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SUMMARY

In addition to oncogene inhibition, targeting tumor
suppressor deficiency could provide potential ven-
ues for precision cancer medicine. However, the full
spectrum of drug vulnerability conferred by tumor
suppressor loss remains unclear. We systematically
analyzed how loss of 59 common tumor suppressors
each affected cellular sensitivity to 26 different types
of anticancer therapeutics. The experiments were
performed in a one-gene, one-drug manner, and
through such a large gene-drug iteration study, we
were able to generate a drug sensitivity map that de-
scribes numerous examples of drug resistance or hy-
persensitivity conferred by tumor suppressor loss.
We further delineated the mechanisms of several
gene-drug interactions, showing that loss of tumor
suppressors could modify drug sensitivity at various
steps of drug action. This systematic drug sensitivity
map highlights potential drug vulnerabilities associ-
ated with tumor suppressor loss, which may help
expand precision cancer medicine on the basis of
tumor suppressor status.

INTRODUCTION

Inhibition of oncogenes is a major venue of current precision

cancer medicine, and recent data suggest that its benefits are

limited to a small portion of cancer patients (Hunter, 2016; Pra-

sad, 2016). In contrast, tumor suppressor deficiency remains

an underexplored area in precision cancer medicine. Knowledge

of drug sensitivity associated with tumor suppressor loss could

potentially expand therapeutic approaches for cancer, given

the prevalence of tumor suppressor deficiencies in cancer.

Considering tumor suppressors’ important roles in crucial

cellular events, deficiencies in tumor suppressors may alter

certain cellular processes, which could result in increased sensi-

tivity to certain drugs. For example, BRCA1/2-deficient tumors

are hypersensitive to PARP inhibitors (Bryant et al., 2005; Farmer

et al., 2005; Tan et al., 2008). Given that there are more than 60

tumor suppressors in theCOSMICCancer GeneCensus (https://
Cell
This is an open access article under the CC BY-N
cancer.sanger.ac.uk/census) (Futreal et al., 2004) andmore than

20 major types of anticancer mechanisms, it is possible that loss

of other tumor suppressors could sensitize cancer cells to

certain drugs, thereby providing new angles to specifically attack

cancer. Recently, genome-wide RNAi and CRISPR screening

have been applied to study resistance mechanisms to several

anticancer drugs such as 6-TG, etoposide, and BRAF inhibitor

(Koike-Yusa et al., 2014; Shalem et al., 2014; Takase et al.,

2017; Wang et al., 2014; Zhu et al., 2019). However, with a few

exceptions, the full spectrum of drug vulnerabilities associated

with tumor suppressor loss remains largely unknown.

Currently, cancer cell line comparison-based studies are used

to search for novel gene-drug interactions. In such approaches,

the genetic and transcriptional landscapes are determined for a

large collection of cancer cell lines. In addition, sensitivities to

different anticancer compounds are recorded for each cell line.

On the basis of comparison of cell lines’ genetic, transcriptional

landscapes and their drug sensitivity profiles, gene-drug associ-

ations are predicted (Barretina et al., 2012; Garnett et al., 2012).

However, a subsequent study pointed to the data inconsistency

between such studies (Haibe-Kains et al., 2013). Currently, the

Genomics of Drug Sensitivity in Cancer (GDSC) database pro-

vides the most comprehensive results of cell line comparison-

based studies (Garnett et al., 2012; Iorio et al., 2016; Yang

et al., 2013). Query of this database showed that with regard to

tumor suppressors, only a limited number of gene-drug associ-

ations could be identified by such an approach (Table S1),

mostly showing p53 deficiency, rendering cells resistant to

drugs. Importantly, such cell line comparison-based approach

could not show BRCA1/2-deficient cells are more sensitive to

PARP inhibitors (Table S2). Inquiry about other well-established

tumor suppressor-drug interactions further showed that cell line

comparison-based approach could recapitulate only a small

fraction of such interactions (Table S3).

Several aspects of the cell line comparison-based approach

may have caused poor resolution on tumor suppressor-drug in-

teractions. Cancer cell lines are vastly different from one another,

which may introduce too many variables that potentially affect

drug sensitivity. Analysis of the cancer cell lines used in the

GDSC studies (Forbes et al., 2015) suggests that between any

pair of cancer cell lines, there are several thousand genes differ-

entially affected by mutations, copy number variations, or aber-

rant expression (Figure 1A). Under such a scenario, genes
Reports 27, 3331–3344, June 11, 2019 ª 2019 The Author(s). 3331
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. A Drug Sensitivity Map Describing Changes of Drug Sensitivity upon Depletion of Tumor Suppressor Genes
(A) Genomic and transcriptional abnormalities in human cancer cell lines. Data were collected from the COSMIC cell line database. A total of 1,019 cell lines were

analyzed. Each dot represents data information of a cell line. Shown are the overall distribution of number of point mutations, the number of copy number

variations, and the number of over or under-expressed genes from the 1,019 cell lines.

(legend continued on next page)
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involved in drug transportation, drug metabolism, maintenance

of drug target, bypass survival, and cell death signaling could

be among the vastly diverse genetic and transcriptional land-

scapes among different cell lines. The difference in these genes

could have a greater impact on drug sensitivities than the status

of tumor suppressor itself. In the presence of such a vast number

of variables among cancer cell lines, assuming that drug sensi-

tivity change is caused by the queried gene itself, which is the

basis for cell line comparison-based approaches, may result in

incorrect predictions.

Moreover, in a recent study, it was shown that cancer cell lines

used in labs commonly undergo genetic and transcriptional

diversification (Ben-David et al., 2018), which results in the gen-

eration of sub-clones that exhibit altered drug sensitivity. This

will introduce additional variables that further impair the accu-

racy of cell line comparison-based approaches.

Because the vast number of variables among cancer cell lines

may have compromised the resolution on tumor suppressor-

drug interactions, we argue that it is necessary and beneficial

to initially explore this question in a more defined, single-variable

manner. Given the complex nature of differences between can-

cer cell lines and their potential impacts on drug sensitivity

studies, we first used a single cancer cell line, introduced tumor

suppressor deficiency via short hairpin RNA (shRNA)-mediated

knockdown, and analyzed whether it altered drug sensitivity. In

this manner, changes in drug sensitivities can be attributed to

deficiency of the queried tumor suppressor alone, rather than

thousands of hard-to-quantify variables between different can-

cer cell lines. This offers a more defined system that could help

identify drug vulnerabilities conferred by tumor suppressor

loss. Through this study, we are able to construct a comprehen-

sive map of drug sensitivity changes caused by tumor suppres-

sor loss and to identify many previously unknown tumor sup-

pressor-drug interactions, which may point to new directions

for exploiting cancer cells’ weaknesses.

RESULTS

Systematic Analysis of Drug Sensitivity Conferred by
Tumor Suppressor Loss
We previously developed an experimental platform that could

detect how a genetic perturbation alters drug sensitivity (Jiang

et al., 2011). In several follow up studies, this platform was

used to delineate drug mechanism of action (Bruno et al.,

2017; Pritchard et al., 2013). In this study, we used this platform

to ask how loss of a tumor suppressor may affect drug

sensitivity.
(B) A diagram of GFP-based cell survival competition assay. shRNA and GFP are s

If a shRNA alters cellular sensitivity to a certain drug, after drug treatment, the cha

population. For each experiment, drug-treated samples contain at least 50,000 live

sorting (FACS).

