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Single-cell RNA-seq highlights intra-tumoral heterogeneity
and malignant progression in pancreatic ductal
adenocarcinoma
Junya Peng1, Bao-Fa Sun2,3,4, Chuan-Yuan Chen2,3, Jia-Yi Zhou2,3, Yu-Sheng Chen 2,3, Hao Chen5, Lulu Liu1, Dan Huang1, Jialin Jiang5,
Guan-Shen Cui2,3, Ying Yang2,3,4, Wenze Wang6, Dan Guo1,7, Menghua Dai5, Junchao Guo5, Taiping Zhang5, Quan Liao5, Yi Liu8,
Yong-Liang Zhao2,3,4, Da-Li Han2,3,4, Yupei Zhao5,8, Yun-Gui Yang 2,3,4 and Wenming Wu5

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer featured with high intra-tumoral
heterogeneity and poor prognosis. To comprehensively delineate the PDAC intra-tumoral heterogeneity and the underlying
mechanism for PDAC progression, we employed single-cell RNA-seq (scRNA-seq) to acquire the transcriptomic atlas of 57,530
individual pancreatic cells from primary PDAC tumors and control pancreases, and identified diverse malignant and stromal cell
types, including two ductal subtypes with abnormal and malignant gene expression profiles respectively, in PDAC. We found that
the heterogenous malignant subtype was composed of several subpopulations with differential proliferative and migratory
potentials. Cell trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs)
were differentially expressed along PDAC progression. Furthermore, we found a subset of ductal cells with unique proliferative
features were associated with an inactivation state in tumor-infiltrating T cells, providing novel markers for the prediction of
antitumor immune response. Together, our findings provide a valuable resource for deciphering the intra-tumoral heterogeneity in
PDAC and uncover a connection between tumor intrinsic transcriptional state and T cell activation, suggesting potential biomarkers
for anticancer treatment such as targeted therapy and immunotherapy.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading
causes of cancer death with only 8% of 5-year survival rate.1,2

Although surgical resection remains the main option for PDAC
treatment, only 10–15% of newly diagnosed patients are eligible.3

Most patients will eventually die from metastasis,4 owing to the
lack of other treatment modalities for improving the prognosis of
PDAC patients.5

Genomic and transcriptomic studies have revealed that critical
gene mutations or aberrant signaling pathway(s) drive the
pathogenesis of PDAC, such as KRAS driver mutation (over 90%)
and frequent inactivation of TP53, SMAD4, CDKN2A tumor
suppressors (over 50%). Other novel recurrent mutations (<10%)
have also been identified from unbiased analyses in PDAC.6 These
diverse gene mutations converge on specific pathways and
processes, including KRAS, TGF-β, Wnt, Notch, ROBO/SLIT signal-
ing, chromatin remodeling and DNA repair pathways. In addition,
alteration of epigenetic pathways is an emerging mechanism of

PDAC progression. Inactivating mutations of chromatin modifiers
have been identified in PDAC patients. These modifiers include
histone modification enzymes (24% of PDAC) and SWI/SNF-
mediated chromatin remodeling complexes (14% of PDAC).7,8

Unfortunately, none of these findings have been translated into
clinical use, mainly due to the very limited knowledge about their
potential role during PDAC progression, whereas most patients
were already at advanced stages at the time of diagnosis.9

Although initiation- and metastasis-specific mutations begun to
be confirmed,10,11 dysregulated signal transduction or variation of
gene expression within primary tumor cells are also critical for
tumor progression.12 This is further complicated by the signaling
cues from the tumor microenvironment and pathways regulating
epithelial-to-mesenchymal transition (EMT).13–15 Meanwhile, intra-
tumoral heterogeneity exists between cells within PDAC. In
particular, the stroma constitutes over 70% of the tumor mass
often embedded with normal pancreatic tissue due to the
infiltrative nature of PDAC.16 This extensive degree of intra-
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Fig. 1 Diverse cell types in PDAC delineated by single cell transcriptomic analysis. a Workflow depicting collection and processing of
specimens of PDAC tumors and control pancreases for scRNA-seq. b The t-distributed stochastic neighbor embedding (t-SNE) plot
demonstrates main cell types in PDAC. Cell number and percentage of assigned cell types are summarized in the right panel. c Heatmap
showing expression levels of specific markers in each cell type. d Violin plots displaying the expression of representative well-known markers
across the cell types identified in PDAC. The y axis shows the normalized read count
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tumoral heterogeneity makes it rather challenging to identify
genetic variants based on bulk mRNA sequencing. Even though
some major treatment breakthroughs have been facilitated in a
few tumor types, such as melanoma, by the identification of
oncogenic drivers using this approach,17 the overall progress in
identifying actionable diagnostic markers and therapeutic targets
is still largely hindered due to the limitation of bulk profiling
technologies in capturing intra-tumoral heterogeneity.
Recent advances in single-cell genomics provide powerful tools

in exploration of genetic and functional heterogeneity, recon-
struction of evolutionary lineages and detection of rare
subpopulations.18,19 In addition, scRNA-seq studies in human
tumors revealed new insights into tumor heterogeneity and
distinct subpopulations, which are pivotal for dissecting tumor-
related mechanism in detail.20–27 One recent study on head and
neck cancer revealed tumor compositions including the sub-
population with partial epithelial-to-mesenchymal transition (p-
EMT), shedding new lights into prediction of tumor invasion and
metastasis.24 Apart from the malignant cells, tumor mass also
contains macrophages, T cells and fibroblasts, etc., forming tumor
microenvironment (TME) supporting tumor progression.28–36 For
instance, in liver cancer, single-cell sequencing had been applied
to depict the landscape of 11 subsets of infiltrating T cells in
TME, which is potentially valuable in guiding effective
immunotherapies.30

One recent scRNA-seq study of four intraductal papillary
mucinous neoplasias (IPMNs), and two PDACs revealed pathway
alterations within epithelial cells, immune cells and fibroblasts
during the preneoplastic progression and discovered several
biomarkers of early stage pathogenesis.37 Here, we employed
single cell transcriptome approach to dissect PDAC intra-tumoral
heterogeneity and associated critical factors in regulating PDAC
progression. The transcriptomic profiles of a total of 57,530 cells
from 24 primary PDAC tumors and 11 control pancreases were
acquired. We found that PDAC tumor mass is highly hetero-
geneous and composed of diverse malignant and stromal cell
types. In addition, malignant ductal subtype could be distin-
guished by featured gene expression profile and was observed to
contain highly proliferative and migratory subpopulations. We
further identified a list of novel gene expression changes that
affected several known cancerous pathways, and suppressed
tumor-related T cell activation that is associated with clinical
pathological features. Thus, our findings will improve our current
understanding about the mechanism for PDAC progression, and
are potentially valuable in providing novel prognosis markers
for PDAC.

