene belongs.
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differs in the 2 mediums, with FGFJI inducing a smaller
andmore neural stem cell–likemorphology. PCR analysis
demonstrated that cells in FGFJI express higher levels of
HES3 than in RPMI (Fig. 5B). Cells cultured in FGFJI were
also more susceptible to death following HES3 RNA in-
terference (Fig. 5C).Onedayafter transfection, cell number
in FGFJI was at 21.0% 6 6.8, relative to control
(scrambled)-transfected cells (100% 6 16.8), with a sig-
nificant value of P = 3.5 3 106 (Student’s t test). Cell

number in RPMI was at 48.3% 6 25.0, relative to control
(scrambled)-transfected cells (100% 6 34.2), with a sig-
nificant value of P = 0.0029 (Student’s t test).

We screened a library of 1600 FDA-approved com-
pounds at 2 different concentrations (10 and 3 mM) on U-
87MG cells cultured in FGFJI (Fig. 6A). The compounds
that significantly reduced cell number were then
rescreened, in parallel, with theU-87MGcells cultured in
both FGFJI and serum conditions. In this way, we iden-
tified 37 compounds that only reduced cell number in
FGFJI conditions (Table 2).

As a final confirmation,we chose 6 compounds fordose
curve assays in bothFGFJI and serumconditions.Of these,
4 compounds (marked by arrows in the figure) showed a
greater effect in FGFJI than in serum (Fig. 6B, C).

Computational analysis of
selected compounds

The 6 compounds selected for dose curve experiments
cover 6 different chemical scaffolds, thus providing broad
diversity. To get an overview of the compounds, we per-
formed a clustering based on the structural similarity of
the 37 compounds (Supplemental Fig. S3). The heat map
reveals that the 37 compounds cover structurally very di-
verse scaffolds and that there are 4 larger groups of very
closely related compounds andmany singletons (Table 2).
For example, the first group, dichlorophenylethyl-
imidazole, comprises 6 compounds, which contain an
imidazole group and some chloro groups. These com-
pounds have an antifungal effect and are used in different
indications. Chemical structures for these groups are
provided (Supplemental Fig. S4).

We analyzed the disease indications of the 37 com-
pounds. In total, they cover a broad spectrum, including
anticancer, antipsychotic, antihistamine, anti-inflammatory,
laxative, and sleep agents. However, there was a particu-
larly strong focusonanthelmintic, antifungal, andantibiotic
actions for 19 of the 37 compounds (Table 2 and Supple-
mental Fig. S5).With this analysis,we generated a complete
drug target–disease network (Supplemental Fig. S6) and a
drug–drug target network (Supplemental Fig. S7).

DISCUSSION

In this study, we characterize a distinct signal transduction
state of cultured cancer cells derived from patients with
aggressive gliomas. We demonstrate that cells from differ-
ent patients behave similarly in terms of their gene expres-
sion regulation when placed in different culture medium,
their mechanical phenotype, and their response to HES3
RNA interference.Weutilize these concepts to screendrugs
that specifically affect the growth of cells when they are
maintained in this distinct state. Our strategy may be in-
corporated into large-scale screening programs to identify
additional putative compounds by screening new drugs or
rescreeningolddrugs andotherputative treatments. Itmay
also be integrated into personalized medicine programs
aimed at targeting this particular cell state characterized by

Figure 3. Distinct mechanical phenotypes of cells cultured in
different conditions. A) Representative images from the
different cell lines in the different culture conditions obtained
by real-time DC. B) Plot of deformation vs. cell size for each
cell line in each culture condition. The data show the mode
values of the distributions of thousands of individual cells
analyzed for each condition and patient cell line; isoelasticity
lines (gray) show places of equivalent elastic modulus. C) Plot
of deformation vs. cell size for each cell line in each culture
condition. The data show the mode values of the distributions
of thousands of individual cells analyzed for each condition
and patient cell line; isoelasticity lines (gray) show places of
equivalent elastic modulus. D) Linear regression plot of z-score
(PC1) and z-score (elastic modulus) for each cell line in each
culture condition. The PC1 coordinate of each symbol is
obtained as the average of the PC1 coordinates of the same
respective symbols in Fig. 1B. The elastic modulus coordinate
of each symbol is calculated as the average of the elastic moduli
of the respective symbols in B. Both coordinates are z-score
transformed to adjust for the different physical scales.
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a distinct gene expression or biomarker profile and re-
sponse to various treatments.

