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Abstract

Objective: Carbon monoxide (CO) releasing molecule (CORM)-3water-soluble CORM, has
protective effects against inflammatory and iscta#maperfusion injury. We determined the effect of
CORM-3 against neuronal pyroptosis in a model ohtvehagic shock and resuscitation (HSR) in rats
via mitochondrial regulation.

Methods: Rats were treated with CORM-3 (4 mg/kg)vitro after HSR. We measured cortical CO
content 3-24 h after HSR; assessed neuronal pwigptaitochondrial morphology, ROS production,
and mitochondrial membrane potential at 12 h aft8R; and evaluated brain magnetic resonance
imaging at 24 h after HSR and learning ability 3@ys after HSR.We also measured soluble
guanylate-cyclase (sGC)-cyclic guanosine monophatspfctGMP) signaling pathway activity using a
blocker of sGC, NS2028, arith-cGMP assay.

Results: Among rats that underwent HSR, CORM-3-treated haid more CO in the cortical tissue
than sham- and iCORM-3-treated rats. CORM-3-treatitsi had significantly less neuronal pyroptosis
in the cortical tissue; higher sGC activity and cBMontent; lower ROS production; better
mitochondrial morphology, function, and membran¢eptal, and enhanced learning/memory ability
than HSR-treated rats. However, these neuroproteeffects of CORM-3 were partially inhibited by
NS2028.

Conclusion: CORM-3 may alleviate neuronal pyroptosis and impraeurological recovery in HSR
through mitochondrial regulation mediated by th&€s@GMP pathway. Thus, CO administration could

be a promising therapeutic strategy for hemorrhalgack.

Introduction

Severe hemorrhage among patients with trauma aode tlwithout trauma commonly induces
incomplete brain perfusion and further causes regital sequelae, most notably altered memory,
mentation, seizures, and ischemic stroke[1l, 2]h&lgh timely resuscitation is vital for treating
hemorrhagic shock, systematic inflammatory respansieiced by this ischemia/reperfusion injury
could cause further neuronal death, including pysig[3, 4]. In recent years, pyroptosis has been
shown to contribute to the development of ischemaprfusion injury[5, 6], and pyroptosis inhibition
could improve long-term neurological function afterebral ischemia/reperfusion injury[7].

A low of carbon monoxide (CO), which is an endogen@roduct of heme degradation by heme



oxygenase, confers increased resistance to infldimmatriggered by lipopolysaccharide,
ischemia/reperfusion injury, and other factors[§-1The application of CO-releasing molecule
(CORM)-3 has emerged as an excellent alternativ€@oadministration[11]. Growing evidence has
supported a role for mitochondrial regulation in -@@diated neuroprotection against death and
inflammation[12]. Recently, a study suggested tha@tnulation of the soluble guanylate-cyclase
(sGC)-cyclic guanosine monophosphate (cGMP) siggali pathway attenuated
ischemia/reperfusion-induced lung injury and supped ROS release[13]. Recent evidence also
showed that improvement of mitochondrial dynamicsan ¢ be protective against
ischemia/hypoxia-induced elevation of ROS, mitoDN#kd calcium overload, which could further
lead to pyroptosis[14, 15].

Whether CORM-3-mediated neuroprotective effects uocadhrough the improvement of
mitochondrial dynamics-induced pyroptosis is uncleBhis study aimed to investigate whether
CORM-3 attenuates hemorrhagic shock and resuseitgtiSR)-induced cerebral pyroptosis in a

model of blood loss and re-infusion via mitochoatiregulation mediated by the sGC-cGMP pathway.

Key words: Carbon monoxide; neuroprotection; pyroptosis; Isleluguanylate-cyclase; cyclic
guanosine monophosphate

Abbreviations: CORM: Carbon monoxide releasing moleculg(zC: soluble guanylate-cyclase;
cGMP: cyclic guanosine monophospha®0)S: reactive oxygen speciedSR: hemorrhage shock and

resuscitationMMP : mitochondrial membrane potential



Results

Evoked potentials

Following three positive deflections generated freabcortical origin, a positive—negative—positive
waveform (P8, N10.3, and P14.6) resembling thé firsnary cortical waves could be detected. N10.3
could be clearly detected in all animals and caadily be constantly affected by cortical ischemia.
Thus, we opted to limit the investigation of potehto N10.3, as in a previous study[16] (Fig. 1A).
There was a long-lasting difference between thenShad HSR groups in somatosensory evoked
potentials from 18.7 + 3.5 min after HSR. The mtposed to hemorrhagic shock exhibited a decrease
of cortical function to approximately 30% of thdtkmseline at 15 min after bleeding and to 80% of
that at baseline at 30 min after bleeding (vs. lnaseP < 0.05; Fig. 1B). These somatosensory evoke
potentials were increased once resuscitation stgve 30 min after shock, P < 0.05; Fig. 1B) bigt d

not reach baseline even if resuscitation ended@seline, P < 0.05; Fig. 1B).

HSR induced the peak of neuronal pyroptosis 12 h &dr resuscitation

At 6, 12, and 24 h after HSR, results of immunofészence assays revealed that neuronal pyroptosis
in the cortical tissue was significantly increasdetr HSR compared with that in the Sham group (vs.
Sham, P < 0.05; Fig. 2B). Compared with 6 h aft@R; increases in neuronal pyroptosis were
markedly shown at 12 h (vs. 6 h after HSR, P < 0F0%. 2B). However, a decrease was revealed at 24

h after HSR compared with that at 12 h (vs. 12térafiSR, P < 0.05; Fig. 2B).

