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ABSTRACT 

The kinome-wide virtual profiling of small molecules with high-dimensional structure-

activity data is a challenging task in drug discovery. Here, we present a virtual profiling 

model against a panel of 391 kinases based on large-scale bioactivity data and the 

multitask deep neural network algorithm. The obtained model yields excellent internal 

prediction capability with an auROC of 0.90, and consistently outperforms conventional 

single-task models on external tests, especially for kinases with insufficient activity data. 
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3

Moreover, more rigorous experimental validations including 1,410 kinase-compound 

pairs showed a high-quality average auROC of 0.75 and confirmed many novel predicted 

“off-target” activities. Given the verified generalizability, the model was further applied to 

various scenarios for depicting the kinome-wide selectivity, and the association with 

certain diseases. Overall, the computational model enables us to create a comprehensive 

kinome interaction network for designing novel chemical modulators or drug repositioning 

and is of practical value for exploring previously less studied kinases.

Introduction

The protein kinase family is one of the largest enzyme families. The human kinome 

comprises more than 500 kinases, constituting approximately 1.7% of all human genes1. 

Dysregulation of protein kinases plays causal roles in numerous human diseases, 

including cancers, inflammatory diseases, central nervous system disorders, 

cardiovascular diseases, and complications of diabetes2. By December 2018, 48 small 

kinase inhibitors were approved by the U.S. FDA, approximately half of which were 

approved in the last five years. However, despite the success of the kinase inhibitor drugs, 
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4

some deficiencies cannot be ignored. On the one hand, only a small number of human 

kinases (approximately 80) have been successfully targeted by these drugs, and many 

kinase inhibitor drugs are used against the same targets in oncology3. More than 100 

kinases (~25%) have completely unknown functions, and approximately 50% are largely 

uncharacterized, with little indication of how these targets influence the major signalling 

pathways4. Therefore, there are still many “untargeted” kinases and relevant diseases 

that require further investigation. On the other hand, many kinase inhibitor drugs have 

promiscuous profiles due to the conservation of the ATP binding site in the human 

kinome. As demonstrated by a recent study, even for kinase drugs in clinical use, the 

target space or bioactivities are still surprisingly poorly characterized5. Therefore, 

thorough characterization of the kinase spectrum of inhibitor drugs is important to explain 

undesired adverse effects and to enable drug repurposing, and the discovery of potent 

inhibitors with reasonable selectivity and polypharmacological profiles has become a very 

promising but challenging direction in novel drug development process6.

A step towards accelerating the kinase drug discovery process is to quickly identify 

whether a compound interacts with a kinase. Recent advances in high-throughput 
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5

screening technologies have enabled the bioactivity profiling of hundreds of compounds 

against a panel of protein kinases7, but the high cost and laborious process of chemical 

synthesis and biological characterization hinder its application in extensive chemical 

spaces. Many in silico modelling approaches have been developed to predict kinase 

inhibitory activity for large-scale compound libraries. Compared to traditional drug design 

methods (e.g., docking and standard QSAR), machine learning-based models such as 

naïve Bayesian (NB)8, k-nearest neighbours (KNN) 9-10, random forest (RF)11-13, support 

vector machine (SVM)8-10, 14 and deep neural network (DNN)15 have been established to 

predict a wider range of biological activities for a compound by employing high-

dimensional datasets. Generally, these models have been separately trained with 

individual data sets relating to different tasks and often are more flexible and have high 

variance. For example, given a learning task with insufficient data, these models always 

show unsatisfactory predictive power and a tendency towards overfitting. In fact, standard 

machine learning algorithms are capable of learning meaningful chemical information 

from hundreds of compounds and become even more effective given additional data16. 

Page 6 of 74

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

However, even a set of one hundred compounds is often an unavailable resource for 

building a machine learning model for some less studied or uncharacterized kinases.

In this study, we established a multitask deep neural network (MTDNN) classification 

model to predict the bioactivities of small molecules at a kinome-wide level, including 

kinases with both large and small amounts of available data are included. Previous 

studies of MTDNN applied to drug discovery suggested that MTDNN can obtain 

significantly better predictive accuracies than single-task methods for problems with 

multiple related tasks17-21 due to the generalization ability and transfer learning effect of 

DNNs. These features make MTDNN an appropriate solution for bioactivity prediction 

against a spectrum of kinases with high homology to each other. Rodríguez-Perez et al. 

