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Menin is the protein mutated in patients with multiple endocrine neoplasia type 1 (MEN1) 
syndrome and their corresponding sporadic tumor counterparts. Here, we have uncovered a novel 
function for menin in promoting proper cell division. We show that menin localizes to the 
mitotic spindle poles and the mitotic spindle during early mitosis and to the intercellular bridge 
microtubules during cytokinesis in HeLa cells. Menin depletion led to defects in spindle 
assembly and chromosome congression during early mitosis, lagging chromosomes during 
anaphase, defective cytokinesis, multinucleated interphase cells, and cell death. Additionally, 
pharmacological inhibition of the menin-MLL1 interaction also led to similar cell division 
defects. These results indicate that menin and the menin-MLL1 interaction are important for 
proper cell division. These results highlight a novel function for menin in cell division and aid 
our understanding of how mutation and misregulation of menin promotes tumorigenesis.  

Introduction 

Menin is the protein mutated in patients with the multiple endocrine neoplasia type 1 (MEN1) 
tumor syndrome and also their sporadic tumor counterparts (neuroendocrine pancreas, 
parathyroid, and pituitary tumors). (1) Menin is rarely mutated in other tumor types. (2,3) While 
it functions as a tumor suppressor in MEN1, menin is unexpectedly pro-oncogenic in other 
tumors such as acute MLL associated leukemia and hepatocellular carcinoma. (4-6) Thus, 
menin’s oncogenic potential is context specific. 

Most studies to understand menin function have focused on its role in cell signaling and gene 
transcription either through direct interaction with specific transcription factors such as c-myc (7) 
or through integration with large chromatin modifier complexes. (8,9) In either case, menin’s 
specific activity in these protein interactions is unknown and often ascribed to a scaffolding role. 
(10,11) The most thoroughly studied of these is menin’s interaction with the COMPASS-like 
(complex associated with Set1) family proteins. (11-13) Menin functions within two of the six 
known human SET1 (Su(var)3-9, Enhancer-of-zeste, Trithorax) based protein complexes that 
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epigenetically activate gene transcription through histone-H3 lysine-K4 (H3K4) methylation. 
(14) Menin specifically binds the N-terminal subunits of MLL1/KMT2A and MLL2/KMT2B but 
not the other SET1 family proteins (MLL3/KMT2C, MLL4/KMT2D, SETD1A/KMT2F, 
SETD1B/KMT2G) and cooperatively recruits MLL1/2 to chromatin for H3K4 methylation. (15-
17)  

Studies of menin biological function have chiefly focused on its role in cell signaling and 
particularly downstream events in transcription leading to changes in cell proliferation, but a 
direct role for menin during cell division is unclear. (18) Menin has a bookmarking role during 
mitosis but its expression is reduced during mitosis compared to interphase. (19) Interestingly, a 
non-transcriptional role for MLL in mitosis was recently described and we hypothesize that 
menin will also have a non-transcriptional activity during cell division. (20)(21) 

To better understand how menin misregulation can promote tumorigenesis, we studied menin 
specifically during cell division.  Depletion of menin in HeLa cells and HCT116 cells led to 
defects in spindle assembly, chromosome congression, lagging chromosomes during anaphase, 
cytokinetic defects, multinucleated interphase cells, and cell death. Additionally, 
pharmacological inhibition of the menin-MLL1 interaction revealed similar cell division defects. 
These data define a novel function for menin in ensuring proper mitotic spindle assembly and 
cell division. Further, they advance our understanding of how mutation of MEN1 that is likely to 
lead to misregulation of cell division promotes the downstream disease pathology associated 
with endocrine tumors that harbor MEN1 mutations. 