RESULTS
Single-cell expression atlas and cell typing in PDAC tumors and
control samples
To explore the cellular diversity in PDAC, we generated single-cell
RNA-seq profiles from 24 PDAC tumor samples and 11 control
pancreases without any treatment (Fig. 1a and Supplementary
information, Table S1). After initial quality control, we acquired
single-cell transcriptomes in a total of 41,986 cells from PDAC
samples and 15,544 cells from control pancreases (Supplementary
information, Table S2). To explore the cellular composition of
tumors, we applied principle component analysis on variably
expressed genes across all cells and identified 10 main clusters
including type 1 ductal, type 2 ductal, acinar, endocrine,
endothelial, fibroblast, stellate, macrophage, T and B cells (Fig. 1b
and Supplementary information, Fig. S1a, b). We then generated
cluster-specific marker genes by performing differential gene
expression analysis to define the identity of each cell cluster
(Fig. 1c, d and Supplementary information, Table S3). In most
cases, well-known cell type markers were used to identify cell
clusters, such as KRT19 for ductal cells,38 PRSS1 for acinar cells,38

etc. (Fig. 1c, d). We also identified multiple additional markers,
such as TFF2 for ductal cells and CELA3A for acinar cells
(Supplementary information, Fig. S1c and Table S3). Notably, we
identified two different types of ductal cells present in PDAC. Both
types of ductal cells showed high level of ductal markers:38,39

MMP7, TSPAN8, SOX9 and LCN2 (Supplementary information,
Fig. S1d). However, type 2 cells had much higher expression of
reported poor prognosis PDAC markers, such as CEACAM1/5/640

and KRT1941 (Supplementary information, Fig. S1e), suggesting
that type 2 might be a type of malignant ductal cells. We further
compared scRNA-seq profiles of 15,544 cells from 11 non-tumor
control pancreases, and identified 6 major cell types (Supplemen-
tary information, Fig. S1f, g). T cells and B cells are very limited
(<1%) in control samples, while about half cells (49.30%) are type 1
ductal cells (Supplementary information, Fig. S1h). Type 2 ductal
cells were not detected in control samples. Conversely, type 2
ductal cells showed 4.3-fold more than type 1 (11,315/2,646) in
PDAC samples (Fig. 1b), indicating that type 2 ductal cells are
significantly expanded in PDACs. In addition, we compared the
composition of type 1 and type 2 ductal cells in PDAC patients
with or without diabetes (10 vs. 14 cases) (Supplementary
information, Fig. S1i). The result showed that the percentage of
type 1 and type 2 ductal cells didn’t exhibit significant difference
(type 1: p= 0.6605, Wilcoxon test; type 2, p= 0.6665, Wilcoxon
test) between these two groups, which excludes the impact of
diabetes status on ductal cell population.

CNV landscape distinguishing malignant ductal cells in PDACs
The presence of two different types of ductal cells in PDAC
prompted us to investigate their malignant status. To define
malignant cells, we calculated large-scale chromosomal copy
number variation (CNV) in each cell type based on averaged
expression patterns across intervals of the genome.20 We found that
type 2 ductal cells exhibited remarkably higher CNV levels than type
1 ductal cells and other types of cells (Fig. 2a, b and Supplementary
information, Fig. S2a, b). In contrast, cells in control samples display
low CNV scores (Supplementary information, Fig. S2c).
We then compared type 1 ductal cells between PDAC and

control pancreas, and identified 1296 upregulated and 183
downregulated genes (Supplementary information, Fig. S2d). We
further found 1102/1296 of these upregulated genes were also
highly expressed in type 2 ductal cells, indicating that dysregula-
tion of these genes has already occurred in type 1 ductal cells in
PDAC (Supplementary information, Fig. S2e). The functional
analysis illustrated that the upregulated genes in type 1 ductal
cells in PDAC were significantly enriched for several disease-
related terms, such as inflammatory response, cell adhesion and
migration, suggesting that type 1 ductal cells in PDAC represent
the abnormal state relative to the ones in controls (Supplementary
information, Fig. S2f).
We next examined gene expression patterns in two types of

ductal cells in PDAC and identified 3107 differentially expressed
genes (Fig. 2c and Supplementary information, Fig. S2g). The
functional enrichment analyses showed that genes up-regulated
in type 2 cells were mainly enriched for cancer-related functions,
such as cell proliferation, migration and hypoxia (Fig. 2d), further
supporting the malignant state of this subtype. In contrast, genes
expressed at higher level in type 1 than in type 2 cells were related
to normal pancreatic functions, including digestion, pancreatic
secretion and bicarbonate transport (Fig. 2d), supporting that type
1 cells still possess a certain degree of ductal cell functions
compared to malignant type 2 cells. We also identified multiple
markers, such as AMBP and MUC1, that can be used to distinguish
the abnormal and malignant gene expression profiles of ductal
cells (Fig. 2e). We then performed Immunohistochemistry (IHC)
staining of markers (MUC1, FXYD3 for type 2 ductal cells and
AMBP for type 1 ductal cells) in PDAC and control samples to
validate these 2 types of ductal cells. We observed that AMBP-
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positive cells are mainly present in the ductal structure with
normal cell features. In contrast, MUC1- or FXYD3-positive cells
showed typical neoplastic cell features and were absent in control
samples (Fig. 2f). Taken together, these results show that type 2
ductal cells are the major source of malignant cells in PDACs.