(C) As control, retrovirus vector alone did not cause significant change in drug s

(D) A heatmap summarizing how depletion of tumor suppressor genes causes r

sensitivity phenotype is shown if multiple shRNAs exhibit similar resistance or sen

figure. Data are from at least three independent biological repeats.

(E) Proof-of-principle results showing that depletion of target genes caused expe

In (C) and (E), data are mean ± SEM from at least three independent biological rep
Briefly, retrovirus encoding GFP and shRNA against a tumor

suppressor was used to partially infect a mouse Em-Myc

p19Arf�/� lymphoma cell line, which was then treated with an

anticancer drug (see STAR Methods for detailed experimental

protocols). If depletion of the tumor suppressor sensitized cells

to that drug, then in the surviving population, the percentage of

GFP-expressing cells will drop (Figure 1B), and the extent of

sensitization can be calculated from changes of GFP percent-

ages (Jiang et al., 2011).

Using this approach, the change of drug sensitivity can be

attributed to shRNA-mediated tumor suppressor knockdown,

because most shRNAs we tested did not affect cell fitness by it-

self (Data S2), and the retrovirus vector itself did not notably

change cellular sensitivities to drugs (Figure 1C).

Several aspects of this platform make it suitable for studying

tumor suppressor-drug interactions. First, as an engineered

cancer cell line, the Em-Myc p19Arf�/� lymphoma cell line has a

relatively simple genetic landscape. p53 and major DNA repair

pathways remain functional in this cell line, which guards against

rapid genetic diversification. We also discard cells when they are

in culture for more than 40 days to further reduce the impact of

potential genetic and transcriptional diversification on our study.

In addition, in our experimental platform (Figure 1B), each sensi-

tivity readout is the collective survival outcome of hundreds of

thousands tumor suppressor-deficient and tumor suppressor-

proficient cells, and such a large N makes the data highly repro-

ducible (Figure S1A). Moreover, in each experiment, the GFP-

negative, tumor suppressor-proficient cells serve as internal

controls, significantly reducing the effects of cell passage, cell

seeding, serum batch, medium evaporation, and other arcane

factors that could have affected the consistencies of MTT-based

assays used in cell line comparison-based approaches (Wein-

stein and Lorenzi, 2013). Using this platform, experiments that

were done years apart yielded highly consistent results, and

the same gene-drug pairs yielded highly similar resistance or

sensitization phenotypes (Figure S1B) (Bruno et al., 2017; Jiang

et al., 2011).

Of note, the shRNA vector used in our study is based on the

second-generation miR-30-based expression system (Dickins

et al., 2005), which helps reduce off-target effects and toxic im-

mune response in host cells (Fellmann et al., 2013; McBride

et al., 2008). In order to further limit the impact of off-target ef-

fects of shRNA in our study, on average we used three shRNAs

for each tumor suppressor gene and tested them separately (see

STAR Methods for a detailed discussion). Using this platform, in

a one-gene, one-drug manner, we systematically studied how

cellular sensitivities to 26 different types of drugs were affected
tably transduced into Em-Myc p19Arf �/� lymphoma cells via retroviral infection.

nge of sensitivity will manifest as change of GFP-positive cells in surviving cell

cells, and about 1,000 live cells are analyzed using fluorescence-activated cell

ensitivity.

esistance (red) or sensitivity (blue) to a drug. For each gene, the resistance or

sitivity phenotype, and average results from these shRNAs are presented in this

cted resistance or sensitivity phenotypes to indicated drugs.

eats. ***p < 0.001, **p < 0.01, *p < 0.05. See also Figure S1 and Tables S1–S5.
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upon knockdown of 59 genes that frequently exhibit loss of func-

tion mutations and/or deletions in human cancers (Figure 1D).

The vast majorities of known and potential tumor suppressors

in the COSMIC Cancer Gene Census were included in our study.

The drugs in this study covered a wide range of anticancer

mechanisms, including most types of traditional and targeted

therapeutics, as well as recently developed drugs such as

BRD4 and CDK7 inhibitors. Strikingly, despite the paucity of cur-

rent knowledge about tumor suppressor loss-associated drug

sensitivities, our results suggested that deficiency ofmany tumor

suppressors could potentially alter sensitivities to various drugs

(Figure 1D), thereby providing possible new angles for exploring

tumor suppressor-oriented precision cancer medicine.

We first asked whether our approach could faithfully repro-

duce known associations between tumor suppressor and drug

sensitivity. It is known that RB1 deficiency renders cells resistant

to CDK4/6 inhibitor (O’Leary et al., 2016), p53 deficiency renders

cells resistant to MDM2 inhibitor (Vassilev et al., 2004), BRCA1/2

deficiency causes hypersensitivity to PARP inhibitors and

cisplatin (Bryant et al., 2005; Farmer et al., 2005; Tan et al.,

2008), MSH2/6 deficiency causes resistance to temozolomide

(Friedman et al., 1998), PTEN deficiency renders cells resistant

to EGFR inhibitor (Sos et al., 2009), FANCD2 deficiency causes

sensitivity to mitomycin C (Unno et al., 2014), and p53BP1 defi-

ciency renders cells resistant to PARP inhibitors (Bunting et al.,

2010). As proof of principle (Figure 1E), our method could

correctly reproduce 11 of 11 such expected drug sensitivity phe-

notypes (Table S4). These results accurately reflected clinical

observations and the underlying biology. This performance is

significantly better than that of the cell line comparison-based

approach, which could predict 2 of 11 such gene-drug interac-

tions (Table S3). These proof-of-principle results demonstrated

the validity of our method, suggesting that it provides the neces-

sary resolution for delineating tumor suppressor loss-associated

drug sensitivities.

Next, from this drug sensitivity map, we chose several novel

tumor suppressor-drug interactions, validated them in additional

cancer cell lines, and explored the underlying mechanisms.

SETD2 Deficiency Sensitized Cells to CDK7 Inhibitor
SETD2 is an epigenetic regulator that shows recurrent loss-of-

function mutations in kidney cancers (Dalgliesh et al., 2010).
Figure 2. SETD2 Deficiency Sensitized Cells to CDK7 Inhibitor

(A) Effect of SETD2 depletion on Em-Myc p19Arf �/� cells’ sensitivity to CDK7 inh

repeats. ***p < 0.001, **p < 0.01, *p < 0.05.

(B) SETD2 depletion sensitized human kidney cancer cell lines to THZ1 treatmen

(C and D) THZ1 caused significant redistribution of nucleolar protein fibrillarin in S

of cells with nucleolar fibrillarin redistribution is shown in (D). Data are mean ± SEM

(E and F) THZ1 caused significant redistribution of coilin in SETD2-depleted 7

results is shown in (F). Data aremean ±SEM from three independent biological rep

*p < 0.05.

(G) RNA expression level in SETD2-depleted 769-P cells was more severely affl

biological repeats. ***p < 0.001, **p < 0.01, *p < 0.05.

(H) THZ1 treatment caused significant cell death in SETD2-depleted 769-P cells

(I and J) SETD2 depletion enhanced response to THZ1 in vivo. Control and SETD2

(n = 6) were treated with vehicle or THZ1 (5 mg/kg once a day). The kidney cancer

this experiment. The tumor volume of each group was assessed every 5 days (I). D

(J). Tumor masses and volumes for each group are shown in Figure S2B.

See also Figure S2.
Recently, loss of SETD2 has also been shown to significantly

accelerate the development of lung (Rogers et al., 2017) and co-

lon (Yuan et al., 2017) cancers. Interestingly, using our platform,

SETD2 deficiency was found to confer significantly enhanced

sensitivity to the CDK7 inhibitor THZ1 (Figures 1D and 2A).