Materials and Methods 

Cell culture and cell cycle synchronization 
HeLa (CCL2, ATCC, RRID:CVCL_0030) cell line growth and siRNA treatments with OriGene 
control non-targeting siRNA (SR30004) and siRNA targeting MEN1 (SR302867A and 
SR302867B) were used as described previously. (22,23) HCT116-GFP-H2B cells for live time-
lapse microscopy were established and maintained as previously described. (22) For G1/S arrest 
and release experiments, cells were arrested with 2mM thymidine for 18 hours, washed 3 times 
with PBS and 2 times with complete media and released into fresh media. For inhibition of the 
menin-MLL1 interaction, cells were treated with 10 µM MI-2 (Selleckchem, S7618) or DMSO 
for the indicated times.  

Immunofluorescence and live-cell time-lapse microscopy 
Immunofluorescence microscopy was performed as described previously (23) with the following 
modifications. A DMI6000 Leica microscope (Leica DFC360 FX Camera, 63x/1.40-0.60 NA oil 
objective, Leica AF6000 software) was used to aquire the immunofluorescence images. The 
Leica Application Suite 3D Deconvolution software was then used to deconvolve the images and 
they were subsequently exported as TIFF (Tagges Imaged File Format) files. For quantifying 
spindle and cytokinetic defects, 100 cells from 3 independent experiments were counted and the 
data are presented as the average ± SD. For live-cell time-lapse microscopy, HeLa cells were 
transfected with indicated siRNAs for 24 hours, arrested in G1/S with 2 mM thymidine for 18 
hours, washed, and released into the cell cycle. Cells were imaged live 6 hours post release for 
24 hours using a the same microscope described above, except that a 20x/0.4 NA air objective 
was used and cells were kept at 37 0C. Images were then converted to AVI (Audio Video 
Interleave) movies. For MI-2 treated live cell time-lapse microscopy, HCT116-GFP-H2B cells 
were treated with 10 µM MI-2 two hours prior to mitotic entry and imaged as indicated above 
and previously reported. (22) Each frame represents a ten-minute interval. 
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Gene Expression Constructs 
To create the GFP-menin expression plasmid the full-length open reading frame of human wild 
type menin from pCR2.1-menin previously described (16) was subcloned into pEGFP-N3 
(Clontech, Inc.) and fully sequenced to confirm fidelity. Construction of the MEN1 wildtype 
cDNA expression plasmid (pCMV-Sport-menin) was previously described. (24) 

Antibodies and Western blotting 
Immunofluorescence and immunoblotting were carried out using the following antibodies: 
Menin from Bethyl (25), α-tubulin clone mca77g from AbD Serotec (26), cyclin B1 from Santa 
Cruz (27), MLL1-N from Millipore (28), MLL1-C from Millipore (29), and Kif2A from Abcam 
(30). Secondary antibodies conjugated to either FITC (donkey anti-rabbit) (31), FITC (donkey 
anti-mouse) (32), FITC (donkey anti-rat) (33), Cy3 (donkey anti-rabbit) (34), Cy3 (donkey anti-
mouse) (35), Cy3 (donkey anti-rat) (36), and Cy5 (donkey anti-rat) (37) were from Jackson 
ImmunoResearch and those conjugated to IRDye 680 (goat anti-rat) (38), and IRDye 680 
(donkey anti-mouse) (39), and IRDye 800 (donkey anti-mouse) (40) were from LI-COR 
Biosciences. Western blotting was performed as previously reported. (22) 

Supplemental Data 
 Supplemental figures and movies can be found in an online repository. (41) 

Results  

MLL1/KMT2A is a known interactor of menin that was recently shown to localize to mitotic 
spindle poles and spindle microtubules during mitosis and function in a non-canonical role 
during cell division. (20) To better understand the function of menin and its misregulation in 
tumorigenesis, we began by asking if menin localized to microtubule structures similar to MLL1 
during cell division. MLL1 is proteolytically processed into two fragments (MLL1-N and 
MLL1-C) which self-associate within the cell to form a functional heterodimer. (42) Subcellular 
localization of both subunits was determined in this study. HeLa cells were fixed and stained for 
DNA, α–tubulin, and either menin, MLL1-N or MLL1-C. During interphase, menin localized 
predominantly within the nucleus as reported previously, similar to MLL1-N and MLL1-C) (Fig. 
1A and 1B and Supplemental Fig. S1). (24,41) During mitosis, menin localized robustly to the 
spindle poles during prophase and prometaphase and to a lesser extent during metaphase and 
post-metaphase, similar to MLL1-N and MLL1-C (Fig. 1A and 1B and Supplemental Fig. S1). 
(41) Interestingly, menin, MLL1-N and MLL1-C also localized to intercellular bridge 
microtubules during cytokinesis (Fig. 1A and 1B and Supplemental Fig. S1). (41)  