Gene expression patterns in ductal cells during PDAC progression
We further analyzed type 1 ductal cells of PDAC samples and
detected two different subgroups (Supplementary information,
Fig. S3a). We examined AMBP and MUC1 expression signal in these
two subgroups and found that subgroup 2 displayed higher MUC1/
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lower AMBP expression (Supplementary information, Fig. S3b),
suggesting that subgroup 2 cells exhibit some features of type 2
malignant ductal cells relative to subgroup 1, which is supported by
the functional analyses showing several enriched tumor-related
terms in this subgroup (Supplementary information, Fig. S3c).
It is not very clear yet which pancreatic cell type is responsible

for tumor initiation. Some studies support the origin of malignant
neoplastic cells from ductal cells,42,43 while accumulating evidence
suggests that PDAC is primarily derived from pancreatic acinar
cells.44,45 However, these findings are mainly based on the
observations from transgenic mouse models and not validated
in human PDAC. To investigate the origins of neoplastic cells, we
performed the trajectory analysis using type 1 (two subgroups),
type 2 ductal cells and acinar cells. Our data showed the possibility
that both acinar and MUC1-low ductal cells could transit to MUC1-
high ductal cells, and then transform to malignant type 2 ductal
cells. (Supplementary information, Fig. S3d). Since only one PDAC
sample contains over 100 acinar cells and total number of acinar
cells in all PDAC samples is limited (512), we did not perform
further analysis on the transition from acinar to malignant ductal
cells, but mainly focused on the gene expression patterns along
transition from ductal cells with abnormal gene expression profiles
to malignant ductal cells by trajectory analysis. Pseudo-time of
ductal cells with abnormal (type 1) and malignant (type 2) gene
expression profiles was reconstituted (Fig. 3a). Along the
trajectory, epithelial cell marker EPCAM was expressed in a
sustained high level during the transition, while genes previously
reported to be involved in tumor progression, such as MUC1,
gradually increased along PDAC progression (Supplementary
information, Fig. S3e).
We further analyzed the gene expression patterns of all genes

along the trajectory of PDAC progression and identified 2299
genes with dynamic expression changes (Supplementary informa-
tion, Table S4). We further clustered these genes into 4 abnormal
expression patterns (P1–P4) and 4 malignant patterns (P5-P8) with
specific expression patterns (Fig. 3b). Functional enrichment
analysis showed that genes with normal pancreatic cell functions,
such as digestion, translation, and oxidative phosphorylation, have
higher expression levels in ductal cells with abnormal gene
expression profiles and down-regulated when transiting to
malignant state. In contrast, we identified multiple classical
oncogenic pathways, including ErbB and Notch signaling path-
ways, were activated during PDAC progression. In particular, a
large portion of genes in responsible for cell proliferation and
migration were remarkably activated at the late stage of tumor
progression (Fig. 3b). We also detected the activation of multiple
key regulators and TFs that participate in the tumorigenesis of
PDACs (Fig. 3c, d and Supplementary information, Fig. S3f),
including several genes potentially associated with PDAC progres-
sion, such as PI3K-Akt pathway activator YWHAZ.46

Distinct subgroups in malignant ductal cells
The type 2 ductal cells were further divided into 7 subgroups based
on t-SNE analysis (Fig. 3e, Supplementary information, Fig. S1a). By

comparing gene expression levels, we found that each subgroup
expresses specific gene set that can be used for distinguishing these
subgroups (Supplementary Table S5). Notably, we found that
subgroup 3 cells are the major population present in most patients
(Supplementary information, Fig. S3g), suggesting that this sub-
group is shared among PDAC patients. In contrast, subgroups 1, 2, 4,
5 and 6 are exclusively observed in some patients, which reflects the
tumor heterogeneity of individual patient. Furthermore, we noticed
that subgroup 7 cells with low proportion in ductal 2 malignant cells
were commonly observed in 16/24 patients.
Since proliferation was found to be the main feature of PDAC,

we then performed functional enrichment analysis for each
subgroup and found that the unique functions of subgroup 7
were related to cell cycle and cell proliferation (Fig. 3f), which is
further supported by the specific expression of proliferation
markers MKI67, TOP2A and cell cycle markers CCNB1 and CCNB2
(Fig. 3g, h). We also observed that functions of genes specific for
subgroup 1, 2 or 3 were mainly related to detoxification, epithelial
cell differentiation and translation, respectively. Roles of subgroup
5 expressed genes were related to neutrophil activation, indicat-
ing a possible association with immune response. Notably, genes
for both subgroups 4 and 6 were enriched for migration-related
terms. Specifically, genes for subgroup 6 were enriched for GO
terms such as response to hypoxia and IL17 signaling pathway,
emphasizing their potential functions in migration and metastasis.
Pancreatic intraepithelial neoplasia (PanIN) is believed to be the

most common preneoplastic mucinous lesion with ductal
morphology.47 However, PanIN is not well characterized at the
molecular level in human PDAC. We performed immunostaining
using markers FXYD3 for type 2 ductal cells and Alcian blue dye
staining for PanIN. We did find that PDAC tumor sections were
both FXYD3 and Alcian blue positive or only FXYD3 positive,
validating the presence of PanINs in type 2 ductal cells
(Supplementary information, Fig. S3h). We then examined the
possible PanIN subgroups by detecting KRT19 and MUC5AC
expression47 and found that subgroups 1/2/3 showed obvious
signal for KRT19 and MUC5AC (Supplementary information,
Fig. S3i), suggesting that these 3 subgroups should represent
PanINs state cells. We found that PDAC tumor sections were both
FXYD3 and Alcian blue positive or only FXYD3 positive, supporting
that type 2 ductal cells are composed of cells in PanIN state or
PDAC stage (Supplementary information, Fig. S3i). In addition, we
performed trajectory analysis on all 7 subgroups of type 2 ductal
cells to explore their transition and found apparently stage-
specific progression patterns. Notably, most of the cells in PanIN
populations (1/2/3) were present in the early progression stage,
while the others appeared in the late stages of progression
(Supplementary information, Fig. S3j).

Gene expression pattern analyses in TCGA PAAD samples based
on malignant ductal markers
We next analyzed the public invasive pancreatic ductal
adenocarcinoma and its variants (PAAD) data from TCGA
(https://cancergenome.nih.gov/) to investigate the clinical

Fig. 2 CNV and transcriptome landscape of ductal cells in PDAC and control pancreases. a Violin plots showing distributions of CNV scores
among different cell types from 7 representative PDAC and 1 control samples. b Heatmap showing large-scale CNVs of type 1 (blue) and type
2 (orange) ductal cells from 7 representative PDAC samples. The normalized CNV levels were shown, the red color represents high CNV level
and blue represents low CNV level. c Scatter plots showing gene expression level of type 1 and type 2 ductal cells in PDACs. CPM (Counts per
million) values were used to represent the normalized read count for each gene. d The enriched gene ontology terms for genes with specific
expression in type 1 and 2 ductal cells. e Expression levels of representative markers for type 1 and 2 ductal cells are plotted onto the t-SNE
map. Color key from gray to red indicates relative expression levels from low to high. The “expression level” was normalized by logNormalize
method in Seurat. f IHC images of representative control pancreas and PDAC neoplastic tissues stained for type 1 (AMBP) and type 2 ductal
cell (MUC1, FXYD3) markers. Scale bar, 100 μm. Ductal structures of fields were assessed and quantified for the presence of AMBP-, MUC1-,
FXYD3-positive cells. “Normal duct” indicates ductal structures with normal nuclei, while “neoplastic duct” indicates ductal cells with enlarged
nuclei. The P value was calculated using Student’s t-test. Error bars indicate the standard deviation. Three independent experiments were
performed. ***P < 0.001, **P < 0.05
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value of gene expression patterns in malignant ductal cells,
including cancer expression data, clinical information and
genomic mutation data. In total, 178 PAAD samples (146 PDAC
samples, 32 non-PDAC PAAD samples) were used for the
analysis. The malignant ductal cell markers were used to cluster