CORM-3 inhibited neuronal pyroptosis after HSR viaCO upregulation

When a blood loss and re-infusion model was déstaddl in rats, a water-soluble exogenous CO
donor, CORM-3, was applied to rats after resusoitavia a single intravenous injection; inactive
CORM-3 (iCORM-3), which does not release CO, wasduas a negative control. CO content was
increased within 6 h after HSR compared with thathe Sham group (vs. Sham, P < 0.05; Fig. 3B).
Figure 2B also shows that CO content in the HSR/®IcRgroup declined after 6 h (vs. HSR, P <
0.05; Fig. 3B). CORM-3 administration could furthedevate the total cortical CO level 3—-24 h after
HSR compared with that after HSR alone and afteRHEORM-3 (vs. HSR, P < 0.05; vs.

HSR/ICORM-3, P < 0.05; Fig. 3B). CORM-3 treatmemduced the peak of CO concentration at 6 h



after HSR exposure (vs. 3h, 12 h and 24 h after/@8IRM-3, P < 0.05; Fig. 3B). In addition, there
were no significant differences between the HSRHES&/ICORM-3 groups.

Immunofluorescence double staining of cleaved cssfilaand neuronal nuclei (NeuN) showed that
iICORM-3 co-administration at 12 h after HSR in HH8R/ICORM-3/Vehicle group failed to reduce the
number of cleaved caspase-1-positive neurons ircahical tissue (vs. Sham/iCORM-3/Vehicle, P <
0.05; Fig. 4B), whereas CORM-3 reduced pyroptoftisr SR alone in the HSR/CORM-3/Vehicle
group (vs. HSR/ICORM-3/Vehicle, P < 0.05; Fig. 4B)ompared with the Sham/ICORM-3/Vehicle
group, neuronal pyroptosis remained elevated in tHSR/CORM-3/Vehicle group (vs.
Sham/iCORM-3/Vehicle, P < 0.05; Fig. 4B). Pyropsodepends on caspase-1 activation, leading to
IL-1p and IL-18 stimulation, cytomembrane pore formati@and subsequently the release of
inflammatory mediators and cellular contents[1F}1p and IL-18 expression was also measured at 12
h after HSR. HSR exposure plus iCORM-3 co-admiat&in caused significant increases in |idnd
IL-18 expression compared with that in the ShamiRbB3/\Vehicle group (vs.
Sham/iCORM-3/Vehicle, P < 0.05; Fig. 4D, 4E). Comgshwith HSR/CORM-3/Vehicle, CORM-3
co-administration after HSR downregulated Ig-&and IL-18 expression in the cortical tissue (vs.

HSR/CORM-3/Vehicle, P < 0.05; Fig. 4D, 4E).

NS2028 inhibited the protective effect of CORM-3

sGC enzyme activity and cGMP content were furtheam@ned. As shown in Figure 4F, at 12 h after
HSR plus iCORM-3 treatment, the basal sGC enzyntigigcin the cortical tissue was significantly
lower after HSR than in the Sham group (vs. Sha®R®-3/Vehicle, P < 0.05; Figure 4F). Consistent
with decreased sGC activity after HSR plus iCORMe&atment, cGMP content in the cortical tissue of
rats was significantly decreased after HSR compawdth that in the Sham group (vs.
Sham/iCORM-3/Vehicle, P < 0.05; Figure 4G). CORMd&tially restored the sGC activity and cGMP
content in rats exposed to HSR (vs. HSR/ICORM-3itleh P < 0.05; Figure 4F, 4G).

To explore the potential role of sGC in CORM-3'teef against pyroptosis, NS2028, an inhibitor of
sGC, was applied to rats before bleeding. NS2028tneatment induced the decreases in the sGC
enzyme activity and cGMP content in Sham/iCORM-3R& (vs. Sham/iCORM-3/Vehicle, P < 0.05;
Fig. 4F, 4G) and in Sham/CORM-3/NS2028 (vs. ShanR®IcB/Vehicle, P < 0.05; Fig. 4F, 4G).

Moreover, NS2028 pre-treatment inhibited the desgeain neuronal pyroptosis and IRAL-18



expression as well as the increases in the sGCrmenactivity and cGMP content when rats were
exposed to HSR+CORM-3 (vs. HSR/CORM-3/Vehicle, ®.85; Fig. 4B, 4BG). There was no

significant difference of neuronal pyroptosis and-1P/IL-18 expression between the
Sham/iCORM-3/NS2028 and Sham/iCORM-3/Vehicle gro@sswell as Sham/CORM-3/NS2028 and
Sham/CORM-3/Vehicle groups. Neuronal pyroptosis dndp and IL-18 expression were further
increased in the model of NS2028 pre-treatmentreeftSR plus iCORM-3 compared with those for
HSR alone (vs. HSR/ICORM-3/Vehicle; P < 0.05; FB, 4D, 4E). Moreover, the sGC enzyme
activity and cGMP content were significant loweteafHSR/ICORM-3/NS2028 treatment than after

HSR alone (vs. HSR/ICORM-3/Vehicle; P < 0.05; H§, 4G).