have showed that MTDNN resulted in a performance boost for other single-task and multi-

task machine learning models in the prediction of highly potent inhibitors of 103 human 

kinases22. These results are illuminating, but a wider kinase panel and more rigorous 

experimental validations are in high demand. Here, the MTDNN model has been trained 

with over 140,000 bioactivity data points for 391 kinases, where one task corresponds to 

bioactivity prediction against a specific type of kinase. Extensive computational (on four 
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7

external datasets with significant sizes) and experimental validations (on 5 compounds 

against 282 kinases involving 1410 kinase-compound pairs) have been performed, and 

the MTDNN model consistently outperforms conventional single-task models in terms of 

auROC. In particular, it facilitates network information sharing across different kinases 

and compensates for the limited bioactivity data associated with any specific kinase, 

which enables reliable and comprehensive profiling of kinome-wide activity and 

reasonable estimations of overall and group-specific selectivity. We envisage that the 

MTDNN model could be used to quickly establish a comprehensive kinome interaction 

network for designing novel chemical modulators and for exploring previously less studied 

or untargeted kinases.

RESULTS AND DISCUSSION

Optimized MTDNN model

The predictive performance on the testing dataset of all the MTDNN models is 

summarized in Figure 1. The following points can be noted: (1) The influence of batch 

size in our search space is slight. (2) Models with very simple architecture show moderate 

performance, whereas those with complex structures are very sensitive to different 
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8

learning rates. In general, a more complex architecture means a more heavily 

parametrized model with a higher capacity, and such a model operates in a space with a 

larger dimension and has a more complex error surface than a thinner one. Thus, in such 

a complex error regime, the convergence process may either easily deviate from 

meaningful locations with a large learning rate or become trapped in local minima with a 

smaller learning rate. (3) Models with less favourable learning rate values always yield 

weak predictive power. A large learning rate might cause drastic updates leading to 

divergent behaviours, while a model with a small learning rate might require too many 

updates to achieve convergence. Here, models with moderate depth and fine-tuned 

learning rates can show satisfactory performance on the testing dataset, with auROCs 

higher than 0.89. With the layer size of [1024,391], the learning rate of 5×10-5 and the 

batch size of 128, on our internal test set, the model with the best performance has an 

auROC over 0.90, an F1-score of 0.74 and a BA of 0.83. This model was chosen for 

further external evaluations.
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9

Figure 1. Model performances with different hyperparameters. The heat maps are 

coloured according to the auROC of the testing dataset, which is directly marked in each 

block. A darker colour corresponds to better performance.

Evaluation on external datasets

Despite the satisfactory predictive power of the internal testing dataset, it is valuable to 

investigate model performance on datasets that have different distributions from that of 

the modelled dataset to evaluate the generalization capability of the neural network. Thus, 

we prepared four different external datasets with diverse experimental methods and value 

types to evaluate the model.

The first dataset was published by Davis et al.23, who tested 72 known inhibitors against 

a panel of 442 kinase assays, resulting in a total of 9,424 Kd values for all potential protein-
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10

ligand pairs. The second dataset was provided by Anastassiadis et al.24 and reported the 

inhibitory percentage inhibition values of 178 compounds tested against 300 kinases at 

0.5 μM. The other two datasets are PKIS125 and PKIS226, also referred to as Published 

Kinase Inhibitor Set 1 and 2, respectively. PKIS1 is a collection of 367 kinase inhibitors 

representing 31 diverse chemotypes, and their inhibitory percentage values evaluated 

against 232 kinases at 1 μM were collected. PKIS2 is composed of 645 small-molecule 

inhibitors representing 86 diverse chemotypes, which were all profiled at a concentration 

of 1 μM against a broader panel of 392 kinases. For the dataset of Anastassiadis et al., 

the activity threshold is set by converting the single point activity with the equation 

previously defined27. For datasets PKIS1 and PKIS2, an inhibition rate over 50% at 1 µM 

was defined as signifying activity28. Note that all compound-kinase pairs included in our 

training dataset were removed from these external datasets before further evaluation.

As summarized in Table 1, the classification performances on these external datasets 

are lower than those from the testing dataset. One of the potential reasons for this 

performance degradation could be the chemical distribution deviations. We first 

investigated the performance for the compounds dissimilar to the training samples by a 
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11

5-fold cluster cross validation29 (Table 1). Clearly, the predictive performance appreciably 

decreased. To provide an overview of the different distributions between the training 

dataset and four external datasets, we used t-SNE30 to visualize high-dimensional feature 

vectors by projecting each sample into  three-dimensional space. As shown in Figure 2, 

the compounds in the training set were compared with the samples in each external 

dataset. The Davis set is relatively small, and all of the samples are distributed within the 

chemical space of the training dataset. For the Anastassiadis set and PKIS1, the chemical 

space of most of the samples overlaps with that of the training dataset. In contrast, for 

PKIS2, a number of samples are scattered outside the training set space, suggesting a 

distinct data distribution. As a result, MTDNN achieves the worst performance on PKIS2 

of which the chemical space shows apparent deviation from the training set. 
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12

Figure 2. Visualizing datasets using t-SNE. The ECFP4 values of the compounds were 

used as input. The distribution of compounds from the training dataset (grey scatters) is 

compared to that from (A) the Davis dataset, (B) the Anastassiadis dataset, (C) PKIS1 

and (D) PKIS2 (blue scatters).