the PAAD tumor samples (Fig. 4a, b and Supplementary
information, Table S6). The results indicated that all samples
could be assigned to three PDAC groups (cluster 1–3) and one
non-PDAC group (cluster 4) based on these markers. Mean-
while, we noted that the proliferative ductal markers were
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clearly separated from other markers. Specifically, proliferative
ductal markers were abundant in cluster 2 and 3. In contrast,
patients in cluster 4 showed very limited expression level of
these ductal markers. Gene mutations of KRAS, TP53 and SMAD4
were demonstrated in over 82% of cluster 1–3 patients, but not
in cluster 4 patients (Supplementary information, Fig. S4a). The
5-year overall survival rate in cluster 4 was significantly higher
than other 3 clusters (Supplementary information, Fig. S4b).
About 89% (8/9) of patients in cluster 4 were diagnosed as
pancreatic adenocarcinoma other subtype (PAOS), while 86%
(145/169) of patients in cluster 1–3 were PDACs. These findings
indicate that the ductal markers identified in our study are
specifically expressed in PDACs instead of other types of
pancreatic cancers. Taken together, the malignant ductal
markers could effectively distinguish PDAC patients from
patients with other types of pancreatic cancer.
We then explored the prognostic value of the proliferative

ductal markers in PDAC patients. We used unsupervised non-
negative matrix factorization (NNMF) clustering and divided
PDAC patients into 3 subgroups according to the expression
level of proliferative markers (Fig. 4c). We found that patients in
group 3 showed a high abundance of proliferative ductal
markers, together with a significantly lower survival rate
compared to other groups (Fig. 4d). These results indicate that
ductal cells with positive proliferative markers are closely
associated with PDAC outcome. Next, we sought to identify
drugs that can pharmacologically target the proliferative ductal
cells and found that CDK1, PLK1 and AURKA can be served as
therapeutic targets of PDAC by using their specific drugs
(Fig. 4e and Supplementary information, Fig. S4c). We then
selected inhibitors for CDK1, PLK1 and AURKA to validate their
inhibitory effect on the growth of pancreatic cancer cells. The
results demonstrated that these inhibitors can significantly
suppress the cell proliferation (Fig. 4f). We also performed CDK1
IHC staining on pancreatic tumor tissues. Ki67 marker was co-
immunostained to locate the proliferative ductal cells. We
found that CDK1-positive ductal cells are also Ki67 positive
(Supplementary information, Fig. S4d, e), further suggesting
that CDK1 can be used as the target for proliferative ductal cells.
We next compared the TCGA transcriptome data between

group 3 and the other two groups to determine the differential
expression genes, 759 up-regulated and 946 down-regulated
genes were detected in group 3 patients (p.adj ≤ 0.01 and
|log2FoldChange| ≥ 0.5) (Fig. 5a and Supplementary table S7).
Gene ontology (GO) functional enrichment analysis revealed that
genes enriched for terms such as cell cycle, DNA replication and
DNA repair were highly up-regulated, whereas the downregulated
genes were mainly enriched for T cell selection and lymphocyte
activation terms (Fig. 5b). We then analyzed the expression
pattern of the above differentially expressed genes in our single-
cell data (Fig. 5c). We found that the majority of genes were highly
expressed in certain specific cell type. Specifically, many up-
regulated genes were expressed in type 2 ductal cells, while
down-regulated genes were mainly present in macrophage and
T cells (Fig. 5c), suggesting that dysregulated ductal proliferation
and immune response occur concurrently in the TME.

Inactivation of T cells in PDAC patients with high abundance of
proliferative ductal markers
To evaluate the function of infiltrated T cells in PDACs, we analyzed
the T cell activation state within the PDAC stroma using TCGA data.
We observed that samples with high level of proliferative ductal
markers conversely have low expression level of T cell markers
(Fig. 5d). In addition, this inverse relationship was also detected in
our PDAC single-cell sequencing data (Supplementary information,
Fig. S5a). We then calculated the CD8 T cell activation score31 and
found that the group with high proliferative ductal cell exhibit
significantly lower T cell activation score (P value= 0.0081, Fig. 5e).
To validate this finding, we co-immunostained Ki67 and CD3D by
IHC on 10 PDAC tissues to investigate the relationship between
proliferative state of ductal cells and T cell infiltration. For each
patient, we randomly selected 5 fields containing tumor cells and
quantified the expression level of Ki67 and CD3D. In support, we
found an inverse spatial relationship: very limited Ki67+ ductal cells
with high T cell infiltration vs. high portion of Ki67+ ductal cells with
rare T cell infiltration (Fig. 5f and Supplementary information,
Fig. S5b). We divided the patients into two groups based on the
mean intensity of Ki67 and then compared their CD3D expression
(Supplementary information, Fig. S5c-d). In consistent with the rare T
cell infiltration, we found that patients in Ki67-high group show low
CD3D expression (Supplementary information, Fig. S5e). Therefore,
both the existence of proliferative ductal cells and loss of T cell
activation probably contributes to the poor prognosis of PDAC
patients.
Previous TCGA bulk RNA-seq analysis reported four subtypes of

PDAC samples: squamous, pancreatic progenitor, immunogenic,
and aberrantly differentiated endocrine exocrine (ADEX).8,48 We
used signature genes identified from TCGA four subtypes of
patients to calculate the scores of each cell type found in our
single-cell map. Consistently, progenitor and ADEX subtypes
showed higher score in both type 2 ductal cells and acinar cells,
while immunogenic subtype showed higher score in T and B cells.
Notably, squamous subtype showed relatively higher score in type
2 ductal cells, endothelial, and stellate cells vs. lower score in T and
B cells (Supplementary information, Fig. S5f), indicating a
complicated immune response in the tumor microenvironment.
We then compared these subtype signature scores in the three
groups of patients with high, medium and low abundance of
proliferative markers (Fig. 4d) and found that the squamous
subtype score was highest in group 3 patients and immunogenic
subtype score was highest in group 1 patients (Fig. 5g and
Supplementary information, Fig. S5g). 50 and 0% of patients in
group 3 were classified as squamous and immunogenic subtype
(Supplementary information, Fig. S5h). In addition, we compared
the proliferative ductal signature scores to squamous and
immunogenic subtype scores for each TCGA patients. We found
proliferative score had significantly positive correlation with
squamous subtype and negative correlation with immunogenic
subtype (Supplementary information, Fig. S5i).