CORM-3 treatment improved mitochondrial injury afte r HSR
To determine the morphology of mitochondria frora ttortical tissue, at 12 h after HSR, an electron
microscopic study was performed. Results reveatet tCORM-3 did not prevent dysmorphic
mitochondria characterized by (a) degenerative ghsan for example, matrix vacuolation,
disarrangement of cristae, swelling, and partiatalysis and (b) necrosis, characterized by cotaple
cristolysis or ghost cells. The prevalence of dyghir mitochondria, as well as swelling plus ghost
mitochondria, in the cortical tissue of HSR/CORM&ficle-treated rats was significantly lower than
that in HSR/ICORM-3/Vehicle-treated rats (vs. HERBRM-3/Vehicle; P < 0.05; Fig. 5B, 5C).
However, NS2028 pre-treatment before HSR plus CORWeatment upregulated the prevalence of
dysmorphic mitochondria and swelling plus ghostoctiondria compared with that after HSR plus
CORM-3 treatment (vs. HSR/CORM-3/Vehicle; P < 0.68%. 5B, 5C). In addition, NS2028 further
worsened mitochondrial morphology in HSR/ICORM-32038-treated rats compared with that in
HSR/ICORM-3/Vehicle-treated rats (vs. HSR/ICORM-8hitle; P < 0.05; Fig. 5B, 5C). There was no
significant difference in mitochondrial morphologlyetween the Sham/ICORM-3/NS2028 and
Sham/iCORM-3/Vehicle groups, as well as Sham/CORNIS2028 and Sham/CORM-3/Vehicle
groups.

Mitochondrial membrane potential, indicated by JCHlorescence, was used to reveal
mitochondrial depolarization after hemorrhagic $hoROS-mediated mitochondrial damage after

reperfusion could release damage-associated mateqattern molecules, which can initiate the



progress of pyroptosis. At 12 h after HSR plus iGOR treatment, those exposure caused a significant
decrease in the mitochondrial membrane potentiathef cortical tissue as well as an increase in
mitochondrial ROS compared with those in the Sham [CORM-3 group (HSR/ICORM-3/Vehicle vs.
Sham/iCORM-3/Vehicle, P < 0.05; Fig. 5D, 5E). In RISORM-3/Vehicle group, CORM-3
administration after HSR upregulated mitochondrimembrane potential and downregulated
mitochondrial ROS production (vs. HSR/ICORM-3/VvdajcP < 0.05; Fig. 5D, 5E), whereas NS2028
pre-treatment before HSR partially inhibited thesprovements in mitochondrial membrane potential
and ROS (vs. HSR/CORM-3/Vehicle; P < 0.05; Fig. 5B). NS2028 pre-treatment before HSR also
further worsened mitochondrial membrane potentiatl anitochondrial ROS production in the
HSR/ICORM-3/NS2028 group compared with those in tH8R/ICORM-3/Vehicle group (vs.
HSR/ICORM-3/Vehicle, P < 0.05; Fig. 5D, 5E). Thewere no marked changes between the
Sham/iCORM-3/NS2028 and Sham/iCORM-3/Vehicle gro@sswell as Sham/CORM-3/NS2028 and

Sham/CORM-3/Vehicle groups.

CORM-3 treatment after HSR improved cortical changes revealed by T2-weighted MRI
T2-weighted images revealed there was no signifidéferences between the sham groups (Fig. 6B).
At 24 h after HSR, a significant increase of thgoraf standardized signal intensity (SSI) befoitefa
shock on regions of cerebral cortex was shown m HSR groups compared with their sham
counterparts (Fig. 6B). In HSR/CORM-3/Vehicle grou@ORM-3 administration after HSR
downregulated the hyperintensity lesions indicatgdratio of SSI (vs. HSR/ICORM-3/Vehicle, P <
0.05; Fig. 6B), whereas NS2028 pre-treatment bel®&R partially inhibit these improvements in
hyperintensity lesions (vs. HSR/CORM-3/Vehicle; F005; Fig. 6B). NS2028 pre-treatment before
HSR also further increased the ratio of SSI inH8R/ICORM-3/NS2028 group compared with those
in the HSR/ICORM-3/Vehicle group (vs. HSR/ICORM-8hicle, P < 0.05; Fig. 6B). There were no
significant changes between the Sham/iCORM-3/NS202BSham/iCORM-3/Vehicle groups, as well

as Sham/CORM-3/NS2028 and Sham/CORM-3/Vehicle group

CORM-3 treatment after HSR improved learning ability
We examined whether learning ability was involvedincomplete ischemia/reperfusion induced by

hemorrhagic shock. When tested 30 days after exppblSR plus iCORM-3-treated rats located the



submerged platform with significantly slower latesscthan Sham plus iCORM-3-treated rats (vs.
Sham/iCORM-3/Vehicle, P < 0.05; Fig. #E). There was no difference in latency between the

Sham/iCORM-3/Vehicle and Sham/CORM-3/Vehicle grou@RM-3 administration after HSR

resulted in a significantly faster latency to lecahe submerged platform than that of HSR plus
iICORM-3-treated rats (HSR/CORM-3/Vehicle vs. HSRIiRM-3/Vehicle, P < 0.05; Fig. AE). A
slower latency to locate the submerged platform masd in HSR/CORM-3/NS2028-treated rats than
that in HSR/CORM-3/Vehicle-treated rats (vs. HSRRMB-3/Vehicle, P < 0.05; Fig. #E). There was

no difference in latency between the HSR/ICORM-3R&8 and HSR/CORM-3/NS2028 groups.

