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Abstract

NEDD4 is an E3 ubiquitin ligase containing the HE@®main, which regulates
various cellular processes, but its role in vagcetalothelial cells is unknown. In the
present study, we found that NEDD4 bound directlp POl by

co-immunoprecipitation screening. In HUVECs (humanbilical vein endothelial

cells), overexpression of NEDD4 reduced Ang ll-icédd ROS level and cell
apoptosis. Ang Il stimulation led to nuclear acclatian of cargoes, while
overexpression of NEDD4 enhanced the XPO1l-dependantear export of its
cargoes. KPT185, an inhibitor of XPO1, can abolistiee protective effect of
NEDD4 under Ang Il treatment. In addition, NEDD4udw promote the interaction
between XPO1l and RanBP3 via K63-linked ubiquitmatof XPO1. These results
suggested that NEDD4 played a protective role iscukar endothelial cell injury

through regulating XPO1-mediated nuclear export.
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1. Introduction

Dysfunction of endothelial cells plays a criticale in the development of vascular
pathogenesis and disorders, including hypertensloombosis and atherosclerosis,
etc.[1,2]. Angiotensin Il (Ang Il), the major vasdeve factor, is able to promote
vascular pathological remodeling via leading to athdlial cell damage. Evidence
showed that oxidative stress, DNA damage and caspasvation contribute to

endothelial cell apoptosis, which is involved in gAti-mediated endothelial cells

injury[3,4].

Exportin 1 (XPOL1), a transport receptor, is onalvitomponent of the nuclear
transporter complex embedded within the nuclearelepe, which mediates the
nuclear-to-cytoplasmic export of variety proteinedacertain RNAs[5]. XPO1
contacts with its cargo via recognition of the spedeucine-rich nuclear export
signals (NES), which is rely on many scaffold males and the small GTPase Ran
to facilitate this process[6-8]. So far, many tunsuppressors or ardpoptotic
regulators, such as P53, BRCAL, and survivin, welentified as the cargos
interacting with XPO1[9-11]Overexpression of XPO1 is responsible for cell
survival, which has been reported to promote theotigenesis[12—-14]. Recently, we
find that XPO1l-mediate nuclear export of RNF146,irmaportant repressor in poly
(ADP-ribose) polymerase dependent cell death, playsole in Ang ll-induced
endothelial cell injury[15]. However, how XPO1 isgulated in this situation remains
elusive.

Homologous to the E6-AP carboxyl terminus (HECT) lg&ses found in all
eukaryotic organisms directly catalyze target fbrquitination, are involved in the
regulation of various physiological processes[16]Saccharomyces cerevisjaine
family members of HECT E3 ligase can regulate ramfeoplasmic export. Rsp5, one
of the main HECT E3 ligase in yeast, has been tegao be required for proper
MRNA, tRNA and rRNA export[17-19]. Another HECT BH§ase Tom1 contributes
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to nucleocytoplasmic transport of heterogeneousleaucribonucleoproteins and
MRNA[20,21]. NEDD4 (neuronal precursor cell-expesss developmentally

downregulated 4), also known as NEDD4-1, contairangC2 domain, three WW
domains, and a C-terminal catalytic HECT domairgns major homologue of yeast
HECT E3 ubiquitin ligase widely expressed in mamanralcells. NEDD4 exerts

anti-apoptotic effect via multiple mechanisms. NEDBan block cell apoptosis by
targeting PTEN for proteasomal degradation[22]. dRécstudy has shown that
NEDD4 reduced ischemia/reperfusion induced apoptokicardiomyocytes through
activation of PI3K/Akt signaling[23]. In additioNEDDA4 is expressed in vascular
endothelial cells and is involved in endocytosisvagcular endothelial growth factor
receptor-2 (VEGF-R2) degradation[24]. However, tbie of NEDD4 in vascular

endothelial cells under the apoptotic stress isiank.