Distinct subtypes of immune cells and fibroblasts in PDAC
Recent studies suggest that stromal cells, such as T cells,
macrophages, and fibroblasts, are highly heterogeneous,28–36

Fig. 3 Differential gene expression profiles along malignant progression. a Pseudo-time of ductal cells with abnormal gene expression profiles
and malignant ductal cells inferred by Monocle2. Each point corresponds to a single cell. Clusters information was shown. b The differentially
expressed genes (rows) along the pseudo-time (columns) is clustered hierarchically into eight profiles. The representative gene functions and
pathways of each profile were shown. c Heatmap showing expression of representative identified genes potentially associated with PDAC
across single cells. Color key from blue to red indicates relative expression levels from low to high. d Heatmap showing expression of
representative identified TFs across single cells. Color key from blue to red indicates relative expression levels from low to high. e t-SNE
representation of 7 subgroups generated from sub-clustering malignant ductal cells. f Heatmap showing the representative gene ontology
and pathway terms enriched in each subgroup. Color key from white to blue indicates z-score of -Log10(P value). g Expression levels of
representative proliferation marker genes in each subgroup are plotted onto the t-SNE map. Color key from gray to red indicates relative
expression levels from low to high. h Violin plots showing the expression level of representative proliferation marker genes across the
subgroups. The y axis shows the normalized read count
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however, the extent of this heterogeneity in PDAC remains poorly
characterized. We performed the sub-clustering of T cells, B cells,
macrophages and fibroblasts, and detected 5, 6, 5 and 8 subsets,
respectively, in these cell types (Supplementary information,
Fig. S6a, b). Since T cell and macrophage are the major population

shaping the immune landscape within tumor microenvironment,
we delineated the specific of each of these two subtypes. For
T cells, the expression of known markers suggested two clusters of
CD8+ cells and three clusters of CD4+ cells (Supplementary
information, Fig. S6a, b). We noticed that both CD8+ clusters
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shared genes related to effector T cell (C1-CD8 and C5-CD8),
marked by the high expression of cytotoxic markers GZMA and
GZMH, while cell-cycle related genes (CENPA and CENPE) were
preferentially expressed in cluster C5-CD8 rather than C1-CD8,
suggesting that C5-CD8 T cells still retained their proliferating
capacities. In addition, cluster C2-CD4 dominated by homing
markers CCR7 and SELL represented naïve CD4 T cells, whereas C4-
CD4 expressed both SELL and IL7R, resembling central memory
T cells. Notably, the cluster C3-CD4 was characterized with
remarkable higher expression of Treg signature genes such as
FOXP3 and IL2RA.
To delineate the diversity of macrophages within tumor

microenvironment, we selected cells with known myeloid markers
CD68 and FCER1G, and identified five cell clusters (Supplementary
information, Fig. S6a, b). We found that genes involved in class II
antigen presentation (HLA and CD74) were present at higher levels
in cluster 1. In contrast, genes related to extracellular matrix (ECM)
deposition and remodeling (COL1A) were preferentially expressed
in cluster 2. Since myeloid-derived suppressor cells (MDSC) are
recruited and maintained by chemokines and inflammatory
cytokines,49 we noticed that CCL2 as the dominant chemokine
gene for the migration of MDSC was higher in cluster 3, while
cluster 5 was specialized in generating proinflammatory cytokines
(S100A8 and S100A9). In contrast to the recruitment of myeloid
cells, cluster 4 expressed higher levels of chemokine genes
responsible for the infiltration of cytotoxic T cells, such as CXCL9
and CXCL10. Considering the complex compositions and functions
of macrophages shown in our dataset, we think the traditional M1
vs. M2 classification of macrophage might not be appropriate to
reflect the diversity of macrophages and single cell analysis allows
us to evaluate the spectrum of dynamic molecular programs in
macrophages.
In addition, we performed the pseudo-time analysis for the

subsets in T cells and revealed a transition from naïve T cell and
memory T cell to Treg. Similarly, a trajectory of B cell populations
was ordered from a starting point of naïve B cell to plasmablast
(Supplementary information, Fig. S6c).

DISCUSSION
PDAC is characterized by a high degree of intra-tumoral
heterogeneity that constitutes the main obstacle to effective
PDAC treatment. Thus, it is highly desirable to explore the intra-
tumoral heterogeneity and the underlying mechanism that are
pivotal for PDAC prognostic improvement. In this study, we
established the comprehensive gene expression atlas of various
cell types of PDAC, and characterized the features of gene
expression profiles in each cell type based on scRNA-seq analysis.
Notably, two ductal cell types with different transcriptomic

profiles, named type 1 and 2 ductal cells, were identified. Further
CNV-based analysis demonstrated that type 1 ductal cells are
relative normal and present in both non-cancerous and neoplastic
tissues, whereas type 2 ductal cells expanded in PDAC are
malignant. Interestingly, type 2 ductal cells also contain highly
proliferative subpopulations. Additionally, we observed sup-
pressed T cell activation associated with clinical pathological
features.
Multiple signaling pathways were previously implicated in

pancreatic tumorigenesis and metastasis, including PI3K, Hedge-
hog, Wnt and Notch pathways,50–53 which is also demonstrated by
our findings. Notably, we further identified numbers of novel
genes participating in PDAC carcinogenesis such as EGLN3, MMP9
and PLAU, arising from dysregulated gene expression in malignant
ductal cells. We identified multiple previously reported TFs in
PDAC progression, such as HMGA1, FOS, KLF5, etc. HMGA1 was
found to be tumor progression-related protein associated with
advanced tumor grade and decreased survival.54 Knockdown of its
expression in human pancreatic cancer cells blocked tumor
growth and metastatic progression.55 FOS gene has been revealed
to promote cell growth, cell cycle and migration in the pancreatic
cancer cells.56 KLF5 was recently shown to induce mouse
pancreatic cancer cell proliferation and ductal phenotype.57 In
addition to these known TFs, we also identified the activation of
several TFs potentially associated with PDAC. Combined with
TCGA PDAC data, we further demonstrated that patients with
higher abundant proliferative ductal markers display significantly
lower survival rate, suggesting potential prognostic biomarker
for PDACs.
T cell infiltration status and T cell characteristics are usually

associated with different prognostic outcomes.58 It has been
shown that the degree of T cell infiltration that is associated with
disease progression varies in PDAC patients.8,59–61 PDAC tumor
patients with high microsatellite instability (MSI) level showed T
cell infiltration and were more sensitive to immunotherapy.62