Such a synthetic lethal interaction between CDK7 inhibitor and

SETD2 deficiency has not been previously reported. Importantly,

this phenotype was seen both in Em-Myc p19Arf�/� cells, which

we used to generate the drug sensitivity map, and in human kid-

ney cancer cell lines (Figure 2B), in which SETD2 loss of function

is clinically relevant.

SETD2 is a histone H3K36 methyltransferase, whose function

contributes to transcriptional elongation (Kizer et al., 2005). Inhi-

bition of CDK7 impairs earlier steps of transcription, including

initiation and pause release (Kwiatkowski et al., 2014). On this

basis, we hypothesized that SETD2 deficiency’s negative impact

on transcriptional elongation may potentially exacerbate the

transcriptional stress caused by CDK7 inhibition. Indeed,

CDK7 inhibition profoundly altered the distribution of nucleoli

proteins fibrillarin and coilin, indicative of severe transcription

stress (Boulon et al., 2010; Bruno et al., 2017), in SETD2-knock-

down cells but not in control cells (Figures 2C–2F; Figure S2A).

CDK7 inhibitor suppressed RNA transcription more severely in

SETD2-knockdown cells (Figure 2G), and such cells underwent

rapid cell death upon CDK7 inhibition (Figure 2H). When treated

in vivo, control tumors were barely affected by CDK7 inhibitor,

whereas SETD2-deficient tumors were significantly suppressed

by CDK7 inhibitor (Figures 2I and 2J; Figure S2B). Such a novel

synthetic lethal interaction between CDK7 inhibitor and SETD2

deficiency may inform the clinical development of CDK7 inhibi-

tors, and it also points to new potential opportunity of treating

SETD2-deficient cancers in a targeted manner.

CREBBP Deficiency Confers Resistance to EGFR
Inhibitor
CREBBP is a histone acetyltransferase and tumor suppressor

recently found to be commonly mutated in lymphoma and leuke-

mia (Mullighan et al., 2011), aswell as cancers of the lung (Camp-

bell et al., 2016), bladder (Guo et al., 2013), uterus, and colon.

Our drug sensitivity map showed that loss of CREBBP caused

significant resistance to EGFR inhibitor (Figures 1D and 3A). Us-

ing an EGFR-driven human lung cancer cell line PC-9, we further
ibitor THZ1. Data are mean ± SEM, from at least three independent biological

t. Data are representative results from three independent biological repeats.

ETD2-depleted 769-P cells (C); scale bar as indicated in the figure. Percentage

from three independent biological repeats. ***p < 0.001, **p < 0.01, *p < 0.05.

69-P cells (E); scale bar as indicated in the figure. Quantitative analysis of

eats and passed a Kolmogorov-Smirnov normality test. ***p < 0.001, **p < 0.01,

icted when treated with THZ1. Data are mean ± SEM from three independent

. Scale bar, 250 mm.

-depleted OS-RC-2 cells were injected into nudemice, and the resulting tumors

cell line OS-RC-2 was able to form tumor in nudemice and therefore chosen for

ata are mean ± SD. Images show the dissected tumors 28 days after injection
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confirmed that loss of CREBBP indeed conferred significant

resistance to the EGFR inhibitor erlotinib, even at very high

dose (Figure 3B). In contrast, the expression of KRAS G12V

mutant also protected PC-9 cells from erlotinib, but only at

much lower drug doses (Figure 3B). This suggests that CREBBP

statusmay significantly modulate the treatment efficacy of EGFR

inhibitor.

For targeted therapeutics such as EGFR inhibitors, there are

several routes leading to their clinical resistance, including

EGFR mutation such as T790M (Kobayashi et al., 2005; Pao

et al., 2005), mutations of downstream genes such as KRAS,

and upregulation of other kinases such as c-MET (Engelman

et al., 2007). Beside these, another clinically observed cause

of resistance is cell state conversion (Shaffer et al., 2017; Vis-

wanathan et al., 2017), in which cancer cells transit from epithe-

lial to mesenchymal state and become resistant to EGFR inhib-

itors (Byers et al., 2013; Thomson et al., 2005; Yauch et al.,

2005). However, the mechanism behind such observation re-

mains elusive. Interestingly, upon knockdown of CREBBP,

PC-9 cells displayed striking features of epithelial-to-mesen-

chymal transition (EMT), including spindle-shaped morphology

(Figure 3C), as well as drastic transcriptional changes consis-

tent with EMT (Figures 3D and 3E). Interestingly, upon EMT,

CREBBP-deficient cells lost the expression of EGFR (Figure 3E)

but still maintained viability. When treated with EGFR inhibitors,

such cells did not respond properly and failed to effectively up-

regulate BIM, a pro-apoptotic gene essential for EGFRi-

induced cell death and its clinical efficacy (Ng et al., 2012) (Fig-

ure 3F). When treated in vivo, control PC-9 tumors were nearly

completely suppressed by EGFR inhibitor, whereas the growth

of CREBBP-deficient PC-9 tumors was largely unaffected by

EGFR inhibitor (Figures 3G–3I). This suggested that CREBBP

status may significantly modulate the outcome of treatment

by EGFR inhibitors. Currently, a tractable model of EMT-

induced targeted therapeutic resistance is still being sought

for, and our results showed that loss of the tumor suppressor

CREBBP could provide an epigenetic switch that leads to

both EMT and drug resistance.

Of note, CREBBP knockdown does not affect cell growth in

tissue culture (Figure 3B). In the in vivo experiment, it appears

that CREBBP-knockdown tumors have a trend to grow faster

than control group tumors (Figure 3G). It is possible that

CREBBP knockdown may help cells adapt to in vivo challenges,

such as nutrients, metabolic changes, hypoxia, and so on. How-

ever, the near absence of response to EGFR inhibitor (Figure 3I)
Figure 3. CREBBP Depletion Conferred Resistance to EGFR Inhibitors

(A) Effect of CREBBP depletion on Em-Myc p19Arf �/� cells’ sensitivity to EGFR inh

repeats. ***p < 0.001, **p < 0.01, *p < 0.05.

(B) CREBBP depletion caused resistance to EGFR inhibition. The upper and lo

affected PC-9 cells’ sensitivity to erlotinib. Data are representative results from t

(C) CREBBP depletion caused EMT in PC-9 cells. Scale bar, 50 mm.

(D and E) RNA (D) and protein (E) levels of EMT markers and EGFR and AKT sign

independent biological repeats in (D). ***p < 0.001, **p < 0.01, *p < 0.05.

(F) CREBBP-depleted PC-9 cells failed to efficiently upregulate BIM after erlotin

0.2 mg/mL erlotinib for 24 h and analyzed using western blot.

(G–I) CREBBP depletion abolished response to erlotinib in vivo. Control and CREB

(n = 7) were treated with vehicle or erlotinib (16 mg/kg once a day). The tumor volu

for each group are shown in (H). Data are mean ± SD. Images show the dissecte
in CREBBP-knockdown groups still demonstrates that CREBBP

deficiency causes resistance to EGFR inhibitor in vivo.

CREBBP Depletion Sensitized Cells to DNA-Damage
Drugs
Given CREBBP’s important roles in many cellular processes, we

further asked whether CREBBP loss may cause associated

weakness for certain types of anticancer drugs.