Previous studies could not demonstrate menin localization to the mitotic apparatus which 
could be due to different immunofluorescence microscopy conditions or different lots of the 
antibody. (20) To address the specificity of the menin antibody used in this study, menin 
immunofluorescence was evaluated in HeLa cells treated with siRNA targeting MEN1 
expression (siMEN) and compared to control siRNA (siCont) treated cells. As expected, the 
siMEN treated cells showed a decrease in menin protein levels by immunoblot analysis and 
menin was not observed at the mitotic apparatus (Fig. 2A and 2B). To further address this issue, 
we visualized overexpressed GFP-tagged menin. Overexpressed GFP-tagged version of menin 
(GFP-menin) co-localized with MLL1-N and MLL1-C to the spindle poles during metaphase and 
to a lesser extent to intercellular bridge microtubules during cytokinesis (Fig. 2C and 2D). 
Together, these data indicated that menin was localizing to microtubule-based structures during 
mitosis, spindle poles in early mitosis and intercellular bridge microtubules during cytokinesis, 
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similar to MLL1. Importantly, MLL1 had not been previously shown to localize to intercellular 
bridge microtubules. 

Next, we asked if menin had a role in cell division by characterizing mitotic defects in HeLa 
cells deficient in menin expression. HeLa cells were transfected with control (siCont) or MEN1 
(siMEN, validated to decrease menin protein levels by immunofluorescence and immunoblot 
analyses, Fig. 2A and 2B) targeting siRNAs for 48 hours, fixed, and stained for DNA and α-
tubulin. While siMEN cells showed no apparent perturbation in the localization of MLL1-N and 
MLL1-C to the mitotic spindle and intercellular bridge microtubules, they did show an increase 
in the percentage of mitotic cells with defective spindles (multipolar and unfocused) (siMEN= 
36.3±5.1, p< 0.001 compared to siCont= 4.3±1.2) and metaphase cells with uncongressed 
chromosomes (where all but a few (1-3) chromosomes were aligned at the metaphase plate) 
(siMEN= 39.3±5.1, p< 0.001 compared to siCont= 3.7±1.2) (Fig. 3A and 3B and Supplemental 
Fig. S2). (41) siMEN cells also showed a pronounced increase in the percentage of cytokinetic 
cells undergoing a defective cytokinesis (siMEN= 45.0±5.0, p< 0.001 compared to 
siCont=11.7±3.5) and interphase cells with >1 nuclei (siMEN= 53.3±6, p< 0.001 compared to 
siCont= 5.7±2.1) (Fig. 3A and 3B). Similar results were obtained with a second siRNA 
(SR302867B, data not shown). Additionally, the defects observed in siMEN cells were partially 
mitigated by MEN1 cDNA overexpression (Supplemental Fig. S3). (41)  MEN1 siRNA 
SR302867A (AGUACAGUCUGUAUCAAACCCACGA) used for these experiments maps to 
the 3’ UTR of menin and is therefore suitable to study menin overexpression rescue.  These 
results indicated that depletion of menin led to defects in early mitosis and cytokinesis.  