In the present work, we demonstrated NEDD4 is ddiCT E3 ligase that
interacted with XPO1 in HUVECs (human umbilical waindothelial cells). NEDD4
protected HUVEC against Ang ll-induced cell deathrotigh enhancing
XPO1-mediated nuclear export. XPOl was directlyquitinated by NEDD4 in
K63-linked fashion, which facilitated the interacti of XPO1 and RanBP3
(Ran-binding Protein 3), scaffold factor in the nuclear-export complex.

2. Materials and methods

2.1. Cell culture and reagents

HUVECs (human umbilical vein endothelial cells),|&eell line and HK-2 cells were

purchased from Type Culture Collection Committee€Cbinese Academy of Science
(Shanghai, China), cultured in Dulbecco's modifiedglE's medium (Gibco)

supplemented with 10% fetal bovine serum at 37°&%#nCQ incubator. Angiotensin

Il (Ang Il) was obtained from Sigma-Aldrich and siidved in sterile, ultrapure water.
KPT-185 and cycloheximide (CHX) were purchased fr8elleck Chemicals and
dissolved in Dimethylsulfoxide (DMSO).

2.2. Plasmids preparation and transfection

Full-length XPO1 cDNA were amplified from a humaDNA library using standard
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PCR techniques and subcloned into p3XFlag-CMV(TM)-&xpression vector
(Sigma). Full-length NEDD4, AIP4, WWP1 and SMURFlerey amplified and
inserted into pcDNA3.1-Myc vector, respectivelyilnogen). Each construct used
was confirmed by direct sequencing. Cultured celsre transfected with the
plasmids by Lipofectamine® 2000 regent accordingn@anufacturer's instructions
(Invitrogen).

2.3. Cellular Reactive Oxygen Species (ROS) Detecti

Intracellular ROS level was measured with CelluReactive Oxygen Species
Detection Assay Kit (Abcam, ab113851). Briefly, HBUs were seeded in a 96-well
plate before treatment. After treated with AngHUVECSs were collected and washed
with PBS twice. After that 2M 2',7'—dichlorofluorescin diacetate (DCFDA) was
used to stain the cells in serum-free DMEM for 3@ mat 37°C. Then, Flow
cytometry was performed to quantify the levels @3 the mean fluorescence was
determined by counting 10,000 events.

2.4. Nuclear—cytoplasmic fractionation separatiorda/NVestern Blot

Nuclear and cytoplasmic fractionations were sepdratith the NE-PER Nuclear and
Cytoplasmic Extraction Reagents kit (Thermo Fiskeientific) according to the
manufacturer’s protocol. Western blot analysisgostein expression was performed
using standard methods. The antibodies againsifigppooteins used in this study
were as follows: NEDD4 (proteintech, 21698-1-AP)IPA (Abcam, ab108515),
WWP1 (proteintech, 13587-1-AP), SMURF1 (Abcam, &&8, XPO1 (proteintech,
66763-1-g), RNF146 (Abcam, ab201212), Apoptosduning factor (AIF)
(proteintech, 17984-1-AP), Cleaved Caspase-3 (Abcatr?08003), Caspase-3
(Abcam, ab197202), TP53 (proteintech, 10442-1-ARanBP3 (CST, #93706),
alpha-Tubulin (proteintech, 11224-1-AP) and Histot8 (proteintech, 17168-1-AP).
The signals of blots were quantified and analyzg@dgithe ImageJ software.

2.5. Co-immunoprecipitation and in vivo ubiquitiizet assay

Briefly, cell lysates were extracted with mild cdjisis buffer and cleared by

centrifugation. Then the supernatants were immuempitated with appropriate
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117  antibodies and protein A/G Plus-agarose for ovéatrnég 4°C. The immunocomplexes
118  were then washed with lysis buffer three times, #reh used for immunoblotting
119  analysis with the indicated antibodies.

120 For thein vivo ubiquitination assay, NEDD4 overexpression or Kioekn
121 HUVECs were pretreated with MG132 for 4 hours befoarvesting. Then, the cells
122 were lysed and immunoprecipitated with anti-XPOlikady. Subsequently, the
123  ubiquitination level of XPOl was tested with K48ldtination or
124  K63-ubiquitination antibody.