The HES3+ cell state operates in many in
vitro paradigms

The HES3+ cell state has been described in several cell
types in culture, including primary and induced pluripo-
tent stem cell (iPS)-derived neural stem cells, mouse
insulinoma cells, oligodendrocyte progenitor cell lines,
and bovine adrenomedullary chromaffin progenitors (4,
34–38). The pattern of expression ofHES3 supports a role

inmaintaining the stem cell state.Humanembryonic stem
cells expressHES3; when they are induced to differentiate
into neurons, they progressively lose HES3 expression
(39).Mouse embryonic feeder cells donot expressHES3, at
least in the serum-containing medium that they are cul-
tured in. When they are reprogrammed into iPS cells,
HES3 expression is induced, peaking at the latest stages of
reprogramming; then, as the cells are passed into serum-
containing medium to maintain them as stable iPS cell
lines,HES3 expression is lost (39). These results show that
the HES3+ state can be assumed by different cell types
and that these are often plastic cell types, such as vari-
ous types of stem cell.

Figure 4. Gene expression regulation following HES3 RNA interference. A–C) Number of genes regulated by HES3 siRNA in each
of the 3 cell lines compared with control (scrambled) siRNA [abs(log2-fold change) .1, and adjusted P , 0.05]. Data are split
into all genes regulated (A), down-regulated genes (B), and up-regulated genes (C). D) Unsupervised clustering heat map of
Euclidian sample distances based on all genes’ expression.
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Roles of HES3 in regeneration and cancer

Data from theHumanProteinAtlas support a role ofHES3
in maintaining the undifferentiated state. Out of over 60
human cell lines, only 2 show detectable HES3 RNA ex-
pression: the human neuroepithelial stem cell line AF22
and the pluripotent human embryonal carcinoma cell line
NTERA-2. One may question if the broad lack of HES3
expression is due to cell-intrinsic reasons in the cell types
assessed or to the culturemedium used. Case in point, the
Protein Atlas data reports no HES3 expression in the U-
87MG cell line (cultured in serum). These data are in ac-
cordance with our finding that although we detect some
HES3 RNA in serum (using PCR), expression levels are
low, andwedetect significantlymore expressionwhen the
cells are cultured in FGFJI. This result suggests that as-
sessment of the expression of HES3 in cell lines must
consider the culture systems employed. It will be very
useful to determine how many cell types can assume the
HES3+ state; it might be a common ability that we simply
have not yet broadly revealed.

The immediate and obvious question is, what is the
relevance of the HES3+ state in the tissue and, more spe-
cifically, in cancer? There are many lines of evidence that
demonstrate roles of HES3 during development, in the
regeneration of tissues in the adult, and in carcinogenesis,
which are summarized below.

HES3 and other members of the Hes/Hey gene family
play important roles in neural development; HES3 con-
tributes to the maintenance of the isthmic organizer and
the development of the mid/hindbrain (2, 40, 41).HES3+

neural stemcells canalsobe foundin theadultmammalian
brain (4, 42). Oligodendrocyte progenitors also express
HES3 in the adult mammalian brain (38). Beyond the
brain, HES3+ cells are also found in the pancreas (a sig-
nificant percentage of b-cells express HES3) (34, 43) and
the adrenal gland [HES3 expression has been reported in
adrenomedullary chromaffin progenitors of the medulla
and the zona glomerulosa of the adrenal cortex, where
cortical stem cells are thought to reside (35, 44)].

Studies in which tissues are subjected to injury further
support a role of HES3 in regeneration. Oligodendrocyte
damage in the brain by the toxin cuprizone and pancreatic
islet damage by the toxin streptozotocin strongly induce
HES3 expression; more importantly, HES3-null mice ex-
hibit impaired regeneration in these tissues (34, 38, 43).