In Em-Myc p19Arf�/� cells, we observed that loss of CREBBP

significantly sensitized cells to treatment by several drugs,

including cisplatin, 6-TG, and camptothecin (Figures 1D and

4A). Through various means, these drugs cause cellular DNA

damage. Cells cope with such stress by eliciting an ATR-

CHK1 response to establish early S-phase arrest, in order to

stop further damage and to provide time for DNA repair. A pre-

vious study indicated that CREBBP participates in the ATR-

CHK1 signaling cascade (Stauffer et al., 2007), and our results

suggest that this may cause a synthetic lethal interaction be-

tween CREBBP deficiency and DNA-damage drugs. Indeed,

in lung cancer cell line PC-9 and bladder cancer cell line

UM-UC-3, control cells were arrested in early S phase when

treated with camptothecin, whereas in CREBBP-deficient

cells, DNA replication proceeded to late S or G2/M stage (Fig-

ure 4B). As a result, more DNA damage accumulated in

CREBBP-deficient cells, as evidenced by increased H2AX

phosphorylation upon camptothecin treatment (Figure 4C).

Long-term colony formation assays also confirmed that

CREBBP loss significantly reduced cell survival upon campto-

thecin treatment (Figure 4D). When treated in vivo, tumors

form by CREBBP-knockdown PC-9 cells shrank more dramat-

ically in response to irinotecan (Figures 4E and 4F), which is a

camptothecin-derivative drug used in clinics. This suggests

the CREBBP-DNA-damage drug interaction may significant

alter treatment outcome.

We further asked whether existing clinical data support this

observation. In human patients, lung squamous cancers are

mostly treated with chemotherapeutic drugs that attack DNA.

Survival analysis of TheCancer GenomeAtlas (TCGA) lung squa-

mous cancer database using SurvExpress (Aguirre-Gamboa

et al., 2013) suggested that the survival rate of CREBBP-low can-

cer patients is significantly better than that of CREBBP-high can-

cer patients (Figure 4G). This is consistent with our finding that

CREBBP deficiency sensitizes cancer cells to DNA-damage

drugs. It further shows that traditional anticancer drugs, when

applied to target the weakness caused by certain tumor
ibitor erlotinib. Data are mean ± SEM from at least three independent biological

wer panels show how CREBBP knockdown and expression of KRAS mutant

hree independent biological repeats.

aling in PC-9 cells after CREBBP depletion. Data are mean ± SEM from three

ib treatment. Control and CREBBP-knockdown PC-9 cells were treated with

BP-depleted PC-9 cells were injected into nudemice, and the resulting tumors

me of each group was assessed every 2 days (G). Tumor masses and volumes

d tumors 24 days after injection (I). ***p < 0.001, **p < 0.01, *p < 0.05.

Cell Reports 27, 3331–3344, June 11, 2019 3337



A B

C

D

E

F

G

(legend on next page)

3338 Cell Reports 27, 3331–3344, June 11, 2019



suppressor loss, can also potentially lead to better treatment

outcome.

BAP1Deficiency SensitizedCells to Inhibitors of DNMT1
and PARP
BAP1 is a newly discovered tumor suppressor significantly

mutated in clear cell renal carcinoma (Peña-Llopis et al., 2012),

uveal melanoma (Harbour et al., 2010), andmesothelioma (Testa

et al., 2011). Our results showed that multiple shRNAs targeting

BAP1 led to enhanced sensitivities toward DNMT1 inhibitor (Fig-

ures 1D and 5A). This prompted us to examine the potential rela-

tionship between BAP1 and DNMT1.

Interestingly, upon BAP1 knockdown, the protein level of

DNMT1 significantly decreased (Figure 5B; Figure S3A), which

may explain why BAP1-deficient cells are more sensitive to

DNMT1 inhibitors. BAP1 knockdown did not change the mRNA

level of DNMT1 (Figure 5C; Figure S3B), which prompted us to

ask whether BAP1 modulates DNMT1 at the post-translational

level.

Given that BAP1 is a deubiquitinase, we asked whether BAP1

controlled DNMT1 protein stability. Indeed, treatment of BAP1-

deficient cells with proteasome inhibitor restored DNMT1 protein

level (Figure 5D). Next, using co-immunoprecipitation assays, we

found that BAP1 and DNMT1 interact with each other (Figure 5E;

Figure S3C). Furthermore, the expression of full-length BAP1,

but not a mutant that lacks deubiquitinase activity, reduced the

ubiquitination level of DNMT1 (Figure 5F). Expression of BAP1

also significantly prolonged the half-life of endogenous DNMT1

from 8 to more than 24 h (Figures 5G and 5H).

Taken together, these data suggest that BAP1 may act as a

novel deubiquitinase for DNMT1, and it controls DNMT1 protein

stability. Consequently, cells with BAP1 deficiency have lower

levels of DNMT1 (Figure 5B; Figure S3A) and are more sensitive

to DNMT1 inhibitor decitabine, which we further confirmed using

a human kidney cancer cell line (Figure 5I). These findings show

that BAP1 deficiency may cause hypersensitivity to DNMT1 in-

hibitors, which may provide new angles of targeting BAP1-defi-

cient cancers.

DISCUSSION

Deficiency of tumor suppressors may bring associated weak-

ness that could potentially be used in cancer therapy. The syn-
Figure 4. CREBBP Depletion Sensitized Cells to Topoisomerase I Inhib

(A) Effect of CREBBP depletion on Em-Myc p19Arf�/� cells’ sensitivity to topoiso

dependent biological repeats. ***p < 0.001, **p < 0.01, *p < 0.05.

(B) In human lung cancer cell line PC-9 and human bladder cancer cell line UM-UC

treatment.

(C) CREBBP-depleted cells accumulated more DNA damage after camptothecin

(D) CREBBP depletion sensitized two human cancer cells to camptothecin. Data

(E and F) CREBBP depleted cells were sensitive to irinotecan, which is a water-s

cells were injected into nude mice, and the resulting tumors were treated with veh

weremonitored every 2 days (E). Data aremean ±SD. This experiment was execu

Relative tumor weight and volume were calculated of the dissected tumors 24 d

(G) The correlation of survival with CREBBP gene expression in patients with lun

SurvExpress program for the analysis of samples of TCGA LUSC datasets. Red

indicates the percentage of survival. The x axis represents survival days, and the

expression (in black) and high expression (in red) at the corresponding time.
thetic lethal interactions between BRCA1/2 deficiency and

PARP inhibitors (Bryant et al., 2005; Farmer et al., 2005) has

led to improved treatment strategies for ovarian (Kaufman

et al., 2015; Ledermann et al., 2016) and breast cancers (Robson

et al., 2017; Tutt et al., 2010).

However, unlike oncogenes, tumor suppressor loss does not

offer direct ways to exploit in cancer treatment. Therefore,

despite the prevalence of tumor suppressor mutations in cancer

genomes, the full spectrum of drug sensitivity conferred by tu-

mor suppressor loss remains unknown, which greatly hampers

the utility of tumor suppressor loss in precision cancer medicine.

The presence of aberrantly activated oncogene often dictates

an all-or-none response to its targeted drugs. However, for tu-

mor suppressor, such a strong and intuitive gene-drug interac-

tion is not expected. The highly diverse genetic and transcrip-

tional landscapes of different cancer cell lines may have

rendered it difficult to study tumor suppressor-drug interactions,

given that the presence of too many other variables, rather than

the tumor suppressor itself, may significantly modulate drug

response. As a result, the cell line comparison-based ap-

proaches led to a rather limited number of novel tumor suppres-

sor-drug interactions (Table S1) and failed to recapitulate most

known tumor suppressor-drug interactions (Table S3).