125  2.6. Cell apoptosis analysis

126 The apoptosis rate of HUVECs was tested by Apoptbstection Kits (BD, USA)
127 following the manufacturer’s instructions. Brieflx10 cells were harvested and
128 resuspended in 200L binding buffer, followed by a 15 min incubationtiwv 5 uL
129  Annexin V-FITC and bL propidium iodide (PI) in the dark at 37°C. Thene flow
130 cytometry analysis was employed for detecting apopevents.

131 2.7. Statistical analysis

132  All data are shown as means + SEM and analyzed @i#gphPad prism 6 software
133  (San Diego, United States). The unpaired Studeesttwas used to determine the
134  statistical significance of differences between tyvoups. One-way ANOVA analysis
135  was used for more than two groups. P < 0.05 wasidered statistically significant.
136

137 3. Results

138 3.1. NEDD4 is the only human Rsp5 homolog that interacts with XPOL1 in
139  vascular endothélial cells

140 Rsp5 is the major HECT domain-containing ubiquitigase encoded by the
141 Saccharomyces cerevisigenome. NEDD4, AlIP4, WWP1, and SMURFL1 are four
142  obvious homologs of Rsp5 in human cells with simitquence and domain
143  arrangement (Fig. 1A). To identify which HECT E8dse was the potential regulator
144  of XPO1l-mediated nuclear export, we exogenouslgxquressed XPO1 with NEDD4,
145  AIP4, WWP1, and SMURF1 and detected the interadietveen XPO1 and the four
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Rsp5-homologs by co-immunoprecipitation in the pmad tubule epithelial cell line
(HK-2 cells). The results showed that only NEDD# dateract with XPO1, whereas
AlP4, WWP1, and SMURF1 could not bind to XPO1 (Fig). To confirm this
interaction  between XPOl1 and NEDD4, we further qenid
co-immunoprecipitation by XPO1 antibody or NEDD4tibady in HUVECs. The
data indicated that NEDD4 indeed interacted wittO4Rn HUVECSs (Fig. 1C and D).
Collectively, these data demonstrated that XPO1l wasubstrate of the HECT
ubiquitin ligase, NEDD4, in HUVECs.

3.2. NEDD4 protects HUVECs against Ang | I-induced cell death

To investigate the biological role of NEDD4 in AHgnduced HUVECs damage, we
first assessed the expression level of NEDD4 &tey Il treatment. The HUVECs
was subjected to Ang Il (M) treatment for 24 hours, and the gRT-PCR and
Westernblot analysis showed that the expressioNEDD4 was decreased both in
transcriptional and translational level (Fig. 2Ald®).

Accordingly, we assumed that NEDD4 lost its funatia this model. Then we
used the overexpression experiment to determineeffect of NEDD4 to the
HUVECs damage. The NEDD4 was overexpressed byfeemsn of Myc-NEDD4
plasmids (Fig. 2C). Compared with the vector traosfd HUVECS, overexpression
of NEDD4 significantly reduced the ROS level caubgdAng Il treatment (Fig. 2D).
Flow cytometry also showed that overexpressiomatited the cell death induced by
Ang Il (Fig. 2E). Moreover, overexpression of NEDBebulted in marked decreases
in cleaved-caspases 3 and AlF (Fig. 2F-H). Ovetiafise results suggested a directly
protective role of NEDD4 against Ang II-stimulatdtdVECs death.

3.3. The protective effect of NEDD4 is dependent on XPO1l-mediated nuclear
export

Maintenance of XPO1-mediated nuclear export of ifipezargoes has been proved to
play a protective role against stress-induced ad#lath. RNF146, whose
nuclear-export plays a key role in Ang ll-inducedVECs injury, has been recently

reported as a cargo of XPOL1[15]. TP53, the classlicapoptosis inducer, was also
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reported as the XPO1l's cargo [25]. Therefore, wdrem$sed whether the nuclear
export of RNF146 and TP53 was affected by NEDD4g Alrtreatment significantly
induced nuclear accumulation of TP53 and RNF14élevdverexpression of NEDD4
promoted the nuclear export of both TP53 and RNFh4Ang Il treated HUVECs
(Fig. 3A). This observation suggested that the earcéxport of XPO1's cargoes might
be regulated by NEDDA4.