Regarding roles ofHES3 specifically in cancer,multiple
papers have made the case that HES3 could become an
important new target in cancer therapy. We showed that
the 3 primary glioma cell lines used in this paper can be
cultured under conditions that maintainHES3 expression
and that, in these conditions, the cells canbekilledbyHES3
siRNA (3); moreover,HES3 is expressed in several human
cancers (3). In breast cancer xenotransplantation experi-
ments, human cell lines do not express detectable HES3 in
serum-containing culture conditions but acquire HES3 ex-
pression once grafted into the host animal;HES3 expression
predicts theanticancerefficacyofag-secretase inhibitor invivo
(45). Experiments with STAT3 phosphorylated mutant plas-
mids show that STAT3 serine-phosphorylated (an upstream
component of the STAT3 serine-phosphorylated/HES3 sig-
naling pathway) (4) promotes prostate carcinogenesis in vivo

TABLE 1. Triple-common regulated genes in the cell lines X01, X04, and X08 following HES3 RNA interference (log2 fold change, adjusted
P , 0.05)

Ensembl_ID Gene_symbol Description

Up-regulated by HES3 siRNA
ENSG00000167460 TPM4 Tropomyosin 4
ENSG00000254332 GS1-44D20.1
ENSG00000089597 GANAB Glucosidase-a; neutral AB
ENSG00000171700 RGS19 Regulator of G-protein signaling 19
ENSG00000204611 ZNF616 Zinc finger protein 616
ENSG00000213846 AC098614.2
ENSG00000101255 TRIB3 Tribbles pseudokinase 3
ENSG00000158373 HIST1H2BD Histone cluster 1, H2bd
ENSG00000128165 ADM2 Adrenomedullin 2
ENSG00000139269 INHBE Inhibin, b E
ENSG00000070669 ASNS Asparagine synthetase (glutamine-hydrolyzing)
ENSG00000272405 RP11-284F21.10
ENSG00000100889 PCK2 Phosphoenolpyruvate carboxykinase 2 (mitochondrial)
ENSG00000182459 TEX19 Testis expressed 19
ENSG00000261371 PECAM1 Platelet/endothelial cell adhesion molecule 1
ENSG00000138678 AGPAT9 1-acylglycerol-3-phosphate O-acyltransferase 9
ENSG00000105550 FGF21 Fibroblast growth factor 21
ENSG00000235513 RP4-756G23.5
ENSG00000272068 RP11-284F21.9

Down-regulated by HES3 siRNA
ENSG00000181061 HIGD1A HIG1 hypoxia inducible domain family, member 1A
ENSG00000160877 NACC1 Nucleus accumbens associated 1, BEN and BTB (POZ) domain containing
ENSG00000171150 SOCS5 Suppressor of cytokine signaling 5
ENSG00000258016 HIGD1AP1 HIG1 hypoxia inducible domain family, member 1A pseudogene 1
ENSG00000072401 UBE2D1 Ubiquitin-conjugating enzyme E2D 1
ENSG00000248785 HIGD1AP14 HIG1 hypoxia inducible domain family, member 1A pseudogene 14
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(46). A recent study on the molecular mechanisms behind
rhabdomyosarcoma tumorigenesis (a pediatric soft-tissue
sarcoma often caused by PAX3-FOXO1 fusion) showed, us-
inganewgenetic fishmodel, thathumanHES3 inhibits invivo
myogenesisandsupports inappropriatepersistenceofPAX3-
FOXO1+ cells and that HES3 overexpression increases pro-
tumorigenic features in cell culture systems (47). The same
authors also demonstrated, through analysis of data from
rhabdomyosarcoma patient cohorts, that HES3 expression
correlates with poor patient survival in the PAX3-FOXO1+
tumors.

Taken together, these studies show that HES3 and its
regulators or mediators are important components of tis-
sue repair and becomederegulated in cancer. Cell systems
that are currentlyused for researchanddrugdiscoverycan
assume both the HES32 and the HES3+ states. Because

HES3 is associated with the maintenance of the stem cell
state, treatments against the HES3+ state might be partic-
ularly important because they might target the most
plastic cancer cell types that are difficult to target with
current methods (48).

In thispaper,we took theapproachof targetinga cancer
cell state as opposed to a specific molecule or signal
transduction pathway that is important for the growth of
cancer cells.We envision future therapeutic strategies that
will combine specific targeting of the HES3 signaling
pathway (e.g., by HES3 siRNA) (3) with drugs, such as
those identified here, that are particularly effective at kill-
ing cells that operate theHES3 signaling pathway.

It is not clear, at this stage, whether the drug screening
results we identified interfere, directly or indirectly, with
theHES3 signalingpathway.Toaddress this, itwill help to
identifyadditionaldrugs that specifically target theHES3+
state by performing larger screens and to incorporate the
HES3 signaling pathway in existing signal transduction
databases, such as KEGG.