In light of this, we analyzed how tumor suppressor deficiency

may modulate drug sensitivity in a more defined, single-variable

manner. First, with regard to existing tumor suppressor-drug

interaction knowledge, our approach performed significantly

better (Figure 1E). In our study of 59 common tumor suppressors

in the COSMIC Cancer Gene Census and 26 different types of

anticancer drugs, we uncovered many previously unknown

gene-drug interactions (Figure 1D) that may help shed light on

how to exploit tumor suppressor deficiency in precision cancer

medicine. We also observed that the gene-drug interaction sig-

natures could help group drugs with similar mechanism of action

(Figure 6A). For example, DNA-damage drugs, microtubule poi-

sons, and bromodomain inhibitors each registered specific

gene-drug resistance-sensitivity patterns that help group these

drugs. This provides additional evidence that our drug sensitivity

results reflect underlying biological mechanisms. We further

studied drug sensitivities associated with SETD2, CREBBP,

and BAP1 deficiency and identified the underlying mechanisms,

which may provide new angles of attacking cancers with such

deficiencies.
itor

merase I inhibitor camptothecin. Data are mean ± SEM from at least three in-

-3, CREBBP depletion impaired cell cycle checkpoint after camptothecin (CPT)

treatment.

are representative results from three independent biological repeats.

oluble derivative of camptothecin in vivo. Control and CREBBP-depleted PC-9

icle or irinotecan (50 mg/kg intraperitoneally every 4 days). Tumor sizes (n = 7)

ted together with that depicted in Figure 3G and shared the same vehicle group.

ays after injection (F). Data are mean ± SD. ***p < 0.001, **p < 0.01, *p < 0.05.

g squamous cancer. Kaplan-Meier survival curves were constructed using the

and black curves denote high- and low-risk groups respectively. The y axis

bottom two rows of numbers indicate the number of survivors in CREBBP low
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In this study we aimed to provide additional hypothesis for

exploring potential weakness associated with tumor suppressor

loss. However, gene-drug interactions can be cell type depen-

dent, and some of the phenotypes we discovered in Em-Myc

p19Arf�/� cells (Figure 1D) may not translate in other cell types.

With this in mind, we used an additional BCR-ABL driven ALL

cell line (Williams et al., 2006) to test those strong resistance

and sensitization phenotypes we observed in Em-Myc p19Arf�/�

cells (Figure 1D). Overall, resistance and sensitization pheno-

types are highly consistent in both cell lines (Figure 6B; Table

S5). This suggests that the strong resistance and sensitization

phenotypes we report here point to certain gene-drug interac-

tions that are crucial for determining drug sensitivity. However,

such gene-drug interactions may still be cell context dependent.

If in some lineage of cells, gene expression landscape renders

some repair pathway ineffective, certain gene-drug interactions

may not apply. For example, in a recent publication (Herbert

et al., 2019), a tissue-restricted transcription factor, BRN2, was

shown to interact with multiple proteins that are important for

DNA damage repair. In addition to reprogramming DNA repair

pathway, BRN2 also suppresses the expression of pro-apoptotic

genes. Therefore, certain gene-drug interactions may be blunted

or blocked in cancer types that expressBRN2.On theother hand,

it is also possible that in some lineages of cancers, gene expres-

sion landscapewill enable certain gene-drug interactions that are

not discovered in Em-Myc p19Arf�/� cells.

Given that tumor suppressors are frequently disabled in can-

cers, they may present natural stratifies for precision therapy in

significant portions of patients. Our study yielded a systematic

view of potential tumor suppressor-drug interaction and sug-

gested that deficiency inmany tumor suppressors could strongly

alter cellular sensitivity to certain drugs. Thismay provide amuch

needed starting point for forming hypothesis about how to use

tumor suppressor loss in cancer therapy. Such approaches

can be applied either as single therapy targeting tumor suppres-

sor deficiency itself or in conjunction with other types of thera-

pies. For example, recently anticancer drugs have been used

together with immune therapy, with the goal of releasing cancer

neo-antigens through drug-induced cell death, thereby facili-

tating immune clearance of tumors. Knowing the drug vulnerabil-

ities conferred by tumor suppressor loss could potentially help

inform the design of such combination immune therapies.

In addition, we observed that in some cases, loss of a tumor

suppressor could sensitize cancer cells to multiple types of
Figure 5. BAP1 Depletion Sensitized Cells to DNMT1 Inhibitor

(A) Effect of BAP1 depletion on Em-Myc p19Arf �/� cells’ sensitivity to DNMT1 inh

biological repeats. ***p < 0.001, **p < 0.01, *p < 0.05.

(B) BAP1 depletion led to reduced DMNT1 protein level in human kidney cancer

(C) qPCR analysis of knockdown efficiency of BAP1 and its effect on DNMT1 RN

independent biological repeats. ***p < 0.001, **p < 0.01, *p < 0.05.

(D) Proteasome inhibition restored DNMT1 protein level in BAP1-depleted cells.

(E) Co-immunoprecipitation assay showing interaction between ectopic BAP1 a

enous BAP1.

(F) Expression of wild-type (WT) BAP1, but not a deubiquitinase-defective C91S

(G and H) Expression of BAP1 extended half-life of DNMT1 in HEK293T cells. Prote

half-life curve of DNMT1 (H).

(I) BAP1 depletion sensitized 786-O cells to decitabine. Data are representative

See also Figure S3.
drugs, which may provide the basis for combinatorial precision

treatment. For example, BAP1 deficiency sensitized cancer cells

toDNMT1 inhibitor (Figure 5).Wealso observed that loss ofBAP1

caused significant sensitivity to PARP inhibitor (Figure S3D),

which is consistent with BAP1’s role in homologous recombina-

tion (Yu et al., 2014). Given that BAP1 loss sensitized cells to

both PARP inhibitor and DNMT1 inhibitor, two drugs with vastly

different anticancer mechanisms, we asked whether combined

treatment of BAP1-deficient cancer cells with these two drugs

could achieve further enhanced efficacy. Indeed, combining

PARP inhibitor and DNMT1 inhibitor, each at reduced dose, pro-

duced more significant killing of BAP1-deficient cells than either

drugalone (FigureS3E). This highlights thepossibility of attacking

weaknesses associatedwith tumor suppressor losswithmultiple

drugs, which may help maximally eliminate cancer cells.

Last, many tumor suppressors were recently discovered from

cancer genome sequencing studies, and our understanding of

their biological functions remains incomplete. Given that the

drugs used in our study contain a wide range of perturbants of

important cellular pathways and processes, this chemical-ge-

netic interaction map also sheds light on the biological functions

of tumor suppressors. For example, the observation of BAP1-

deficient cells’ sensitivity to DNMT1 inhibitor led to the discovery

that BAP1 regulates DNMT1 protein stability. Therefore, this sys-

tematic chemical-genetic interaction map could also provide

valuable clues to the biological functions of newly discovered tu-

mor suppressors.
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(A) Unsupervised hierarchical clustering of different drugs according to their
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Hierarchical clustering was performed in SPSS 20.0 software. All gene-drug

interactions were calculated for cluster on the basis of drug. The cluster

method is between-groups linkage, and the interval measure is squared
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(B) Comparison of gene-drug interactions in Em-Myc p19Arf�/� cells and BCR-