In order to further investigate whether XPO1-mestlatuclear export is required
for the protective effect of NEDD4, we used the XPi@hibitor (KPT-185) to block
XPO1's function[15,26]. Addition of KPT-185 aggréea the intracellular ROS level
induced by Ang |Il, and further abolished the beriafi effect of
NEDD4-overexpression against Ang ll-induced celimdge (Fig. 3B and C). In
keeping with these findings, treatment of KPT-1&® avithdrew the down-regulation
of cleaved-caspases 3 caused by NEDD4-overexpressider the Ang ll-mediated
cellular pro-death response (Fig. 3D-F). Moreowar,found that KPT-185 efficiently
inhibited the nuclear-export of RNF146 and TP53 the present of
NEDD4-overexpression (Fig. 3G). These results mgid that XPO1-mediated
nuclear export of cell death regulators was a requimolecular event for the
beneficial effect of NEDD4 against Ang ll-inducedMECs death.

3.4. K63-linked ubiquitination by NEDD4 affects XPO1-RanBP3 interaction

To better understand how NEDD4 regulates XPOl-ntediauclear export, we

examined the effect of NEDD4 on the expressionllefeXPO1. Unexpectedly, the

overall protein level of XPO1l was not affected byEDD4-overexpression in

HUVECs (Fig. 4A). Therefore, we speculated that NIEDdid not mediate the

proteasomal degradation of XPO1. To confirm thie HUVECs was treated with
CHX, the inhibitor of protein synthesis, for thedicated times, which showed that
overexpression of NEDD4 did not regulate the degfiiad rate of XPO1 (Fig. 4B and
C). Different types of polyubiquitinated modificati may exert definitive function.

K48-linked polyubiquitination usually functions ahe signal for proteasomal

degradation, whereas K63-linked polyubiquitinatitlas been shown to have

7
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non-degradative functions[27]. Accordingly, we usdélde specific antibodies
recognizing the two different types of polyubigoéted chain to test which kind of
polyubiquitinated modification can be catalyze b¥DD4. Only the K63-linked

polyubiquitination level of XPO1 was increased byexpression of NEDD4
compared to that through K48 (Fig. 4D).

K63-linked polyubiquitin chains may serve as a fddffor a protein complex
assembling[28]. RanBP3 (Ran-binding Protein 3) veg®rted to interact with XPO1
functions as a vitascaffold factor in the nuclear-export complex[28Ecording to
this, we subsequently investigated whether K63dihkpolyubiquitin of XPO1
impacted the interaction between XPO1l and RanBRferdstingly, further
co-immunoprecipitation experiments showed thatitieraction between XPO1 and
RanBP3 was significantly enhanced by overexpressiddEDD4 in HUVECs (Fig.
4E). These results indicated that NEDD4 could gatal the K63-linked
polyubiquitination of XPO1, which facilitated thaeteraction between XPO1 and
RanBP3.

3.5. RanBP3 was essential for the protective effect of NEDD4

To further confirm that RanBP3 was required for petective effect of NEDD4,
RanBP3 was knocked down by interference RNA (si-RMAnsfection. Thevestern
blot revealed that both si-RNAs effectively repexbshe protein expression level of
RanBP3 in HUVECs (Fig. 5A). Knockdown of RanBP3 Idoucancel the
ROS-repressing effect of overexpression of NEDDAmg lI-treated HUVECs (Fig.
5B). The result of flow cytometry showed that kndokwn of RanBP3 repressed the
anti-apoptotic effect of NEDD4 overexpression (FB@.). In addition, knockdown of
RanBP3 re-upregulated the expression of the apoptwdrkers, cleaved-caspase 3
and AIF, at the present of NEDD4 overexpressiomg Il treated HUVECs (Fig.
5D-F). To see whether the cargos of XPO1 were tateby RanBP3 deficiency in
this condition, we tested the level of RNF146 anB53 in the nuclear and
cytoplasmic fractions, respectively. The resultsndestrated that knockdown of