It will also help to determine what genes are regulated
by the drug hits in the different culture conditions. It is
possible that the data sets from the different culture con-
ditions will be quite different from each other but that
common genes (or GO terms)will be regulated by various
drugs in the FGFJI conditions, providing clues to themode
of action of these drugs regarding their potential new
purpose.

It is possible that multiple cellular mechanisms might
mediate anticancer effects via either HES3 siRNA or the
small molecules we identified. Hes3 RNA interference
leads to the death of multiple cell types (3, 34), and re-
cently, Hes3 was implicated in the regulation of cell pro-
liferation and cell invasion in lung cancer cell lines (49).
Our observation that cell mechanics–related GO terms
were strongly featured in thePCanalysis is consistentwith
the latter point. It is possible, therefore, that targetingHes3
might be an effective strategy that is not limited to the fast
proliferating cancer cell population. It will be very im-
portant, therefore, to assess the efficacy of these treatments
not simply by their ability to kill a large number of cancer
cells but by assessing whether they can kill therapy-
evading cells. HES3 might be a core component of the
intersection among development, regeneration, and can-
cer in various tissues.

Screening in the HES3+ state

Although it will be impossible to find any cell culture
system that is not plagued by artifact, understanding, at
themolecular level, thevariousgrowthoptions that cancer
cells have at their disposal and developing cell culture
systems to model, study, and use them in drug screening
can lead to the discovery of new drug uses in oncology.
Here,we present proof-of-concept data anda strategy that
can be scaled up to screen and rescreen vast libraries of
compounds. Our method will significantly increase the
value of large-scale screens (50) aimed at prioritizing pu-
tative cancer therapeutic targets because the results are
likely going to be very different if the screen is performed

Figure 5. U-87MG cells in different culture conditions. A) U-
87MG cells grow efficiently in both common medium (RPMI
supplemented with serum) and FGFJI medium. Images are
from d 1 and 8 in culture and show morphologic differences in
the 2 medium compositions (image width: 1.22 mm; the image
was acquired with a 310 objective; the resolution is 0.91 mm/
pixel and the image dimensions are 134431024 pixels). B)
PCR analysis shows higher expression of HES3 in FGFJI than in
serum-containing RPMI. Data are from 5 d cultures; Glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) is used as the
housekeeping gene. C) HES3 RNA interference opposes cell
number in both FGFJI and serum-containing RPMI medium
but more so in FGFJI. Data are from 1 d post-transfection.
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in cell culture conditions that maintain the expression and
operation of Hes3 than if it is performed under the more
common, serum-containing conditions that suppressHes3
expression.

Weselected culture conditions thatallowus to lock cells
in 3 distinct states regardingHES3 expression (3). Our aim
is not to study the molecular mechanisms downstream of
particular cytokines that are included in the culture me-
dium but rather to study the same cells under different
states. This strategy revealed that many of the genes reg-
ulated by culture condition relate to the mechanical
properties of the cells, prompting us to measure their

mechanical phenotype. Cancer cells can be characterized
by their mechanical signature, being more deformable
than healthy counterparts, as has been established for
many cell lines and primary cells from many different
tumor types, including primary oral squamous cell carci-
nomas (51, 52). A notable exception seems to be leukemia,
in which the cancer cells are stiffer (53). Again, all 3 cell
lines behaved similarly to each other, and we identified a
strong correlation between the HES3+ state and small or
deformable cells. Likewise, the primary cell lines behaved
similarly in terms of their gene expression profile when
treated with a HES3 siRNA product.

Figure 6. Drug screening in different culture conditions. A) The drug screening strategy. B) Dose curves of 6 selected compounds
in the serum-containing cell culture condition. C) Dose curves of the same 6 selected compounds in the FGFJI cell culture
condition. Arrows point to the 4 of the 6 compounds used in the dose curve experiment that demonstrated efficacy in FGFJI but
not in serum.
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Despite these similarities among different cell lines,
nuanced differences may help with an integrated gene or
mechanic patient-specific characterization of their tumor
cells. For example, the X08 cell line showed differences in
gene expression patterns compared with X01 and X04. In
the PC analysis, data from the X08 cell line are separated
from the data from the X01 and X04 cell lines, which tend
to cluster together. X08 cells were derived from a patient
with gliosarcoma, whereas X01 and X04 cells were from 2
patients with glioblastoma. Future studies with a larger
number of patient-derived cell lines may address whether
gene expression analyses like the one performed here
might help with the categorization of glioma subtypes.
Also, in the serum conditions (that likely represent the
differentiated state of the cells), the X08 line exhibits
greater variance in the gene expression data. It will be
interesting to address whether this observation represents
a greater differentiation potential of these cells in accor-
dance with the notion that aggressive tumors contain
more primordial cancer stem cell types that evade therapy