The time and distance spent in the targeted quadraats exposed to HSR plus ICORM-3 exposure
were severely reduced compared with those in them3BORM-3/Vehicle group (vs.
Sham/iCORM-3/Vehicle, P < 0.05; Fig. 7F, 7G). Figuf also reveals that HSR/CORM-3/Vehicle
treatment markedly increased the time and distaswmpared with HSR/ICORM-3/Vehicle (vs.
HSR/ICORM-3/Vehicle, P < 0.05; Fig. 7F, 7G). NS20@&:-treatment before HSR inhibited the
improvement of CORM-3 against HSR-induced decreasds time and distance (vs.
HSR/CORM-3/Vehicle, P < 0.05; Fig. 7F, 7G). In adai, NS2028 pre-treatment before HSR in the
HSR/ICORM-3/NS2028 group further downregulated tinge and distance in the targeted quadrant
compared with those in the HSR/ICORM-3/Vehicle grqus. HSR/ICORM-3/Vehicle, P < 0.05; Fig.
7F, 7G). Additionally, there were no prominent eifnces of time and distance between the
Sham/iCORM-3/NS2028 and Sham/iCORM-3/Vehicle gro@sswell as Sham/CORM-3/NS2028 and

Sham/CORM-3/Vehicle groups.

Discussion

In the present study, HSR using a model of bloed knd re-infusion decreased somatosensory evoked
potentials; caused degeneration of learning abdityl attenuation of the sGC activity and cGMP
content; increased cortical injury (indicated byrqptosis), T2-weighted MRI, and ROS level; and
induced ultrastructural changes in the mitochond@®RM-3 administration after resuscitation
provided neuroprotection for HSR, whereas this oprotective effect could be inhibited by a blocker
of sGC (NS2028).

Long-term hypotension and hypovolemia induced bgndwhagic shock lead to hypoperfusion,



subsequently resulting in incomplete ischemic ¥iil8]. In our previous study, we reported that
incomplete cerebral ischemia/reperfusion in a madeHSR-induced severe neuronal injury in the
hippocampus[19]. Here, the obtained results rewbat HSR not only significantly decreased
somatosensory evoked potentials sensitive to @bittigpoxia but also increased cortical hyperintgnsi
as indicated by T2-weighted MRI, which supported fimdings of previous studies[20]. Increasing
evidence suggests that ischemia causes neuronalgéaim the cortical tissue and leads to learning
ability impairments[21, 22]. Decreased learninglipbivas associated with a reduction of perfusion
induced by hemorrhagic shock.

The major pathogenic mechanisms of cerebral iscveepierfusion injury include excitotoxicity,
peri-infarct depolarizations at the early stagflammation at the middle stage, and programmed cell
death at the end stage[23]. Incomplete cerebraéiséa/reperfusion induces significant neuronalripju
including necrosis and apoptosis[24, 25]. Pyrogtoshlike apoptosis or necrosis, is a novel form of
programmed cell death. The initiation of pyroptodépends on caspase enzyme-1 (caspase-1) and is
accompanied by the release of large amounts offliaiid IL-18. There is increasing evidence that
post-ischemic inflammation, involving ILBland IL-18, contributes to ischemic brain injury]23
Cellular edema, which presents as high-signal fession T2-weighted imaging, involves oncotic
swelling of the neuronal cells due to a shift aisqmainly N&) and water molecules from a pore in
the plasma membrane to intracellular as a conseguehischemic energy depletion. I[3-and IL-18
play vital roles in forming this pore. The expressiof cleaved caspase-1 combined with fL&ind
IL-18 is generally used to assess the pyroptosil.l&hu et al. reported that transient global loele
ischemic/reperfusion in vivo and oxygen/glucose ridgpion in vitro induce neuronal pyroptosis
mediated by the caspase-1/IL-18, Ig-bathway[24, 26]. The present study revealed irs@éa
neuronal pyroptosis in a model of blood loss andhfiesion, and cortical hyperintensity was also
increased, as revealed by T2-weighted imaging. Blae our study also demonstrated that at 12 h
after HSR, neuronal pyroptosis peaks, characteribgd caspase-1 activation and release of
inflammatory factors, which is in accordance witifflammatory death in the middle stage after
ischemia[23].

CORM-3 suppressed inflammasome signaling and tharoence of pyroptosis, which consequently
alleviated neuronal death and improved motor fameti recovery following spinal cord injury[27]. In

the current study, it was revealed that CORM-3tineat induced the peak of CO concentration at 6 h



after HSR exposure. Although there was not a diganit peak at 6 h in the HSR and HSR+ICORM-3
group, a growing trend within after HSR could berfd. Inoue et.al reported that hemorrhage shock
induced a peak of heme oxygenase-1 (HO-1) at @eh afsuscitation[28]. It might be associated with
the increases of CO generated from heme via HOLL2ORM-3 reduced neuronal pyroptosis and
production of relevant inflammatory factors, indhgl I1L-18 and IL-B. Interestingly, CORM-3
partially restored the sGC activity and cGMP cohferrats exposed to HSR. To further confirm the
exact mechanism involved, NS2028, an sGC inhibieas administered via femoral vein injection
after resuscitation. Our results revealed that NB2@artially inhibited the neuroprotection of
CORM-3 against HSR injury. sGC activation and iases in the cGMP content via CO would be
responsible for decreases in ROS production androwement of mitochondrial integrity[12].
CORM-3 after resuscitation decreased ROS productidrich may be dependent on the sGC—-cGMP
signaling pathway. Decreased mPTP opening andaseck mitoKATP opening could be induced via
the activation of the sGC-cGMP signaling pathway[®0. Misawa et al. also reported that the spatial
arrangement of the mitochondria may promote th&vatain of caspase-1-associated pyroptosis[32].
The pyroptosis may also respond to mitochondriglsst such as ROS[33]. CO controls mitochondrial
integrity via the regulation of mitochondrial biowsis and mitophagy[34]. Therefore, the protective
effect of CO against mitochondrial stress mightvigie a potential interpretation of pyroptosis
signaling by CORM-3.