ABL ALL cells. Each dot represents a gene-drug pair. The x axis represents the

level of resistance or sensitization in Em-Myc p19Arf�/� cells, and the y axis
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three independent biological repeats.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

g-H2AX-Ser139 Millipore Cat#05-636; RRID:AB_309864

BAP1 Santa Cruz Cat#SC-28383; RRID:AB_626723

DNMT1 Abcam Cat#ab13537; RRID:AB_300438

PARP Cell signaling Technologies Cat#9542; RRID:AB_2160739

FLAG Abmart Cat#M20008; RRID:AB_2713960

Myc Abmart Cat#M20002

HA Abmart Cat#M20003

SETD2 Abclonal Cat#A3194; RRID:AB_2764980

Fibrillarin Abcam Cat#ab5821; RRID:AB_2105785

Coilin Abcam Cat#ab87913; RRID:AB_10860831

CREBBP Abcam Cat#ab2832; RRID:AB_303342

CDH1 BD Bioscience Cat#610181; RRID:AB_397580

VIM Cell signaling Technologies Cat#5741; RRID:AB_10695459

EGFR Cell signaling Technologies Cat#4267; RRID:AB_2246311

EGFR Y1058 Cell signaling Technologies Cat#3777; RRID:AB_2096270

S6K pT389 Cell signaling Technologies Cat#9205; RRID:AB_330944

S6K Cell signaling Technologies Cat#9202; RRID:AB_331676

AKT pS473 Cell signaling Technologies Cat#4060; RRID:AB_2315049

AKT pT308 Cell signaling Technologies Cat#13038; RRID:AB_2629447

BIM Cell signaling Technologies Cat#2933; RRID:AB_1030947

Actin Cell signaling Technologies Cat#4967; RRID:AB_330288

Alexa 647 Goat anti Mouse Sigma Cat#50185; RRID:AB_1137661

Alexa 647 Goat anti Rabbit Sigma Cat#40839; RRID:AB_1137669

Bacterial and Virus Strains

E. coli stable competent (high efficiency) Transgene Cat#CD201

Chemicals, Peptides, and Recombinant Proteins

Polybrene Sigma-Aldrich Cat#H9268

Puromycin Gold Biotechnology Cat#P-600-500

TRIzol Life Technologies Cat#15596018

RNase A Thermo Fisher Scientific Cat#EN0531

Doxorubicin Selleck Cat#S1208

Camptothecin Selleck Cat#S1288

Cisplatin Selleck Cat#S1166

Mitomycin C Selleck Cat#S8146

Fluorouracil Selleck Cat#S1209

Gemcitabine Selleck Cat#S1714

Methotrexate Selleck Cat#S1210

Thioguanine Selleck Cat#S1774

Cytarabine Selleck Cat#S1648

Paclitaxel Selleck Cat#S1150

Vincristine Selleck Cat#S1241

Actinomycin D MCE Cat#HY-17559

Arsenic trioxide A gift from Yajie Wang N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Decitabine Selleck Cat#S1200

Vorinostat Selleck Cat#S1047

Palbociclib Selleck Cat#S1579

Tanespimycin Selleck Cat#S1141

Torkinib Selleck Cat#S2218

Erlotinib Selleck Cat#S1023

PI-103 Selleck Cat#S1038

MK2206 Selleck Cat#S1078

Olaparib Selleck Cat#S1060

Apabetalone Selleck Cat#S7295

(+)-JQ1 Selleck Cat#S7110

THZ1 Selleck Cat#S7549

EPZ005687 Selleck Cat#S7004

Immobilon Western HRP substrate Millipore Cat# WBKLS0500

Propidium Iodide Sigma Cat#P4170

PMSF Beyotime Cat#ST506

FLAG M2 Agarose Sigma Cat#A2220

MYC Agarose Biotools Cat#B23401

FLAG peptide Biotools Cat#B23111

MYC peptide Biotools Cat#B23411

Protein A/G Plus Agarose Thermo Fisher Cat#20423

Critical Commercial Assays

GoTaq� qPCR and RT-qPCR Systems Promega Cat#A6001

GoScript Reverse Transcription System Promega Cat#A5001

Deposited Data

Data points for Figure 1D are provided in

Data S1

This paper N/A

Experimental Models: Cell Lines

Human Cell line:786O Cell Bank, China Academy of Sciences Cat#TCHu186

Human Cell line:769P Cell Bank, China Academy of Sciences Cat#TCHu215

Human Cell line:OSRC2 Cell Bank, China Academy of Sciences Cat#TCHu40

Human Cell line:PC9 A gift from Hongbin Ji N/A

Human Cell line:UM-UC-3 Cell Bank, China Academy of Sciences Cat#TCHu217

Mouse cell line:Em-Myc p19Arf �/� cell A gift from Michael Hemann N/A

Mouse cell line:ALL A gift from Michael Hemann N/A

Human Cell line:Phoenix A gift from Michael Hemann N/A

Human Cell line:293T Cell Bank, China Academy of Sciences Cat#GNHu17

Experimental Models: Organisms/Strains

BALB/c nude mice Shanghai SLRC laboratory N/A

Oligonucleotides

shRNA See Data S2 This paper N/A

qRT-PCR primers See Data S2 This paper N/A

Recombinant DNA

pMSCV-IRES-GFP A gift from Michael Hemann N/A

pSi A gift from Michael Hemann N/A

pBABE A gift from Hongbin Ji N/A

pcDNA3.1-N-FLAG-BAP1 This paper N/A

pcDNA3.1-N-FLAG This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pcDNA3.1-MYC This paper N/A

pcDNA3.1-N-FLAG-CBX1 This paper N/A

pcDNA3.1-MYC-CBX1 This paper N/A

pcDNA3.1-MYC-DNMT1 This paper N/A

Software and Algorithms

shRNA Design Hemann Lab shRNA Database http://euphrates.mit.edu/cgi-bin/

shRNA/index.pl

GraphPad Prism 7 GraphPad Software https://www.graphpad.com/

ImageJ NIH https://imagej.nih.gov/ij/

SPSS 20.0 SPSS https://www.ibm.com/cn-zh/

analytics/spss-statistics-software

Flowjo Flowjo https://www.flowjo.com/

LAS AF Lite Leica https://www.leica-microsystems.

com/

Snapgene Snapgene https://www.snapgene.com/

Other

RPMI 1640 Medium HyClone Cat#SH30809.01

DMEM Medium HyClone Cat#SH30243.01

Trypsin-EDTA 0.25% GIBCO Cat#25200-056

Pen Strep GIBCO Cat#15140-122

Fetal bovine serum GIBCO Cat#10091-148

PBS HyClone Cat#SH30013.03

IMDM Medium HyClone Cat#SH30228.01

PVDF membrane Millipore Cat#IPVH00010
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hai Jiang

(hai@sibcb.ac.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Em-Myc p19Arf �/� cell (sex: male) was cultured in B cell medium (45% Dulbecco’s modified Eagle’s medium and 45% Iscove’s

modified Dulbecco’s media, supplemented with 10% fetal bovine serum, L-glutamate, and 5 mM b-mercaptoethanol). BCR-ABL

ALL cell (generated in(Williams et al., 2006), sex unknown) was cultured in RPMImedium supplemented with 10% fetal bovine serum,

L-glutamate, and 5 mM b-mercaptoethanol). Phoenix (sex: female), HEK293T (sex: female) and UM-UC-3 cells (sex: male) were

cultured in DMEM medium supplemented with L-glutamate and 10% fetal bovine serum. PC-9 (sex: male), 786-O (sex: male),

769-P (sex: female), OS-RC-2 (sex: male) were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum and

100 U/mL penicillin/streptomycin at 37�C with 5% CO2.

Em-Myc p19Arf �/� Cell line maintenance

Commonly used cancer cell lines undergo genetic diversification mainly due to genomic instability. More than half of human cancers

inactivate p53, which guard genome from acquiring mutations and aneuploidy. In addition, mutations in the wide spectrum of genes

involved in DNA damage response, such as BRCA1/2, ATM, etc., also affect the genomic stabilities of many human cancer cell lines.