(gliosarcomas are particularly aggressive) (54). The
methods employed in this work appear very sturdy; dif-
ferences between X08 and the other 2 primary cell lines
were picked in both the gene expression data and the
mechanomics analyses.

Following characterization of the different signaling
states in the 3 primary human brain tumor cell lines, we
switched to the broadly available human brain tumor cell
line U-87MG to identify drugs that specifically kill cells in
the HES3+ state. This will help other laboratories re-
produce the data we present. Because the HES3+ state is
largely overlooked, we hypothesized that this strategy
could identify potentially very valuable drugs for repur-
posing. Starting with a 1600 FDA-approved compound
library, we identified 37 compounds that are effective at
reducingcell numberonlyor significantlymore inFGFJI as
opposed to in serum. We selected 6 of these compounds
for further confirmation, producing dose curve data in the
2 cell culture conditions. Of the 6 compounds, 4 (clioqui-
nol, ebselen, ramelteon, and triclosan) were successfully

TABLE 2. List of 37 compounds (from a library of 1600 FDA-approved compounds) that reduce cell number in FGFJI but not in serum culture
conditions with disease indication, number of targets, and protein structures

Compound # Name Group CID Disease/effect Target Structure

1 Butoconazole 1 47472 Antifungal 1 0
2 Sulconazole 1 5318 Antifungal 12 0
3 Tioconazole 1 5482 Antifungal 1 0
4 Oxiconazole 1 5353853 Antifungal 2 0
5 Econazole 1 3198 Antifungal 20 4
6a Miconazole 1 4189 Antifungal 27 0
7 Lasalocid S 5360807 Antibiotic 0 1
8 Quinestrol S 9046 Anticancer 0 0
9 Oxyclozanide 2 16779 Anthelmintic 0 0
10 Clofoctol 2 2799 Antibiotic 0 0
11 Dichlorophen 2 3037 Anticestodal 2 0
12 Bithionol (bithionate Na) 2 2406 Anthelmintic 12 2
13a Triclosan 2 5564 Antibiotic 16 31
14 Ritonavir S 392622 Antiretroviral 23 15
15 Vinblastine S 13342 Anticancer 13 4
16 Bisacodyl S 2391 Laxative 2 0
17 Diltiazem S 39186 Blood pressure treatment 15 0
18a Raloxifene hydrochloride S 5035 osteoporosis 21 5
19 Benzethonium S 2335 Antimicrobial 0 0
20a Ramelteon S 208902 Sleep agent 2 0
21 Levocetirizine S 1549000 Antihistamine 1 1
22 Suloctidil S 5354 Blood pressure treatment 0 0
23a Ebselen S 3194 Anti-inflammatory 26 0
24 Pimozide S 16362 Antipsychotic 47 0
25 Chlorhexidine S 53589 Antimicrobial 0 0
26 Xylazine S 5707 Anesthesia 5 0
27 Chloroxine 3 2722 Antibiotic 9 0
28a Clioquinol 3 2788 Antifungal 13 1
29 Broxaldine 3 77262 Antiprotozoal 0 0
30 Broxyquinoline 3 2453 Antiprotozoal 1 0
31 Hexetidine S 3607 Antibiotic 0 0
32 Norethynodrel S 6231 Oral contraceptive 1 0
33 Sodium aescinate 4 3084345 Lung injury treatment 0 0
34 Abamectin 4 71312393 Anthelmintic 0 0
35 Doramectin 4 11954226 Anthelmintic 0 0
36 Milbemycin 4 6436009 Anthelmintic 0 0
37 Selamectin 4 6445091 Anthelmintic 0 0

CID, compound identification number; S, singleton (i.e., compounds that do not belong to one of the defined groups). aCompounds further
tested in dose experiments.
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validated, providing stringent proof of principle for the
efficacy of this screening strategy.