The limitations of this study include the fact ttfa¢ study was focused on effects of HSR alone. The
models of HSR with tissue injury, such as traumhtain injury plus HSR, should be further studied.
Moreover, present data only showed that sGC playgah role in CO-induced neuroprotection, but
whether CO improves these injuries induced by HS& sGC-cGMP-PKG or other signaling
pathways, such as nNOS[35], remains unclear. litiaddthe present study did not focus on whether
pyroptosis depended on the GSDMD and caspase-Ihlsig pathways[36]. Further studies on
models and feasible signaling pathways should bieimeed.

In conclusion, this study showed that neuroprotecteffects of CORM-3 against neuronal

pyroptosis after HSR injury might be associatedilie SGC-cGMP signaling pathway.

Methods

All animal experiments were performed in accordanith the National Institutes of Health Guidelines



for the Care and Use of Laboratory Animals. Foraggroval to conduct the experiments was obtained

from the Animal Review Board of Cangzhou Centrakpital.

Group assignment

Rats were randomly assigned (computer-based razdtion) to one of the following eight groups: (1)

Sham/iCORM-3/Vehicle group, catheters to the lefhéral artery and vein were inserted using an
indwelling needle (22 G) as surgical preparatio, iiin later, iCORM-3 (4 mg/kg, intravenous,

S744801; Selleck, USA) was injected accordance withprior experiments and previous study[37];
(2) Sham/iCORM-3/NS2028 group, rats were treatetth wurgical preparation, NS2028 (10 mg/kg,
intravenous) was injected accordance with our mrigreriments, and 75 min later, iCORM-3 (4 mg/kg,
intravenous) was injected; (3) Sham/CORM-3/Vehigemup, rats were treated with surgical

preparation, and 76 min later, CORM-3 (4 mg/kgramenous, S744801; Selleck, USA) was injected;
(4) Sham/CORM-3/NS2028 group, rats were treatedh witrgical preparation, NS2028 (10 mg/kg,
intravenous) was injected, and 75 min later, CORNA3mg/kg, intravenous) was injected; (5)

HSR/ICORM-3/Vehicle group, rats were treated witlrgical preparation, hemorrhagic shock was
induced by blood loss for 45 min, resuscitation wagormed with blood re-infusion for 15 min, and

iICORM-3 (4 mg/kg, intravenous) was then injecte@) HSR/ICORM-3/NS2028 group, rats were

treated with surgical preparation, NS2028 (10 mgitkyavenous) was injected before HSR, iCORM-3
(4 mg/kg, intravenous) was then injected after segation; (7) HSR/CORM-3/Vehicle group, rats

were treated with surgical preparation, CORM-3 @/kg, intravenous) was then injected after HSR;
(8) HSR/CORM-3/NS2028 group, rats were treated sgitingical preparation, NS2028 (10 mg/kg,

intravenous) was injected before HSR, CORM-3 (4 kygfintravenous) was then injected after
resuscitation. The inactive compound iCORM-3 wasppred by dissolving CORM-3 in PBS and

incubating for 24 h under air and light exposuréeA24 h, the solution was bubbled with nitrogen t

remove residual CO. NS2028 was prepared as dedalim/e immediately before use.

HSR protocol
Sprague—Dawley male rats weighing 350-400 g weesl s establish the HSR model. Rats were
housed in individual shoebox cages with beddinge Tdom temperature was maintained at 25°C *

1°C with alternating 12-h light/12-h dark cyclesat® were allowed free access to water and a chow



diet until the start of the experiments. As in quevious study[19], rats were cannulated with a
heparinized polyethylene tube via the left femandéry for blood pressure measurement and via the
left femoral vein for hemorrhage shock inductioteafanesthesia with sevoflurane (7%-8% for
induction, and 3%—-4% for maintenance). After trathatubation, rats were mechanically ventilated
via a volume-controlled ventilator (ALC-V; Shangh&icott Biological Technology Inc., Shanghai,
China) with a tidal volume of 4 ml/100 g, initiatspiratory frequency of 70 bpm, and Fi€f 40%.
Respiratory frequency was adjusted to an end-tdabon dioxide [ETCg (PMSH-300; SunLife
Science Inc., Shanghai, China) pressure betweean830 mmHg. Hemorrhagic shock was initiated
by bleeding into a heparinized syringe (10 U/mLjrtaintain a mean arterial pressure of 30 + 5 mmHg
for 60 min. Resuscitation was performed by retugrati shed blood and, if necessary, administering
sterile saline to the baseline level. Body tempggatvas maintained within 35°C-38°C by an electric

heating pad.

Evoked potentials

The median nerves were percutaneously stimulat&®2(Digitimer, Welwyn Garden City, UK) at the
ankle (10 Hz, twice supramaximally), with recordielgctrodes on the skull (-2 mm from the bregma,
2.5 mm from the midline) and reference electrodeshe nearby inactive tissue. The ground electrode
was inserted under the lumbar skin. Potentials vetiraulated by a Dantec Type 15E07 constant
current stimulator and recorded with a Dantec 15€0AG amplifier. Amplified waveforms were

further analyzed by Dasy Lab 3.00 (Datalog GmbHnbtiengladbach, Germany).