RanBP3 efficiently inhibited the nuclear export RNF146 and TP53 in spite of

8
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overexpressed NEDD4 in Ang Il treated HUVECs (F¢). The above analyses
suggested that RanBP3 was essential for the praeeffect of NEDD4 and XPO1

dependent nuclear export of apoptosis related ipsote

4. Discussion
The nuclear transporter XPO1 plays an importarg molregulating tumor cell death.
We recently report that XPO1 can protect vascutatothelial cell against Ang Il
induced cell death[15]. However, the mechanism HWyiclvw XPO1 is regulated
remains unclear. In this study, we screen four meEjBCT E3 ubiquitin ligases in
human cells and identify NEDD4 as the one that tionally regulates XPO1 in
vascular endothelial cells. NEDD4 reduces Ang dticed endothelial cell apoptosis
by promoting XPO1-mediated nuclear export. Mecharaly, NEDD4 facilitates the
binding of XPO1 to the accessory protein RanBP3niBdiating the K63-linked
polyubiquitination of XPO1, which results in maimiag the stability of the XPO1
nuclear transport complex (Fig.6). Therefore, arst finding provides the evidence
indicating that NEDDA4 plays a pivotal role in att@ting Ang ll-induced endothelial
damage by regulating XPO1-dependent nuclear export.

There has been much evidence that XPOL1 plays aoriam role in promoting
cell survival and inhibiting cell death [30]. Wecently present that RNF146 is a
cargo of XPOL1 in vascular endothelial cells. Overession of XPO1l can export
RNF146 from nucleus to cytoplasm for AIF degradatiwhich in turn reduces Ang
lI- mediated endothelial cell death[15]. In additio another well-known
apoptosis-inducing factor, which is also a tramgorn factor, TP53, is also regulated
by XPO1[31,32]. Inhibition of XPO1 can cause TP&3atcumulate in the nucleus
and produce an apoptotic response[25]. In the ptedady, we find that Ang Il can
induce the aggregation of RNF146 and TP53 in nsclénd promotion of
XPO1-mediated nuclear export enhances the trarigdacaf RNF146 and TP53 out
of the nucleus, which exerts beneficial effect agaiAng llI-induced cell damage.

These results suggest that RNF146 and TP53 acctedula nucleus by XPO1

9
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dysregulation are involved in Ang ll-induced enddidl cell injury.

Saito et al. have reported that XPO1 can be mabifieNEDDS8, a ubiquitin-like
protein, which lead to proteasome-dependent detiomfid3]. Some proteomic
studies have also implied that XPO1 can be modifigdibiquitination[34-37]. We
first discover XPO1 as a substrate of ubiquitimatiand it can be modified by both
K48 and K63 linked ubiquitination. In this repome mainly find that NEDD1
directly interacts with XPO1 and mediates its KB8¢d ubiquitination. In general,
K63-linked ubiquitination plays a role in promotipgotein-protein interactions. Our
results also show that NEDD4-mediated ubiquitimatiof XPO1 promotes its
interaction with RanBP3, which involves in mainteoa of the structure and function
of nuclear exporter complex. RanBP3 serves as fioktdo prompt the efficient
assembly of export complex and stabilize XPO1-cargeraction[8,29]. Our data
suggest that the interaction between XPO1l and RanBBmoted by NEDD4 can
efficiently increase the nuclear transport of thisdrates, despite the decrease of
XPO1's expression by Ang Il stimuli. Collectivelye speculate that the ubiquitinated
site may be near the interaction region between XB@ RanBP3, which needs to
be confirmed by further studies.