As for the Em-Myc p19Arf�/� cells, it was first established in Scott Lowe lab, and served as a good performing platform in research and

screening field(Bric et al., 2009; Bruno et al., 2017; Burgess et al., 2008; Dickins et al., 2005; Jiang et al., 2011; Meacham et al., 2009).

Themodifications in its genome are Em enhancer-drivenMyc overexpression and Arf knockout. p53 and DNA repair pathways are left

untouched in this situation, which will guard against rapid genomic diversification. It can be seen from Figure 1D that knockdown of

p53 and DNA repair pathway components such as BRCA1/2, ATM, BLM, NBS1, WRN etc. each produced expected resistance or

sensitization phenotypes, which attests that p53 and major DNA repair pathways remain functional in this cell line. This will guard

against rapid genetic diversification.
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In experimental protocols, we also take additional cautions to avoid genomic and transcriptional diversifications in the experi-

mental system. To avoid sub-clone effect, large amount of early-passage Em-Myc p19Arf�/�cells were frozen in separate vials,

and cells were discarded if they have been in culture for more than 40 days.

Mice
5-6-wk-old female nude mice were used for all experiments. BALB/c nude mice were purchased from Shanghai SLRC laboratory.

Prior to all experiments, purchased mice were allowed one week to acclimate to housing conditions at the Shanghai Institute of

Biochemistry and Cell Biology Animal Facility. All experimental mice were housed in specific SPF conditions and used in accordance

with animal care guidelines from the Shanghai Institute of Biochemistry and Cell Biology Animal Welfare and Ethical Review commit-

tee. Animal protocols were approved by the Shanghai Institute of Biochemistry and Cell Biology Animal Welfare and Ethical Review

committee.

METHOD DETAILS

GFP-based cell survival competition assay to determine sensitivity change caused by tumor suppressor loss
The experimental protocol of this assay has been previously described(Bruno et al., 2017; Jiang et al., 2011; Pritchard et al., 2013).

The Em-Myc p19Arf�/� cell line was chosen as the initial experimental system partly because as a genetically engineered cancer cell

line, it contains low level of mutations, making it suitable for interrogating gene-drug interactions in a systematic manner.

Previous studies(Jiang et al., 2011) also demonstrated that in this cell line drug sensitivity change can be reliably analyzed. Briefly,

1*105 Em-Myc p19Arf�/� cells are infected with retrovirus that express GFP and shRNA targeting a tumor suppressor gene. Retrovirus

is diluted so that infection rate, as judged by GFP positivity, is around 20%–40%. Cells are counted and seeded at 1 million cells per

1ml in 48-well plates and treated with various drugs at lethal dose 80 to 90 (LD80-90). Half of the volume from each experiment is

removed and replenished with fresh medium every 24hr. Cells are analyzed by fluorescence-activated cell sorting (FACS), with pro-

pidium iodide as a viability marker. LD80–90 of drugs are concentrations at which, when used to treat uninfected Em-Myc p19Arf�/�

cells, cause death in 80%–90% of cells.

At 72hr, treated and untreated cells are analyzed by flow cytometry. The drug-treated samples contain at least 50,000 live cells at

72hr. Around 1,000 live cells are analyzed to determine the percentage of GFP-expression cells, which are then used to calculate

relative resistance index. To avoid outgrowth of untreated control cells, we typically seeded them at 0.25 million per ml, and 75%

of medium was replaced at 24hr and 48hr.

Calculation of relative resistance/sensitivity from GFP-based cell survival competition assay
In our assay, the change of drug sensitivity caused by an shRNA will influence the percentage of GFP-positive, shRNA expressing

cells in surviving population. The GFP percentage with and without drug treatment can be used to calculate relative resistance index

based on methods as previously described(Jiang et al., 2011).

Briefly, to compare the extent of drug sensitivity change conferred by gene knockdown, we introduce the concept of RI (relative

resistance index). We define the value of RI as X. The biological meaning of this factor X is that when a mixture of uninfected (GFP-

negative) and infected (GFP-positive & gene knockdown) cells are treated with a drug, the infected (knockdown) cells will be X-fold as

likely to survive drug treatment when compared to uninfected cells. By this definition, if one out of N uninfected cells survives a drug

treatment, then X out of N infected cells should survive. If we define the total number of uninfected and infected cells as T and the GFP

percentage of untreated population as G1, then after drug treatment, the number of surviving, uninfected cells (N-un) can be calcu-

lated as N–un = T 3 (1 – G1) 3 1/N, and the number of surviving, infected cells (N-in) can be calculated as N–in = T 3 G1 3 X/N.

Therefore, the GFP percentage of the treated, surviving population (G2) can be calculated as G2 = (N– in)/(N–un + N–in). From

this equation, it can be derived that X = (G2 – G1 3 G2)/(G1 – G1 3 G2). Such an equation was used to compute RI values for

each shRNA-drug pair.

For example, if a gene knockdown confers resistance to a drug, the GFP percentage in surviving cells may increase from 20% (G1)

to 50% (G2) after drug treatment. Therefore, for cells with gene knockdown, the relative resistance index (RI) X = (0.5-0.5*0.2)/

(0.2-0.5*0.2) = 4, meaning that cells with gene knockdown are 4-fold as likely to survive drug treatment, compared to control cells.

If a gene knockdown sensitizes cells to a drug, then GFP percentage after treatment will decrease. In this case, the relative resis-

tance index will be smaller than 1. For example, a relative resistance index (X) of 0.1 means knockdown cells are 0.1-fold as like to

survive drug treatment compared to control cells. In other words, gene knockdown made cells 10-fold as sensitive to a drug

compared to control cells. Tomore clearly represent this sensitization effect in a heatmap, a conversion is used in Figure 1D. A relative

resistance index of 0.1 is converted to a sensitivity fold of�10. A relative resistance index of 0.2 is converted to a sensitivity fold of�5

and so on. The intact dataset of all the shRNA and drugs was shown in Data S1.

Cell line comparison-based data acquisition
On the GDSC website, gene-drug relationship is acquired through https://www.cancerrxgene.org/translation/Feature. Established

cancer genes such as p53, BRCA1 are listed there. The effect size is proportional to the difference in mean IC50 between wild-

type and mutant cell lines. Numbers less than 0 indicate drug sensitivity, numbers greater than 0 indicate drug resistance. For
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example, p value ranked p53-drug interactions can be accessed at https://www.cancerrxgene.org/translation/Feature/289, effect

size > 0 means mutation of p53 leads to resistance to a drug, and effect size < 0 means mutation of p53 leads to sensitivity to a

drug. All tumor suppressor genes listed in the GDSCwebpagewere checked as of August 2018 and all gene-drug interactions whose

p value are lower than 0.001 and false discovery rate are lower than 10% were documented in Table S1. Tables S2 and S3 listed

tumor suppressor-drug interactions that have been validated in clinical observations. BRCA1/2 loss causes enhanced sensitivity

to DNA damage drug and PARP inhibitor. Table S2 showed how the GDSC data predict BRCA1/2 mutations would affect cellular

sensitivity to cisplatin and PARP inhibitors. Similar approaches were used to generate Table S3.