These observations underscore the importance of understanding
how distinct tumors regulate their immune heterogeneity. PDAC
mouse model also revealed that tumor clones with similar
oncogenic mutations showed differential capacities in orchestrat-
ing a T cell-inflamed tumor microenvironment.63 Transcriptomic
and epigenetic comparison of the T-cell-inflamed and non-T-cell-
inflamed tumor clones revealed that tumors with low T cell
infiltration showed enhanced E2F and MYC targeted gene
signatures. In PDAC patients, we observed an inverse relationship
between tumor intrinsic ductal proliferation transcriptome fea-
tures and concurrent changes in immune infiltration. Although the
causal relationship between proliferating tumor cells and immune
infiltrations is still unknown, PDAC patients with lower ductal
proliferation score and higher immune signatures showed delayed

Fig. 4 TCGA PAAD data analyses based on malignant ductal markers detected in the scRNA-seq data. a Heatmap showing the expression
patterns of representative malignant ductal markers across the 178 PAAD samples (146 PDAC samples; 4 PCC samples: Pancreas-Colloid
Carcinoma; 1 PUC sample: Pancreas Undifferentiated Carcinoma; 26 PAOS samples: Pancreatic Adenorcarconoma Other Subtype; 1 sample
was the undefined subtype). Clustering identifies 4 coherent expression patterns across TCGA samples. Rows in the heatmap correspond
malignant ductal markers and columns in the heatmap that correspond to TCGA samples. The clinical information including the diagnosis
type and stage was also shown. b Heatmap depicting pairwise correlations (R2) on the expression level of the type 2 ductal markers in TCGA
PAAD samples. Most proliferative ductal markers were correlated with each other. Correlation coefficients are colored yellow to red to indicate
low to high, respectively. c Heatmap showing the clustering result for the value of NNMF based on the proliferative ductal markers. PDAC
samples were assigned into three groups according to the value of NNMF. The value of NNMF are colored black to red to indicate low to high,
respectively. d Kaplan–Meier survival analysis of tumor samples grouped in c. The sample numbers for each group were shown in brackets.
Statistical significance was determined using log-rank test. e A simplified scheme showing the functional interaction network of the
representative proliferation marker genes and available drugs for the hub genes of CDK1, PLK1 and AURKA. The interactions were generated
using Ingenuity Pathway Analysis (IPA, Ingenuity Systems). The gray, red and blue lines indicate protein-protein interactions, activated or
inhibited regulation, respectively. Circle with red colors indicates genes with available drugs. f MIA PaCa-2 cells were treated with CDK1
inhibitors Dinaciclib (10 nM), Milciclib (10 μM), AZD5438 (5 μM), Flavopiridol (500 nM); NMS-P937 (10 μM); AMG-900 (1 μM), MLN-8054 (1 μM) for
indicated time. OD at 450 nm were recorded. Three independent experiments were performed. The P value was calculated using Student’s
t-test. Error bars indicate the standard deviation. ***P < 0.001
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tumor progression and better prognosis. Another study in breast
cancer found that beside their traditional function, cell cycle
inhibitors can enhance tumor immunogenicity and promote T-
cell-meditated clearance of tumor cells.64 Our observation of T
cell-inflamed tumors with proliferation ductal signatures suggests

a potential new combination strategy comprising cell-cycle
inhibitors and immunotherapies.
Many studies based on bulk sequencing did show the existence

of inter-tumoral heterogeneity, and based on different gene
expression patterns, PDACs are classified into 4 subtypes: (1)
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squamous; (2) pancreatic progenitor; (3) immunogenic; (4) ADEX.8

However, bulk sequencing has limitations in clarifying which type of
cells has aberrant gene expression, making it difficult to find the
potential therapeutic targets. The scRNA-seq approach has success-
fully been used to characterize the genetic and functional
heterogeneity at a cellular resolution.18,19 Using this technique, we
observed different cluster patterns of type 2 ductal cells in each
PDAC patient, supporting the existence of inter-tumoral hetero-
geneity. The 10× genomics used in the single-cell RNA sequencing
technology has some limitations, such as only sequencing the 3′ end
and relative low coverage. Even though these disadvantages exist,
10× Genomics Chromium has been evaluated to show the best
performance in several aspects, including the molecular sensitivity,
precision and lowest technical noise, when compared to other ultra-
high-throughput single-cell RNA-seq such as inDrop and Drop-seq.65

Overall, our findings provide valuable resources for deciphering
comprehensive gene expression landscapes of heterogeneous cell
types in PDAC and the underlying mechanism for PDAC intra-
tumoral heterogeneity. Meanwhile, we revealed the critical
signaling pathways that might coordinately regulate the occur-
rence of intra-tumoral heterogeneity and further tumor progres-
sion in PDAC. Thus, these findings are potentially valuable in
advancing not only our current understanding of critical genetic
network related to PDAC progression, but also the translational
use in PDAC prognosis.

MATERIALS AND METHODS
PDAC patient samples
Patients at the department of general surgery of Peking Union
Medical College Hospital (PUMCH) had signed the consent forms
and the proposed studies were approved by Ethics Committee (JS-
1491). Age and gender of patients involved were listed
(Supplementary information, Table S1).
Fresh specimens of control pancreases and PDAC were

collected at the time of surgical resection under the supervision
of a qualified pathologist. The control pancreas samples in our
study were harvested from 3 cases of non-pancreatic tumor
patients (e.g. bile duct tumors or duodenal tumors) and 8 cases of
non-malignant pancreatic tumor patients (e.g. pancreatic cyst)
receiving pancreatoduodenectomy or distal pancreatectomy.
Control pancreas samples without visible inflammation were
collected by a qualified pathologist.