The results from the screening assay
represent diverse chemical groups

Our screeningassay strategywasdesigned to interrogatea
cell state as opposed to a specificmolecular target. Perhaps
not surprisingly, then, the hits represented awide range of
chemical scaffolds. How does the diversity in compound
scaffolds relate to the targets of the drugs? In one extreme
scenario, each drug would hit its own targets; at the other
extreme, all drugs would bind to the same targets. To
address this question, we retrieved drug-target data from
BindingDB.Manyof thedrug results arepromiscuous. For
example, Table 2 shows that the antipsychotic pimozide,
which is used in schizophrenia and psychosis, has 47 tar-
gets listed in BindingDB. This holds true for many of the
other compounds, too; 18 out of the 37 compounds have
more than 1 target. Supplemental Figure S7 shows the
network between compounds and targets. The figure re-
veals that groups of related compounds generally hit
similar targets. Overall, there are 178 targets, which are hit
by at least 2 of the 37 compounds. This means that there is
neither 1 common mode of action for the identified com-
pounds, nor do they all exhibit very individual, isolated
effects. Instead, there are some commonalities and many
differences between the compounds. Among the common
targets hit bymanydrugs, are, for example, themultidrug-
resistant (MDR) proteins MDR1, MDR1A, and MDR1B
(Uniprot ID: P08183, P21447, P06795). They bind mico-
nazole in the imidazolegroup, theantipsychoticpimozide,
the HIV drug ritonavir, and the anticancer drug vinblas-
tine. These MDR proteins are ATP-dependent efflux
pumps with a broad substrate specificity for the transport
of endogenous and xenobiotic anionic substances local-
ized in cellular plasma membranes. Similarly, the protein
cytochrome P450 3A4 (Uniprot: P08684) binds 7 com-
pounds: theantifungalsmiconazole andeconazole and the
singletons raloxifene, pimozide, diltiazem, ritonavir, and
vinblastine. Cytochrome P450 is known to perform a va-
riety of oxidation reactions of structurally unrelated com-
pounds, which explains the links to different compounds
in the data set. The protein indoleamine 2,3-dioxygenase 1
(Uniprot: P14902, E5RGR8, and P28776) is linked to 5
compounds belonging to group 1 (econazole, miconazole,
sulconazole, and oxiconazole) and group 2 (dichlorophen).
The protein is an enzyme in the tryptophan catabolism
pathway related to depletion of tryptophan, which can
cause halted growth of microbes as well as T cells.
Emerging evidence suggests that indoleamine 2,3-diox-
ygenase 1 becomes activated during tumor develop-
ment, helping malignant cells escape eradication by the
immune system. The protein nuclear receptor subfamily
1 group I member 2 (Uniprot: O75469) is linked to 4
compounds belonging to group 2 (bithionol), group 3
(chloroxine), and singletons (raloxifene and ritonavir). It
is a nuclear receptor that binds to and is activated by a
variety of endogenous and xenobiotic compounds.

Ideally, appropriate drug hits will be tested in clinical
trials to prove their therapeutic potential. Ramelteon is a

melatonin receptor agonist used as a sleep agent. It was
recently shown to suppress the proliferation and in-
vasiveness of cultured endometrial cancer cells (55). Mel-
atonin itself has been suggested as a possible cancer
prevention and treatment drug based on epidemiologic
and basic studies (56), supporting the potential of our
screening strategy.Overall, ourworkprovides a screening
platform for the identification of putative anticancer
agents, and the basic science onwhich it is basedmayhelp
explain the molecular mechanism of such compounds.

A final thought about HES3 as a target in oncology is
that current evidence suggests that the off-target effects
may be tolerable.HES3 is important in tissue regeneration
following injury.However, under normal conditions, very
few cells express HES3 postnatally. Accordingly, the
HES3-null mouse line does not exhibit any significant
phenotypes under normal conditions (41). Therefore, it is
possible that direct inhibition of HES3 and/or indirect
inhibition by drugs that target HES3+ cells may be toler-
ated by the patient.

Our work uncovers and characterizes a signal trans-
duction state that cancer cells can assume and that renders
them sensitive to a different set of treatments than their
more established and commonly studied state. These
findingsmay help identifyways to block escape strategies
that cancer cells employ to evade current therapies.
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