Carbon monoxide content detection

The CO content in the cortical tissue was deteasdg an endogenous carbon monoxide assay kit
(Nanjing Jiancheng Bioengineering Institute, NagjirChina), as previously described (n = 6 per
group)[27]. Specific steps were conducted in acaoce with the manufacturer’s instructions. Briefly,
cortical tissue samples were removed at 3, 6, 12,24 h after HSR. After homogenizing in PBS, the
sample (0.5 mL) was added into Hb solution (1 nigllowing vortexing and quiescence, mixtures
were measured at 541 nm (as absorbance) and 5%&srmreference). Ratio of the 541-nm- to 555-nm

readings was recorded and used to calculate theo@i@nt of samples.



sGC activity assay

For quantitative sGC activity assays, a mixturdudimg 200 mg of cortical tissue and 1.8 mL of
enzyme extract buffer [5 mM Tris-HCI (pH 8.0), 1 mBDTA, 2 mM phenylmethylsulfonyl fluoride,
and 0.25 mM sucrose] was homogenized (n = 6 peupjra~ollowing centrifugation for 10 min
(1,000x%g, 4°C), the supernatant was further cergefl for 1 h (105,000xg, 4°C), and protein content
of the supernatant was measured using a BCA prassay (Beyotime, Wuhan, China). Ten
microliters of sample was incubated with Q0 of reaction buffer [50 mM Tris-HCI (pH 7.5), 4 mM
MnCl,, 0.5 mM 3-isobutyl-1-methyxanthine (IBMX), 15 mMeatine phosphate, 240 U/L creatine
phosphokinase, 1 mM GTP, and 1 mM sodium nitropde$sAfter terminating the reaction with 0.2
mM sodium acetic acid, cGMP production was deteatédg a>31-cGMP kit (Shanghai Ruigi Biotech,
Shanghai, China), in accordance with the manufactiinstructions. The sGC enzyme activity was
expressed as picomoles of cGMP synthesized per ppmmg of cortical tissue protein (pmol

cGMP/mg protein/min).

Measurement of the basal cGMP content

Fifty milligrams of the cortical tissue mixed withmL of buffer containing 50 mM sodium acetic acid,
4 mM EDTA, and 10 mM 3-isobutyl-1-methyxanthine4d€C was extracted with dehydrated ethanol (n
= 6 per group). After centrifuging for 15 min ab80Qxg, the supernatant was taken and dried at 60°C,

and cGMP production was detected usif§lacGMP kit as described above.

Mitochondrial extraction and electron microscopy stidies

At 6 h after HSR, mitochondria from the corticalsties were extracted as per a previous study (n = 6
per group)[38]. Briefly, homogenates of the hippapal tissues were centrifuged twice at 1,000xg and
4°C for 5 min, and supernatant was then centrifugfet5,000xg and 4°C for 2 min. The supernatant
was removed with careful elimination of all fat afidffy layers on the top of the pellet containing
mitochondria. To eliminate harmful enzymes, nudsagphospholipases, and proteases, pellets from
two tubes were combined, resuspended in 1.5 mkcestold buffer, and centrifuged at 15,000xg and
4°C for 2 min. The final pellet was resuspendett@icold final equilibrated buffer (250 mM sucrose,

5 mM KH,PQ,, 10 mM Tris-HCI, 2 mg/mL BSA, pH 7.2). These ptdlewere fixed in 2.5%

glutaraldehyde in 0.1 M sucrose phosphate buff@&B{Sfor 1 h. After washing with 0.1 M SPB,



mitochondrial extractions were fixed with 1% osmiuetroxide in 0.1 M SPB for 1 h. Following
washing with 0.1 M SPB, pellets were dehydrategrimded ethanol, infiltrated with LR white resin
(Sigma-Aldrich, Poole, UK), embedded in capsulenbgaand finally polymerized at 65°C for 48 h.
After cutting into serial ultrathin slices (50 nmjth an ultramicrotome, slices were stained with 4%
uranyl acetate-lead citrate, and the ultrastructiréhe mitochondrial pellets was observed under a
transmission electron microscope (JEM-2000EX; JE®bkyo, Japan). Dysmorphic mitochondria
were examined, counted, and calculated in ternpeofentage/field at 3000x magnification, including

swelling plus ghost as well as normal mitochonda@mmentioned in a previous study[39].

Assessment of mitochondrial ROS

For the quantitative measurement of intracellul&R the fluorometric method was used (n = 6 per
group). In brief, at 12 h after HSR, the corticalsties (1 mg/0.1 ml) were mixed with ROS assay
medium (2.9 mL) in one reaction system, and in oliger reaction system, gL of 5 mmol/L

2’ 7-dichlorofluorescin diacetate (DCFH-DA) was addedt3 mmol/L succinic acid as a substrate
without mitochondria. The above two reaction systemere incubated at 37°C for 15 min. The
fluorescence intensity of the substrate withoubrtiondria (F1) and that of the sample with cortical

tissues (F) were measured. The ROS productionwasecalculated by subtracting F1 from F[40].

Mitochondrial membrane potential assay

For quantitative measurement of mitochondrial membr potential (MMP), JC-1, a
mitochondrion-selective dye, was used to determeimeh sample from the above seven groups, as in
our previous study (n = 6 per group)[19]. At 12 flea HSR, the mitochondria isolated from the
cortical tissues were stained with JC-1 (§/ml; Beyotime Institute of Biotechnology, Beijing,
China) for 30 min at 37°C in the dark. After ringitwice with assay buffer, fluorescent intensity
was analyzed on a spectrofluorometer (Paradigm;eMdar Devices, Sunnyvale, CA, USA), as
described previously, to detect green fluorescen@xcitation/emission wavelengths of 485/530 nm
and red fluorescence at excitation/emission wawghen of 550/595 nm. The ratio of red/green

fluorescence intensity was determined for each saampa measure of MMP.