Tissue dissociation and cell purification
Tissues were transported in RPMI 1640 (Gibco, Cat. no. 11875–093)
with 1 mM protease inhibitor (Solarbio, Cat. no. P6730) on ice to
preserve viability, washed 2–3 times with phosphate buffered
saline (PBS; Hyclone, Cat. no. SH30256.01), then minced on ice. We
used dissociation enzyme cocktail 1 mg/ml Type VIII Collagenase
(Sigma-Aldrich, Cat. no. C2139), 2 mg/ml Dispase II (Sigma-Aldrich,
Cat. no.4942078001), 1 mg/ml Trypsin Inhibitor (Sigma-Aldrich,
Cat. no. T6522) and 1 unit/ml DNase I (NEB, Cat. no. M0303S)
dissolved in PBS with 5% Fetal Bovine Serum (FBS; Gibco, Cat. no.
16000–044) to digest the tissues. Neoplastic tissues were
dissociated at 37 °C with a shaking speed of 50 r.p.m for about
40min. We repeatedly collected the dissociated cells at interval of

20min to increase cell yield and viability. As for control
pancreases, minced tissues were incubated with the same
digestion buffer at 37 °C without shaking for about 40min. We
repeatedly collected the dissociated cells at interval of 10min. Cell
suspensions were filtered using a 40 μm nylon cell strainer (Falcon,
Cat. no. 352340) and red blood cells (RBC) were removed by RBC
lysis buffer (Invitrogen, Cat. no. 1966634) with 1 unit/ml DNase I.
Dissociated cells were washed with PBS containing 0.04% Bovine
Serum Albumin (BSA; Sigma-Aldrich, Cat. no. B2064) with step by
step descending centrifuging speed and increasing time. Cells
were stained with 0.4% Trypan blue (Invitrogen, Cat. no. T10282)
to check the viability, and then diluted with PBS containing 0.04%
BSA to about 1 × 106 cells/ml for single cell sequencing.

10× library preparation and sequencing
The concentration of single cell suspension was counted using
Countess (Thermo) and adjusted to 1000 cells/μl. Cells were
loaded according to standard protocol of the Chromium single cell
3′ kit in order to capture 5000 cells to 10,000 cells/chip position
(V2 chemistry). All the remaining procedures including the library
construction were performed according to the standard manu-
facturer’s protocol.

Single cell RNA-seq data processing
Single cell libraries were sequenced on Illumina HiSeqXTen
instruments using 150 nt paired-end sequencing. Reads were
processed using the Cell Ranger 2.1.0 pipeline with default and
recommended parameters. FASTQs generated from Illumina
sequencing output were aligned to the human reference genome
(hg19) using the STAR algorithm.66 Next, Gene-Barcode matrices
were generated for each individual sample by counting unique
molecular identifiers (UMIs) and filtering non-cell associated
barcodes. Finally, we generate a gene-barcode matrix containing
the barcoded cells and gene expression counts.
This output was then imported into the Seurat (v2.3.0) R toolkit

for quality control and downstream analysis of our single cell RNA-
seq data.67 All functions were run with default parameters, unless
specified otherwise. Low quality cells (<200 genes/cell, <3 cells/
gene and >10% mitochondrial genes) were excluded. Before
incorporating a sample into our merged dataset, we individually
inspected the cells-by-genes matrix of each as a Seurat object.

Identification of cell types and subtypes by nonlinear dimensional
reduction (t-SNE)
The Seurat package implemented in R was applied to identify
major cell types. Highly variable genes were generated and used
to perform PCA. Significant principle components were deter-
mined using JackStraw analysis and visualization of heatmaps
focusing on PCs 1 to 20. PCs 1 to 10 were used for graph-based
clustering (at res= 0.8 for PDAC samples and 1 for pooled cells
from PDACs and controls) to identify distinct groups of cells. These
groups were projected onto t-SNE analysis run using previously
computed principle components 1 to 10. We characterized the
identities of cell types of these groups based on expression of
known markers: AMBP, CFTR, MMP7 (ductal cell 1),38 KRT19, KRT7,
TSPAN8, SLPI (ductal cell 2),38,39,68–71 PRSS1, CTRB1, CTRB2, REG1B
(acinar),38,69,71 CHGB, CHGA, INS, IAPP (endocrine cell),38,72,73 RGS5,

Fig. 5 Tumor T cell activation states in PDAC patients. a Differential expressed genes detected between group 3 and group 1–2 as in Fig. 4d.
The x axis indicates log2FC of gene expression in group 3 compared to group 1 & 2. b Representative enriched GO terms in up- and down-
regulated genes (|log2FC| ≥ 0.5 and FDR ≤ 0.01), respectively. c Heatmap showing the expression levels of representative up- and down-
regulated genes in each cell type of the PDAC scRNA-seq data. d Heatmap showing the expression of markers for proliferative ductal cell and
T cell activation. Patients were grouped as in Fig. 4c. e Boxplot showing distribution of T cell activation score in three PDAC groups as in
Fig. 4c. The P value was calculated using Wilcoxon rank sum and signed rank test. f IHC images of PDAC neoplastic tissues stained for
proliferative subgroup cell marker (Ki67) and T cell marker (CD3D). Representative Ki67-high (T22) and Ki67-low (T10) specimens were shown.
Dashed line showed region of tumor cells. Scale bars, 200 μm. g Boxplot showing the signature scores of 4 known PDAC subtypes (squamous,
immunogenic, progenitor and ADEX) in three PDAC groups as in Fig. 4c
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ACTA2, PDGFRB, ADIRF (stellate cell),38,74,75 LUM, DCN, COL1A1
(fibroblast),33,76 CDH5, PLVAP, VWF, CLDN5 (endothelial cell), AIF1,
CD64, CD14, CD68 (macrophage),78–80 CD3D33,38,76,77, CD3E, CD4,
CD8 (T cell),79,81 MS4A1, CD79A, CD79B, CD52 (B cell).82–84 Sub-
clustering of T cells, macrophages, B cells and fibroblasts
were further performed with the same approach. In addition,
subclusters of T cells without expression of either CD4 or CD8A
and subclusters of macrophages without expression of known
myeloid markers CD68 and FCER1G were excluded from further
analysis.

Cluster markers identification
The cluster-specific marker genes were identified by running the
FindAllMarkers function in the Seurat package to the normalized
gene expression data. To identify differentially expressed genes
between two clusters, we used the ‘find.markers’ function. We
used DAVID (https://david.ncifcrf.gov/home.jsp)85,86 and Metas-
cape (http://metascape.org)87 to perform biological process
enrichment analysis with the top 100 differentially expressed
genes in each cluster or subset.