To characterize the cell division defects in live dividing cells, HCT116 cells (CCL-247 colon 
cancer cells) expressing GFP tagged histone H2B were imaged after siRNA depletion of menin 
expression. Consistently, live-cell time-lapse fluorescent microscopy with HCT116-GFP-H2B 
cells showed that siMEN cells exhibited cell division defects, including cytokinetic arrest with 
the two cells linked by a cytokinetic bridge, a failure to divide with regression into one 
binucleated cell and cell division followed by death of one or both cells (Fig. 3C and 3D and 
Supplemental Movies S1, S2, S3 and S4). (41) Immunoblot analysis of HeLa cell extracts from 
cells synchronized in G1/S with thymidine treatment and released into the cell cycle showed that 
siMEN cells sustained cyclin B1 levels for a longer time period compared to siCont cells during 
cell division, indicative of a slowed cell division and/or an aborted cell division (Fig. 3E). 
Together, these data indicated that depletion of menin led to defects in spindle assembly, 
chromosome congression, chromosome segregation, and cytokinesis, which resulted in 
multinucleated interphase cells and an increase in cell death.  

Next, we asked if the menin-MLL1 interaction was important for cell division by analyzing 
the consequences of inhibiting the menin-MLL1 interaction pharmacologically with the small 
molecule inhibitor MI-2. (43) Menin binds the N-terminal subunit of MLL1 and this interaction 
is disrupted by MI-2. HeLa cells were synchronized in G1/S, released, and treated with vehicle 
control DMSO or MI-2 (10 µM) two hours prior to mitotic entry. Nine hours post-release, cells 
were fixed and stained for DNA and α-tubulin (Fig. 4A). While MI-2 treated cells showed no 
apparent perturbation in the localization of MLL1-N and MLL1-C to the mitotic spindle and 
intercellular bridge microtubules, they did show an increase in the percentage of mitotic cells 
with defective spindles (multipolar and unfocused) (MI-2 = 21.3±5.8, p< 0.01 compared to 
DMSO = 4.3±1.2) and metaphase cells with uncongressed chromosomes (where all but a few (1-
3) chromosomes were aligned at the metaphase plate) (MI-2= 19.3±3.5, p< 0.01 compared to 
DMSO= 3.7±1.2) (Fig. 4A and 4B and Supplemental Fig. S4). (41) MI-2 treated cells also 
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showed a pronounced increase in the percentage of cytokinetic cells undergoing a defective 
cytokinesis (MI-2 = 72.7±5.0, p< 0.0001 compared to DMSO=12.3±3.2) and interphase cells 
with >1 nuclei (MI-2= 27.7±5.5, p< 0.01 compared to DMSO= 6.7±2.9) (Fig. 4A and 4B). These 
results indicated that pharmacological inhibition of the menin-MLL1 interaction led to defects in 
early mitosis and cytokinesis. Consistent with these results, live-cell time-lapse microscopy 
showed that MI-2 treated HCT116-GFP-H2B cells exhibited cell division defects, including 
cytokinetic arrest with the two cells linked by a cytokinetic bridge, a failure to divide with 
regression into one binucleated cell and cell division followed by death of one or both cells (Fig. 
4C and 4D and Supplemental Movies S5, S6, S7 and S8). (41) Immunoblot analysis of HeLa cell 
extracts from cells synchronized in G1/S with thymidine treatment and released into the cell 
cycle showed that MI-2 treated cells sustained cyclin B1 levels for a longer time period 
compared to control DMSO treated cells during cell division, indicative of a slowed cell division 
and/or of an aborted cell division (Fig. 4E). Together, these data indicated that disruption of the 
menin-MLL1 interaction led to defects in spindle assembly, chromosome congression, 
chromosome segregation, and cytokinesis, which resulted in multinucleated interphase cells and 
an increase in cell death. 

 Since MLL1 (specifically the C-terminal subunit) regulates Kif2A localization to the 
mitotic spindle to ensure proper chromosome alignment during mitosis (20) we analyzed whether 
menin similarly affected Kif2A localization during mitosis. HeLa cells were transfected with 
siCont or siMEN siRNAs for 48 hours, fixed, and stained for DNA, α-tubulin and Kif2A. Kif2A 
localized to the spindle microtubules in both siCont and siMEN treated cells (Fig. 5A). Likewise, 
Kif2A localization was not affected by the treatment of the MLL1-menin inhibitor, MI-2, 
compared to the DMSO control (Fig. 5B). However, the ability of menin to localize to the 
mitotic spindle during mitosis was reduced in the presence of MI-2 treatment (Fig. 5C). 
Together, these results indicated that in contrast to depletion of MLL1, depletion of menin or 
inhibition of the MLL1-menin interaction did not affect the localization of Kif2A during mitosis. 
Additionally, these results indicated that the MLL1-menin interaction is important for the 
localization of menin to the mitotic spindle.  