Cleaved caspase-1/NeuN/DAPI immunofluorescence



Cortical tissues were fixed in 10% neutral-bufferiedmalin under anesthesia with sevoflurane,
embedded in paraffin, and sectioned atub®-thickness (n = 6 per group). Immunofluorescence
staining was performed to determine the percentdgesuronal pyroptosis. Briefly, paraffin sections
were dewaxed and hydrated for 10 min at room teatper and then incubated with the primary
polyclonal rabbit antibody against cleaved casfda4&:500, ab1872; Abcam, UK) and polyclonal
mouse against NeuN antibody (1:5G)104224; Abcam, UK) overnight at 4°C. Sectionsenttien
washed again thrice in PBS before incubation indak for 1 h in blocking solution containing the
secondary antibodies (CyTM3-conjugated goat amtiitalgG, 1.5 mg/mL, A0516, Beyotime, China;
FITC-conjugated goat anti-mouse IgG, 1.5 mg/mL, @&6Beyotime, China) diluted at 1:200 in the
blocking solution. After washing with PBS, hg/mL 2-(4-amidinophenyl)-6-indolecarbamidine
dihydrochloride (DAPI; Beyotime Biotech Inc., Nantp China) was added to stain the cell nuclei for
2 min to show their locations. Immunofluorescenoeges were captured using a laser scanning
confocal microscope (Olympus, Tokyo, Japan), arel ghrcentage of cleaved caspase-1 combined

with NeuN- and DAPI-positive cells was calculated.

Western blotting

IL-1B and IL-18 expression levels were assessed usingtéieblotting (n = 6 per group). At 12 h
after HSR, total protein was extracted from theical tissues and lysed in tissue lysis buffer. Slem
containing 30 pg of protein were subjected to SB&P and transferred onto a membrane. After the
membrane had been blocked at 37°C for 2 h, priraatibodies of rabbit anti-rat polyclonal 31
(1:1000 dilution, ab9722; Abcam, USA) and IL-181(00 dilution, ab71495; Abcam, USA) antibody
were applied at 4°C overnight, followed by incubativith a secondary antibody (anti-rabbit antibody,
1:2000 dilution, sc-2004; Santa Cruz Biotechnololpg., Santa Cruz, CA, USA) at 25°C for 1 h.
Protein bands in each treatment group were detertied) a Western blot detection system with ECL
(Amersham Biosciences, Piscataway, NJ, USBActin (1:2000 dilution, sc-47778; Santa Cruz

Biotechnology, Inc.) was used as an internal refeg&".

MRI study
MRI was performed using a clinical 2.0 T MRI scanfidagnetom, version 2.0 T; Siemens, Berlin,

Germany) along with a general 3-in circular coilrabm temperature. T2-weighted images were



acquired using the following parameters: repetitiome (TR)/echo time (TE), 2500/70; 6 echoes, 192
x 192; slices, 12; slice thickness, 2.0 mm; fieldiew (FOV), 80 mm; and acquisition time, 6.5 min.
For all models at 24 h after HSR, rats were thewgd prone in an animal holder, and the four-elémen
proton surface coil array was positioned and fizedr the head of the animal after applying aneshes
with sodium pentobarbital as described above. Idhag®lysis and processing was applied for T2W
images. Besides visual inspection, the regionsfrést (ROI) were placed free-hand on regions of
cerebral cortex, and signal intensity before aridrahdicated stimuli were measured. To reflect the
signal changes on T2WI, T2-weighted standardizgdasiintensity (SSI) was obtained by calculating
the ratios between the average signal intensity é8t Sl of temporalis. The ratio of before/after

indicated stimuli SSI was determined for each sad aneasure of T2W images.

Morris water maze test

Thirty days after HSR, a Morris water maze was use@ssess the learning ability following the
indicated stimuli (n = 6 per group). Behavioraltsewere assessed by an investigator blinded to the
experimental groups. A black-painted circular pameter, 100 cm; depth, 30 cm) was filled with
warm water (25 + 1°C) to a depth of 25 cm. A trarspt platform (diameter, 10 cm; height, 29.5 cm)
was placed in a constant location during the adipnsphase. The experimental room contained
distinctive distal visual cues surrounding the pti@t remained unchanged throughout the study. A
video-tracking system (Shanghai Mobiledatum Cod.,L8hanghai, China) was used to record the
movement (from latency to the platform). Before traning session, rats were kept on the platform
for 30 s and were given 90 s to find the platforimew they were placed in water from one of four
starting quadrants (in a random order). The trginiest took place four times a day for 4 days.

Thirty-four days after HSR, the distance and tierd in the targeted quadrant were recorded[42].

Statistics

All statistical analyses were conducted using SPBS8 for Windows (SPSS, Inc., Chicago, IL, USA).
Data are given as mearstandard deviation (SD). The assumption of homaogermné variance was
checked using the Levene test. When data heterasiieity was identified, it was corrected by
logarithmic transformation of the data. Data weoenpared using multi-factor analysis of variance

(ANOVA) with a Tukey post hoc test. Differences lwR < 0.05 were considered significant.
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Figure legends

Fig. 1. Changes in somatosensory evoked potentials. (AydReptative median nerve somatosensory
evoked potentials at different times during HSRONIwas chosen for further serial investigations of

its amplitude. (B) Changes in the amplitude ofshenatosensory cortical evoked potential in response
to hemorrhagic shock. Data are presented as m&ih (1 = 6 per group). *P < 0.05 vs. baselifie<

0.05 vs. 15 min after bleeding® < 0.05 vs. 30 min after bleeding.

Fig. 2. Changes in cortical pyroptosis after hemorrhaiock and resuscitation (HSR) exposure. (A)
Representative photomicrographs from cleaved caspd¢euN/DAPI staining (cleaved caspase-1, red;
NeuN, green; DAPI, blue) showing pyroptotic celfs the cortical tissue 6-24 h after HSR. (B)
Percentages of pyroptotic cells in the corticadues 6-24 h after HSR, scale bar =;50. Data are

presented as mean + SD (n = 6 per group). *P <@0Sham, **P < 0.05.