DEG analysis of pseudo-bulks sequencing
The gene expression level of pseudo-bulks was derived from
single-cell sequencing data within random permutation. In this
study, we created pseudo-bulks sample by combining every 20
cells in one cell type, and used the average expression level as the
expression level for scatter plot. The differential expressed genes
(DEG) were identified by edgeR package88 and DEG were filtered
by |fold change| > 2 and FDR < 0.05 (Bonferroni adjust).

CNV estimation
Initial CNVs for each region were estimated by inferCNV R
package.20 The CNV of total cell types were calculated by
expression level from single-cell sequencing data for each cell
with –cutoff 0 and –noise_filter 0.2. For each sample, gene
expression of cells was re-standardized and values were limited
as −1 to 1. The CNV score of each cell was calculated as quadratic
sum of CNVregion.
In order to well study the CNV level in ductal cell 1 and ductal

cell 2 for each individual sample, we used cells except ductal cells
1/2 and acinar cells as background to eliminate the individual
somatic CNV and re-calculated the CNV level with the same cutoff.

Constructing single cell trajectories in PDAC
The Monocle2 package (v2.8.0)89 was used to analyze single cell
trajectories in order to discover the cell-state transitions. We used
top 100 differentially expressed genes in type 1, type 2 ductal cells
and acinar cells identified by Seurat to sort cells in pseudo-time
order. The ductal state informed us the start point of the pseudo-
time in the first round of ‘orderCells’. We then set these ductal
cells with abnormal gene expression profiles as the root_state
argument and called ‘orderCells’ again. ‘DDRTree’ was applied to
reduce dimensions and the visualization functions ‘plot_cell_tra-
jectory’ were used to plot the minimum spanning tree on cells.
Differentially expressed genes over the Pseudo-time from ductal
cells with abnormal gene expression profiles to malignant ductal
cells transition were calculated by the “differentialGeneTest”
function in Monocle2 (q value < 10−20). In the 7 subgroups of
type 2 ductal cells trajectory analysis, top 50 differentially
expressed genes in each subgroup were used. In the T and B
cell trajectory analysis, we used genes meeting the thresholds that
mean_expression ≥ 0.5 and dispersion_empirical ≥ 1 * disper-
sion_fit identified by Monocle2 to sort cells in pseudo-time order.

Identification of malignancy associated TFs
In order to identify malignancy associated transcription factors, we
extracted a list of all identified transcription factors from Animal
TFDB 2.0.90 We compared the top 1000 genes differentially

expressed as a function of the Pseudo-time with the transcription
factor list, then we identified the malignancy transcription factors.

TCGA data analysis
PAAD expression matrix was used to plot the heatmap by
pheatmap R package with kmeans clustering results. Mutation
information was performed by maftools.91 For each PDAC tumor
samples, non-negative matrix factorization (using rNMF R package
with number of factors set to 5 and gamma set to 0.025) was
applied to the relative expression matrix, by transforming all
negative values to zero. By integrating the sample clinical
information, the survival analysis was completed by survival R
package. Differentially expressed genes were calculated by
DESeq2.92 Significant differential genes were determined by the
threshold of |log2FoldChange| ≥ 0.5 and adjust P value ≤ 0.01. The
GO enrichment analysis was completed in Metascape (http://
metascape.org).87 According to the method mentioned by Azizi
et al.31 the related gene set score of each sample was calculated
by the mean expression in this gene set. CD8 T cell activation gene
set was obtained from Azizi et al.31 and rlog was used to normalize
the expression value. The TCGA four subtype signatures were
calculated by comparing a given subtype to each of the other
three subtypes (DESeq2 with log2FoldChange ≥ 2 and adjust P
value ≤ 0.01). The Pearson correlation of TCGA samples were
calculated based on the subtype signatures non-negative matrix
factorization value. And the gene-sets scores in cells were
calculated by using Jerby-Amon et al.' method.93

Immunohistochemistry staining
Tissue sectioning and immunohistochemistry (IHC) staining of
formalin fixed paraffin-embedded (FFPE) PDAC and normal
pancreatic specimens were performed by following standard
protocols. All sections were 4 μm thick and deparaffinized through
xylenes and ethanol gradient. Antigen retrieval was performed in
a high-pressure heat repair process using citrate buffer at pH 6.0.
After endogenous peroxidase was blocked by incubating 10min
in 3% H2O2, the slides were incubated with primary antibodies
followed by HRP-linked secondary antibodies and diaminobenzi-
dine (DAB; ZhongShan Golden bridge biotechnology Co LTD, Cat
No. ZLI-9018) staining. Counterstaining was done with hematox-
ylin. Slides were dehydrated with sequential ethanol washes for 1
min each starting with 75%, followed by 80% and finishing with a
100% ethanol wash.
Antibodies and reagents used are listed as following: AMBP

(Abcam, ab129059), MUC1 (Cell signaling technology, 4538S),
FXYD3 (Novus Biologicals, NBP2–01991), Insulin (Cell signaling
technology, 3014S), Glucagon (Cell signaling technology, 2760S),
CDK1 (Proteintech, 19532-1-AP), Ki67 (ZhongShan Golden bridge
biotechnology, ZM0166), CD3D (Abcam, ab109531), Alcian blue
(Leagene, DG0041).

Quantification of Immunohistochemical staining of CD3D and Ki67
expression
DAB (3,3′-diaminobenzidine) and PAS (Periodic Acid-Schiff) stain-
ing intensity were analyzed by color deconvolution algorithms in
Fiji, a derivative software of Image J. Background intensities were
deducted and mean DAB and PAS intensities were converted into
optical density (OD).

Proliferation assay
MIA PaCa-2 cells cultured at 37 °C with 5% CO2 were seeded in 96-
well plate (5000 cells/well) for 12 h before adding inhibitors
(Selleckchem). Concentration of inhibitor was listed as below:
Dinaciclib (Cat. S2768, 10 nM), Milciclib (Cat. S2751, 10 μM),
AZD5438 (Cat. S2621, 5 μM), Flavopiridol (Cat. S1230, 500 nM),
NMS-P937 (Cat. S7255, 10 μM), AMG-900 (Cat. S2719, 1 μM),
MLN8054 (Cat. S1100, 1 μM). Cell count kit (CCK-8) reagent was
added at 10 μL/well at 0, 24, 48, 72 h after plating. After adding
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CCK-8 reagent for 2.5 h, the optical density (OD) at the 450 nm
wavelength (OD450) was measured using a microplate reader
(Wellscan MK3, Thermo/Labsystems, Finland). OD630 was served
as a reference, and the OD of the blank well was used as the
base level.
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