Constructs
Retroviral pMSCV-IRES-GFP vector was kindly provided by Professor Michael Hemann at MIT and was used to set up mouse and

human retro shRNA system. Compared with commonly used pLKO.1 shRNA vector, this mir-30-based shRNA vector are less prone

to cause off-target effects and toxic immune response to host cells(Fellmann et al., 2013). The cloning procedure was performed as

described(Jiang et al., 2011). Multiple shRNAs were cloned for each gene, and 5 to 6 shRNAs were tested. Real-time PCR was per-

formed to confirm gene knockdown efficiency. Presentation of drugs sensitivity was based on three shRNAs that effectively knock-

down target genes. In Figure 1D we presented drug sensitivity changes when all three shRNAs caused drug resistance, or when all

three shRNAs caused drug sensitization. Average resistance or sensitivity scores from these shRNAswere presented in Figure 1D. In

addition, when carrying out our experiments, if a shRNA construct causes unfitness in cells (which can be easily monitored by reduc-

tion of the percentage of GFP positive in shRNA-expressing cells), such shRNA constructs were not used for further analysis. Unfit-

ness can be caused either by interfering with genes vital to Em-Myc p19Arf�/� cells (Data S2), or by causing immune, toxic response to

host cells. With such measures we further limited the effect of potential immune response triggered by RNAi.

All shRNA sequences used in this study are listed in Data S2.

Human KRAS G12V was cloned into pBABE retroviral expression vector.

Cell cycle analyses
After treated with drugs for 24hr, cells were collected and fixed overnight in 70% ethanol. Cells were then treated with 0.2% Triton

X-100, 50 mg/ml propidium iodide and 100 mg/ml RNase A for 40 min and analyzed by FACS.

Western Blot and Immunoprecipitation
Cells in culture were washed with ice-cold PBS twice to completely remove residual medium before resuspension in PBS. 2xSDS

lysis buffer (30% Glycerol, 5% b-mercapitalethanol, 0.02% bromophenol blue, 10% SDS and 250mM TrisHCl pH 6.8) was directly

added to resuspended cells. Cell lysates were boiled at 100�C for 10 min. Equal volume and equal quantity of protein samples were

subjected to SDS-PAGE and transferred to a PVDFmembrane (Millipore, cat#WBKLS0500). Themembrane was blocked in 5%milk

at room temperature for 1hr and incubatedwith appropriate antibodies at 4�Covernight. On the next day, themembranewaswashed

with TBS-T three times and incubatedwith appropriate secondary HRP antibodies in 5%BSA at room temperature for 1hr. Themem-

brane was washed again with TBS-T three times and ECL was applied for film development.

For immunoprecipitation experiments, equal amounts of whole cell extracts (WCEs) were incubated with anti-Flag/MYC at 4�C for

overnight and thenwith proteinA/G Agarose beads at 4�C for 2 hours. The beadswerewashedwith cell lysis buffer at 4�C three times,

boiled in 2xSDS buffer, and then frozen until use.

Immunofluorescence staining
769-P cells were fixed after 24hr treatment with THZ1. Cells were then fixed and stained with anti-Fibrillarin (Abcam, #ab5821, 1:400),

anti-Coilin (Abcam, #ab87913, 1:200) and DAPI. Alexa 647-anti rabbit used as a secondary antibody. A Leica TCS SP8 microscope

was used for imaging. Image analysis was performed using LAS AF Lite on the original images. Cell counts and fluorescence normal-

ization were generated ImageJ software.

Colony formation assay
5000 cells were resuspended in medium containing 10% FBS and plated in 6-well plates. After 24hr, they were treated with the indi-

cated dose of drugs. After 24hr or 12hr of treatment, drug-containing mediumwas replaced with fresh complete culture medium and

cell colonies were allowed to grow for about 10 days. Colonies were then fixed with 4% paraformaldehyde and stained with 0.1%

crystal violet for 30 min. Stained cell colonies were washed with phosphate buffered saline (PBS) for three times and dried. Images

were obtained by a digital camera. Colony formation assay were repeated in three independent experiments, and the figures showed

representative images.

RNA extraction and qRT-PCR
RNA was isolated from 106 cells using Trizol extraction. For qRT–PCR, RNA samples were reversely transcribed into cDNA using the

GoScript Reverse Transcript System (Promega). cDNA samples were then subjected to qRT–PCR quantification in duplicate on a

Biorad CFX Connect Real Time machine.
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Ubiquitination assay
HEK293T cells transfected with FLAG-BAP1, MYC-DNMT1 and HA-UB plasmid were treated with 20 mmol/L of MG132, a

proteasome inhibitor for 6hr. Cell lysate protein was used for immunoprecipitation with anti-MYC agarose. After washing, immuno-

precipitates were resolved by SDS-PAGE and proteins transferred onto PVDF membranes. Ubiquitinated DNMT1 was detected by

western blotting using anti-HA antibody.

Generation of nude mice xenografts and drug treatment
Six-week-old male nude mice with BALB/c genetic background were used in the experiments. All mice were housed in a pathogen-

free environment at Shanghai Institute of Biochemistry andCell Biology and treated in strictly accordancewith protocols approved by

the Institutional Animal Care and Use Committee of the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of

Sciences. One million OS-RC-2 or PC-9 cells were injected s.c. into the flanks of mice in 100 mL PBS. 8 days for OS-RC-2 or

10 days for PC-9 after injection, THZ1 in D5W (5 mg/kg body weight, intraperitoneally, once a day) or erlotinib in 1% Tween-80

(16 mg/kg body weight, intragastrical, once a day), or irinotecan in 1% Tween-80 (50 mg/kg body weight, intraperitoneally, every

four days) was administered. Control animals received D5Wor 1%Tween-80 as vehicle. For PC-9 cells, tumor growth wasmonitored

for 24 days and the tumors were measured with a caliper every 2 days; for OS-RC-2 cells, tumor growth was monitored for 28 days

and the tumors were measured with a caliper every 5 days. Tumor volume was calculated as 0.53 L3W3W, and the tumors were

weighed, processed, and imaged after surgical removal.

Kaplan-Meier survival curve
Kaplan-Meier curve for risk groups, concordance index (CI), and p value of the log-rank testing equality of survival curves was con-

structed using samples of TCGA LUSC datasets by SurvExpress program(Aguirre-Gamboa et al., 2013). Red and black curves

denote High- and Low-risk groups respectively. The y axis indicates the percentage of survival, the x axis represents survival

days, and the number of survivors at the corresponding time. Censoring samples are shown as ‘‘+’’ marks. The number of individuals,

the number of censored, and the CI of each risk group are shown in the top-right insets. The CI (concordance index) estimated the

probability that subjects with a higher risk (in this case CREBBP-high expression) will die before subjects with a lower risk (CREBBP-

low expression), which indicating the reliability of calculatedmodel. The concordance indexwill equal 0.5 for randomly selected pairs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differences of event frequency between two groupswere analyzed using Student’s unpaired two-tailed t test after testing the equality

of variances. For individual samples of large population, Kolmogorov–Smirnov normality test were performed ahead of t test. For

in vivo experiments, due to the small number of samples Wilcoxon test were used. All analysis used using Prism 7(GraphPad). A

p value > 0.05 was considered not significant, and p values < 0.001 were marked as *** in figures, p values < 0.01 were marked

as ** in figures and p values < 0.05 were marked as * in figures.

DATA AND SOFTWARE AVAILABILITY

Data points for Figure 1D are provided in Data S1.
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