NEDD4 is a widely expressed E3 ligase in many tgles with numerous
substrates. NEDD4 has been shown to protected oraydblast cells against
ischemia/reperfusion injury[23]. Furthermore, digficy of NEDD4 could be
involved in vascular calcification of vascular snfootuscle cells[38]. In line with
those studies, our findings suggest a protectivte od NEDD4 in cardiovascular
system. Our results demonstrated that NEDD4 reggilaticlear protein XPO1. Some
studies have also found that NEDD4 is expresseldeimucleus and regulates nuclear
substrates' function such as histone H3 and heakdinanscription factor 1[39—-42].
Our data reveal that NEDD4 directly ubiquitinate$ XL for K63-linked form
without altering its expression level. Indeed, othesearch has shown the
non-proteolytic role of NEDD4 in the nucleus[39]dditionally, NEDD4 mediates

phospho-AKT for K63-linked poly-ubiquitination dte¢ plasma membrane to promote
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nuclear trafficking of AKT[43].

In summary, we found that HECT E3 ligase NEDD4 e@cted vascular
endothelial cell against Ang IllI-induced cell deathechanistically, NEDD4 directly
ubiquitinated XPO1 via K63-linked form, enhancirge tinteraction between XPO1
and RanBP3, and thereby increased the XPO1l-mediatddar export capacity. Thus,
our data provide a novel perspective on the roleN&DD4 in Ang ll-induced
vascular endothelial cell injury and new insight fthe treatment of vascular

disorders.
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Figure L egends
Figure 1. NEDD4 is the only human Rsp5 homolog that interacts with XPO1 in

vascular endothelial cells.

(A) Domain structure of four human Rsp5 homolodse positions of the C2 domain
(yellow), WW domain (green), and the HECT domaiadjr are shown. (B) The
interaction between XPO1 and the four Rsp5 homo(bigDD4, AlP4, WWP1, and
SMURF1) by co-immunoprecipitation in the HK-2 celSell extracts were IP with
anti-Flag Ab. (C and D) The co-immunoprecipitat@ssay of XPO1 and NEDD4 in
HUVECs.Data are representative of means + SEM of thresyass

Figure 2. Overexpression of NEDD4 reduces Ang Il-induced HUVECS injury
and apoptosis.

(A) gRT-PCR analysis of NEDD4 expression in HUVE@=ated with Ang Il. (B)
Western Blot analysis of NEDD4 in HUVECSs treatedhwAng 1l. (C) The expression
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level of NEDD4 in HUVECs was significantly increalsby transfection p-NEDDA4,
compared with vector group, respectively. [Elpw cytometry assay was used to
examine the intracellular ROS levels of HUVECs sdHansfected with vector or
p-NEDD4 and then treated with or without Ang II{M) for 24h. (E) Measurement
of apoptotic cells following overexpression of NE®Dn HUVECs. Results are
expressed as scatter diagram (left) and calculpgedentage of annexin-V-positive
cell population (right). (F) Western Blot analysisf apoptotic markers
(cleaved-caspases 3 and AIF) in in Ang Il treatetdVHECs after NEDD4
overexpression. (G and H) Quantitative analysis Vidéstern blot data. Data
represented mean £ s.e.m., n %3;0.05.

Figure 3. The protective effect of NEDD4 is dependent on XPO1-mediated
nuclear export.

(A) Western blot analysis of RNF146 and TP53 iropyesmic and nuclear fraction of
HUVECs after Ang Il treatment in the presence ofer@xpressed NEDDA4
(p-NEDD4). (B) Measurement of ROS level from Angtrdated HUVECs after
KPT-158 exposure with the presence of overexpresiéddD4. (C) The data of flow
cytometry experiment in Ang ll-treated HUVECs aftdPT-158 exposure with the
presence of overexpressed NEDD4. (D) Western Biatyais of apoptotic markers
(cleaved-caspases 3 and AIF) in Ang ll-treated H@gEafter KPT-158 exposure
with the presence of overexpressed NEDD4. (E andQ&antitative analysis of
Western blot data. Data represented mean * s.p.&B; p< 0.05. (G)Western blot
analysis of RNF146 and TP53 in cytoplasmic and earcfraction in Ang ll-treated
HUVECSs after KPT-158 exposure with the presencevefrexpressed NEDDA4.
Figure 4. K63-linked ubiquitination by NEDD4 affects XPO1l-RanBP3
interaction.