Discussion 

Menin is mutated in MEN1 syndrome patients and the related sporadic endocrine tumors.(11) 
Most studies of menin function have focused on menin’s role in MLL1 and MLL2 mediated 
epigenetic regulation of gene transcription.(8,9) It was previously reported that menin remains 
bound to chromatin with MLL1 during mitosis albeit at reduced levels compared to interphase 
suggesting it shares a mitotic bookmarking role with MLL1.(19)  For the first time, we 
demonstrate that menin also has a non-transcriptional role during mitosis. Menin localizes to the 
mitotic apparatus specifically to the spindle poles in early mitosis and intercellular bridge 
microtubules during cytokinesis, similar to the subcellular localization of MLL1. Diminished 
menin expression in HeLa and HCT116 cells by MEN1 siRNA treatment leads to defects in early 
mitosis and cytokinesis. In addition, live cell time-lapse video microscopy shows that cell 
division in menin depleted HCT116 cells frequently results in either cell death or multinucleated 
cells. Based on these observations we propose that, like MLL1, menin plays a dual role during 
mitosis.  

A non-transcriptional and methylation-independent role in mitosis was reported for MLL1 
(20) and members of the associated WRAD (WDR5, RbBP5, Ash2L, Dpy30) complex but not 
menin. (21)  The MLL1 mitotic related function was shown to be dependent upon the C-terminal 
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proteolytic subunit of MLL1 but not the N-terminal MLL1 subunit although both MLL1 subunits 
localize to the mitotic apparatus. (20,44) Interestingly, our studies suggest there is a direct role 
for the MLL1 N-terminal subunit with menin during mitosis. Cells treated with a small molecule 
menin-MLL1 inhibitor (MI-2) demonstrated a similar mitotic defect as seen with MEN1 siRNA, 
but neither treatment resulted in abnormal Kif2A localization which is dependent on MLL1-C. 
Based upon these data, we hypothesize that the mitotic role of menin is dependent on interaction 
with the N-terminal subunit of MLL1 although a transcriptional effect on mitosis cannot be 
entirely excluded. 

One possible explanation for these observations may be that menin / MLL1-N and MLL1-C / 
Kif2A have distinct and functionally separable roles during mitosis. This hypothesis is supported 
by our observations that depletion of menin or inhibition of its interaction with MLL-N results in 
a different spectrum of mitotic defects compared to depletion of MLL1 alone and inhibition of 
menin binding to MLL1-N does not affect Kif2A localization. Cells with diminished menin 
expression display defects in cytokinesis, spindle defects, and uncongressed chromosomes. 
Menin depletion did not cause spindle pole lengthening nor the pronounced chromosome 
misalignment reported with MLL1 depletion.(20) Rather, in the case of menin depletion only a 
few chromosomes were uncongressed in any given affected cell. The MLL-depleted 
chromosome misalignment phenotype that is characterized by most chromosomes missing from 
the metaphase plate was rescued with MLL-C, but the other MLL depletion associated defects 
such as multipolar spindles were not quantified in the MLL-C rescue experiments raising the 
possibility that these later defects could be related to menin / MLL-N function.(20) Based upon 
these phenotype differences menin’s role with MLL1-N in the mitotic apparatus appears distinct 
from the MLL1-C regulation of Kif2A localization. An alternative mechanistic explanation for 
menin’s role is to indirectly (through MLL-N) “fine tune” the function of MLL-C in mitosis and 
hence menin’s absence might have a less dramatic phenotype. Since neither depletion of menin 
expression (Fig. S2) nor inhibition of menin-MLL1 interaction (Fig. S4) affect MLL1 
localization, the function of menin is not to recruit MLL1 to the mitotic apparatus. Rather, 
inhibition of the interaction of MLL with menin reduces menin localization to the mitotic 
apparatus suggesting MLL1 recruits menin during mitosis (Fig. 5C). 