Fig. 3. Experimental protocol and changes in carbon mormogihcentration caused by the indicated
stimuli. (A) Sham: rats without hemorrhagic shocid aesuscitation (HSR) or CORM-3 treatment;
HSR: rats bled to 30 mmHg for 1 h and resuscitétgdlood re-infusion for 15 min; CORM-3 or
iICORM-3: after resuscitation, rats injected with RI@-3 (4 mg/kg) or iCORM-3 (4 mg/kg) as a
control via the left femoral vein; and NS2028 orMe: rats injected with NS2028 (10 mg/kg) or
saline as a control via the left femoral vein befbteeding. (B) Carbon monoxide concentration 6—24
h after HSR. Data are presented as mean + SD (per §roup). *P < 0.05 vs. Shaf®, < 0.05 vs. the

previous time point; for the same poitR<0.05 vs. HSR and HSR/ICORM-3.



Fig. 4. Changes in cortical pyroptosis, sGC activity, a@MP content caused by the indicated stimuli.
(A) Representative photomicrographs from cleavespaae-1/NeuN/DAPI staining (cleaved caspase-1,
red; NeuN, green; DAPI, blue) showing pyroptotitién the cortical tissue by the indicated stimuli
scale bar = 5um. (B) Percentages of pyroptotic cells in the caititissue caused by the indicated
stimuli. (C) Representative Western blot of Ig-4nd IL-18 in the cortical tissue. (D, E) Ratioweén
optical density value of ILfLand IL-18 in the cortical tissue evaluated by Wastblotting. Data are
presented as mean = SD (n = 6 per group). (F, @n@és in the soluble guanylate-cyclase (sGC)
enzyme activity and cyclic guanosine monophosph@@&MP) content in rat cortical tissue
homogenate caused by the indicated stimuli. ShaRk,HCORM-3, iCORM-3, NS2028 and Vehicle
are as described previousi<0.05 vs. Sham/iCORM/Vehicle group; 1P<0.05 vs. the equivalent sham

group;*P<0.05 vs. the equivalent vehicle grotip«0.05 vs. the equivalent iCORM group.

Fig. 5. Changes in mitochondrial regulation of the cottttssue caused by the indicated stimuli. (A)
Dysmorphic mitochondria under an electron microgcdmpm cortical extraction caused by the
indicated stimuli, scale bar = 200 nm. (B) Percgesaof normal mitochondria in the cortical tissue
caused by the indicated stimuli. (C) Percentageswadlling plus ghost mitochondria in the cortical
tissue caused by the indicated stimuli. (D) Changeise mitochondrial membrane potential (MMP) of
the cortical tissue caused by the indicated stin{e@l) Changes in mitochondrial ROS of the cortical
tissue caused by the indicated stimuli. Data aesgnted as mean = SD (n = 6 per group). Sham, HSR,
CORM-3, iICORM-3, NS2028 and Vehicle are as desdribpreviously. *P<0.05 vs.
Sham/iCORM/Vehicle group; ¥P<0.05 vs. the equivalent sham group; "P<0.05 vs. the equivalent

vehicle group®P<0.05 vs. the equivalent iCORM group.

Fig. 6. Changes in T2-weighted MRI caused by the indicataduli. (A) T2-weighted MRI coronal
views from rats at 24 h after HSR. (B) The raticstéfndardized signal intensity on regions of cexebr
cortex before/after indicated stimuli. Data arespréed as mean + SD (n = 12 per group). Sham, HSR,
CORM-3, ICORM-3, NS2028 and Vehicle are as desdribpreviously. *P<0.05 wvs.
Sham/iCORM/Vehicle group; #P<0.05 vs. the equivalent sham group; "P<0.05 vs. the equivalent

vehicle group®P<0.05 vs. the equivalent iCORM group.



Fig. 7. Changes in learning ability caused by the inditastimuli. (A) Computer printouts of
swimming trajectories of each group on day 30 aft8R. The circle represents the platform location.
(B—E) Escape latency in Morris water maze from Dagp Day 4. (F, G) The ratio of time and distance
spent in the targeted quadrant when the platfors taleen away. Data are presented as mean = SD (n
= 6 per group). Sham, HSR, CORM-3, iCORM-3, NS2@28 Vehicle are as described previously.
#P<0.05 vs. Sham/iCORM/Vehicle group; tP<0.05 vs. the equivalent sham group; “P<0.05 vs. the

equivalent vehicle grouP<0.05 vs. the equivalent iCORM group.

Graphical abstract. A proposed diagram tying together the observatiomsolved in
CORM-3-induced neuroprotection against HSR. HSReiased neuronal pyroptosis, which might be
associated with up-regulation of ROS. CORM-3 notyosignificantly reduced these neuronal
pyroptosis, but also improved long-term learningligband T2-weighted MRI, which might be
associated with inhibition of mitochondrial dysftioo through regulating activity in sGC-cGMP
signal pathway, whereas NS2028, a blocker of sGjdcpartially inhibit these neuroprotective

effects.
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Highlights

1. Hemorrhage shock and resuscitation (HSR) signifiganecreased somatosensory evoked
potentials, caused degeneration of learning apilitgreased cortical neuronal pyroptosis and
mitochondrial injury.

2. CORM-3 administration after resuscitation provideeuroprotection for HSR, and improved
learning ability.

3. The neuroprotective mechanism of CROM-3 against Ht§iRy could be associated with sGC—

cGMP pathway.