(A) Western Blot analysis of XPO1 in HUVECs trarctésl with NEDD4 plasmids.
(B-C) The effect of NEDD4 overexpression on thet@rodegradative rate of XPOL1.
(D) in vivo ubiquitination assay showed the K48-linked and #i6Bed ubiquitination
status of XPO1l after NEDD4 overexpression in HUVECHE)
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Co-immunoprecipitation showed the effect of NEDD#&emxpression on the
interaction between XPO1 and RanBP3. Data are septative of means = SEM of
three assays.

Figure 5. RanBP3 was essential for the protective effect of NEDD4.

(A) Western Blot analysis of RanBP3 in HUVECS tifaeted with siRNA of RanBP3.
Data represented mean + s.e.m., n 3 0.05. (B) Measurement of ROS level
showed the effect of RanBP3 knock-down in Ang déated HUVECs with the
presence of overexpressed NEDD4. (C) The data a¥ ftytometry experiment
showed the apoptotic rate of HUVECs. (D) Westerot BAnalysis of apoptotic
markers (cleaved-caspases 3 and AlF). (E and Fytpatave analysis of Western blot
data. Data represented mean + s.e.m., n p3:0.05. (G) Western blot analysis of
RNF146 and TP53 in cytoplasmic and nuclear fraction

Figure 6. Proposed model for regulation of NEDD4 on XPO1-mediated nuclear
export. The mechanism by which NEDD4 plays a protective iolendothelial cell.
In nucleus, NEDD4 promotes XPO1l-RanBP3 interactiota K63-linked
polyubiquitination of XPO1, which facilitates XPQiependent nuclear export of the

cargo.
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Figure 3

A AngII B c D
Control None Vector p-NEDD4 Ang IT - + + <+
: 150 B
. RNF146 %‘ E p-NEDD4 _ _ 4+ 4+
H H H
1| -l 2w £g KPTASS - - - 4
Ied = o ~
G iz B s
g 50 EE
_ RNF146 H £ W ——caspasc3
= < 0 e 2
s 0
5| E— -
E] Angll - + + + Angll - + + +

——— p-NEDD4 _ . 4+ 4+ p-NEDD4 - -+ 4

KPT-185 - - - + KPT-185 - - - +

-“b““rl

m
M
@

Angll -+ + +
pNEDD4 - .+ +
KPT-185 - - - +
i S e ks RNF146

- e . TP53

(C-caspas3/caspas3)

Relative protein expression
Relative protein expression
(AIF/Tubulin)

Cytoplasm

[W———— Tubulin

AngIl - + + + AngIl . + + + o am— == RNF146
-NEDD4  _ - 2
p + + p-NEDD4  _ - + + H Be TPS3
KPT-185 - - - + KPT-185 - - - + z

— — e 13



Figure 4
A B C

Vector p-NEDD4

CHX Oh 2h 4h 6h Oh 2h 4h 6h

Vector p-NEDD4
#1 # o #l #2

-e- Vector
-a- p-NEDD4

s

XPO1 ‘

Relative protein level of XPO1

8
Times (h)
K63-Ub K48-Ub E
Vector p-NEDD4 Vector p-NEDD4
IP:XPO1 IP:RanBP3
IgG  Vector p-NEDD4 IgG Vector p-NEDD4
—
g
% RanBP3 XPO1
- a
| — C—
2 2




Figure 5
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Figure 6
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Highlights
HECT E3 ligase NEDD4 interacts directly with XPO1 and mediates XPO1 for
K 63-linked ubiquitination
Overexpression of NEDDA4 protects HUV ECs against Ang |l-induced cell death
The protective effect of NEDD4 is dependent on X PO1-mediated nuclear export
K63-linked ubiquitination of XPO1 enhances its interaction with RanBP3