The MEN1 gene is frequently mutated (30 - 44%) and inactive in sporadic pancreatic 
neuroendocrine tumors.(45,46) These tumors frequently display chromosome segregation 
abnormalities including recurrent whole chromosome loss, aneuploidy, and polyploidy.(47,48) 
Based upon our findings, inactivation of menin in these tumors could contribute to the observed 
chromosome copy number changes. Interestingly, a small percentage (6%) of these tumors have 
inactivating mutations of the histone methyltransferase SETD2/KMT3A which also has both 
transcriptional and non-transcriptional actions during mitosis that could cause mitotic defects 
similar to menin/MLL1 in these tumors.(47,49,50) Since inactivation of menin in these tumors is 
frequently the result of a point mutation of one allele with complete chromosome loss 
inactivating the remaining allele it is possible that menin mutation (by reduced gene dose 
expression) leads to inactivation of its remaining normal allele through mitotic error. (51-53) 
This could clarify the frequent propensity for MEN1 syndrome tumors and their sporadic 
counterparts to lose the remaining normal MEN1 allele in susceptible cells that develop into 
tumors.(54) In addition, cell types that don’t gain the growth advantage with menin inactivation 
would not proliferate despite inactivation of both MEN1 alleles. Such non-susceptible cells may 
undergo apoptosis as a result of the mitotic errors or simply be unresponsive to the 
transcriptional effects of menin loss on specific downstream cell signaling in cell proliferation 
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pathways.(11,48,50) These effects combined could drive the tissue specificity of MEN1 
syndrome. 
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Figure 1. Cell cycle subcellular localization of menin and MLL1-N. Immunofluorescence 
microscopy of HeLa cells stained for DNA, α–tubulin and either menin (A) or MLL1-N (B). 
Scale bar = 5µm. Note that menin localizes to the mitotic spindle poles and mitotic spindle 
during early mitosis and to intercellular bridge microtubules during cytokinesis, similar to 
MLL1-N. Scale bar = 5µm.  

Figure 2. Validation of menin’s localization to the mitotic spindle. A, Immunoblot analysis 
showing that siRNA oligonucleotides targeting menin (siMEN) deplete menin protein levels 
compared to control non-targeting siRNA (siCont). B, Immunofluorescence microscopy of HeLa 
cells treated with siCont or siMEN for 48 hours and stained for DNA, α-tubulin and menin. Note 
that menin’s localization to the mitotic spindle is depleted in siMEN treated cells. Scale bar= 
5µm.  C-D, Immunofluorescence microscopy of HeLa cells transfected with GFP-menin 
(MEN1) and stained for DNA, α–tubulin and MLL1-N (C) or MLL1-C (D). Scale bar= 5µm.   

Figure 3. Depletion of menin leads to cell division defects. A, Immunofluorescence microscopy 
of HeLa cells treated with siCont or siMEN for 48 hours and stained for DNA and α-tubulin. 
Note that siMEN cells show multiple aberrancies, including multipolar spindles and unaligned 
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chromosomes in metaphase, lagging chromosomes in anaphase, multipolar cytokinesis and 
multinucleated interphase cells. Arrows point to uncongressed chromosomes in a metaphase cell 
(top panel with arrows) and lagging chromosomes in a telophase cell (bottom panel with arrow). 
Scale bar = 5µm. B, Quantification of the percentage of mitotic cells with defective spindles, 
uncongressed chromosomes, and cytokinetic defects and interphase cells with >1 nuclei 
(multinucleated). Data represent average ± SD of 3 independent experiments, 100 cells counted 
for each. (**) p< 0.001. C, Live-cell time-lapse microscopy snapshots of HCT116-GFP-H2B 
cells treated with siCont or siMEN (See Supplemental Movies S1, S2, S3 and S4). (41) 
Representative cell division defects are shown, including cytokinetic arrest, multipolar cell 
division with cell death and regression of a dividing cells into a binucleated cell. Time is in 
minutes. D, The percentage of cells undergoing normal cell division, dying during cell division, 
undergoing aberrant cytokinesis and failing cytokinesis and regressing to a binucleated state 
were quantified for siCont or siMEN treated cells. Data represent the average ± SD of 3 
independent experiments, 50 cells counted for each. (**) p< 0.001 and (***) p< 0.0001. E, HeLa 
cells were treated with siCont or siMEN for 24 hours, synchronized in G1/S with thymidine, and 
released into the cell cycle. Cells were harvested at the indicated time post-release and extracts 
were immunoblotted for menin (Men1), cyclin B1 (CycB1) and alpha-tubulin (αTub). Line 
graph shows relative cyclin B1 levels (y-axis, A.U. denotes arbitrary units) over time (x-axis, in 
hours) normalized to alpha-tubulin.  

Figure 4. Pharmacological inhibition of the menin-MLL1 interaction with MI-2 leads to cell 
division defects. A, Immunofluorescence microscopy of HeLa cells treated with DMSO or MI-2 
(10 uM) for two hours prior to mitotic entry and stained for DNA and α-tubulin. Note that MI-2 
treated cells show multiple aberrancies, including multipolar spindles and unaligned 
chromosomes in metaphase, lagging chromosomes in anaphase, multipolar cytokinesis and 
multinucleated interphase cells. Arrow points to lagging chromosomes in a telophase cell. Scale 
bar = 5µm. B, Quantification of the percentage of mitotic cells with defective spindles, 
uncongressed chromosomes, and cytokinetic defects and interphase cells with >1 nuclei 
(multinucleated). Data represent average ± SD of 3 independent experiments, 100 cells counted 
for each. (*) p< 0.01 and (***) p< 0.0001. C, Live-cell time-lapse microscopy snapshots of 
HCT116-GFP-H2B cells treated with DMSO or MI-2 (See Supplemental Movies S5, S6, S7 and 
S8). (41)  Representative cell division defects are shown including multipolar cytokinesis and 
regression of dividing cells into binucleated cells. Time is in minutes. D, The percentage of cells 
undergoing normal cell division, dying during cell division, undergoing defective divisions and 
failing cytokinesis and regressing to a binucleated state were quantified for DMSO or MI-2 
treated cells. Data represent the average ± SD of 3 independent experiments, 50 cells counted for 
each. (**) p< 0.001 and (***) p< 0.0001. E, HeLa cells were synchronized in G1/S with 
thymidine and released into the cell cycle in the presence of either DMSO or MI-2. Cells were 
harvested at the indicated time post-release and extracts were immunoblotted for menin (Men1), 
cyclin B1 (CycB1) and alpha-tubulin (αTub). Line graph shows relative cyclin B1 levels (y-axis, 
A.U. denotes arbitrary units) over time (x-axis, in hours) normalized to alpha-tubulin. 
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Figure 5. Depletion of menin or inhibition of menin-MLL1 interaction does not perturb Kif2A 
localization. A, Immunofluorescence microscopy of HeLa cells treated with siCont or siMEN for 
48 hours and stained for DNA and α-tubulin. Note that Kif2A remains localized to the mitotic 
spindle in siMEN treated cells. Scale bar = 5µm. B-C, Immunofluorescence microscopy of HeLa 
cells treated with DMSO or MI-2 (10 uM) for two hours prior to mitotic entry and stained for 
DNA, α-tubulin and Kif2A (B) or menin (C). Note that Kif2A remains localized to the mitotic 
spindle in MI-2 treated cells, whereas menin localization to the mitotic spindle decreases. Scale 
bar = 5µm. 
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