One the other hand, the concordance of data from different sources could also limits 

the predictive performance. As highlighted by Sutherland et al., there is only modest 

concordance between assay panels from different sources, including the Davis set, the 

Anastassiadis set and part of our training set, i.e., the Metz set27. The discrepancies 
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between assays will certainly affect the predictive performance of the model on these 

external datasets, and it is therefore of interest to quantitatively analyse the data 

consistency between our training set and different external data sources. Towards this 

aim, the removed overlapping data between the training and external sources was used 

to perform diagnostic tests with auROCs, where a higher auROC value suggests a more 

consistent result between the different data sources. Specifically, given a molecule with 

multiple experimental data points relating to the same target, a TP is counted when both 

values in the training set and external sources are “active”. The auROCs of the Davis set, 

the Anastassiadis set, PKIS1 and PKIS2, with respect to our training set are 0.91, 0.82, 

0.84 and 0.86, respectively. These results suggest that, despite the uncertainty in different 

sources and forms of activity measurements, significant consistency can be observed 

between our training and external data. Among them, the Davis set with the equilibrium 

dissociation constant data shares the highest concordance with our training data. The 

Anastassiadis set has the lowest concordance with the training set with an auROC of 

0.82, and the MTDNN yielded a relatively low auROC of 0.72 even though it shows a 

similar distribution of chemical space to that of the training set.
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Overall, the MTDNN still shows impressive performance on these external datasets. 

We supposed that by expanding the scale and increasing the diversity of the chemotypes 

of the training dataset, the generalization capability of the model could be further 

improved. To verify this point, with a series of increasing scales of modelling data, we 

built two series of models using random split and 5-fold cluster cross validation, 

respectively. The size of the training dataset was increased from 500 compounds to 

25,000 compounds in increments of 2,500 compounds. As shown in Figure 3, for the 

random split validation, there is a continuous uptrend of the auROC curve due to the rising 

probability of finding similar compounds in the training set. While for the cluster cross 

validation, auROC curve stops to increase after modelling compounds reach 5,500. 

Nonetheless, the performances of cluster cross validation still demonstrated that the 

model is of decent predictive power for compounds with unseen structures. Moreover, we 

may find that the auROCs for external datasets of both series of models rise steadily with 

the increasing size of training dataset, which supports the argument that the expansion 

of the chemical space of training set will improve model generalization capability.
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Table 1. Model performance on internal testing, cluster-cross-validation, and external 

validations.

Testing 
dataset

Cluster-
cross-
validation

Davis
Anastassiadi
s

PKIS1 PKIS2

auROC 0.90 0.82±0.02 0.78 0.72 0.79 0.69
Recall 0.78 0.63±0.05 0.58 0.44 0.62 0.43
Precision 0.70 0.66±0.09 0.39 0.38 0.15 0.18
F1-score 0.74 0.64±0.07 0.47 0.41 0.24 0.26
BA 0.83 0.75±0.02 0.71 0.66 0.72 0.64

Figure 3. The auROC on internal validation and external testing datasets of models with 

increasing numbers of compounds in the training dataset. (A) Random split validation. (B) 

Five-fold cluster-cross-validation.

Comparison with previously reported models
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In recent years, several models have been proposed for predicting the kinome-wide 

polypharmacological effect of small molecules 8-13, 31-32. Niijima et al. developed a 

deconvolution approach to dissecting the Kinase SARfari database by which 

kinase−inhibitor pairs are represented by residues and fragments and built kinome-wide 

activity classification models with dual-component naïve Bayes (DCNB) and dual-

component SVMs (DCSVMs)8. DCSVM achieved good performance on an internal 

validation set, showing an unbalanced accuracy over 0.85, but it did not achieve 

consistently good performance on external sets. Merget et al. reported ligand-based 

activity classification models for over 280 kinases by RF methods, based on an extensive 

dataset combining both proprietary and open bioactivity data12. The models yielded good 

prediction results with an average auROC of 0.76, and high quality (auROC > 0.7) was 

achieved for over 200 kinases. Janssen et al. presented Drug Discovery Maps (DDM), a 

t-SNE-based model that can map chemical and target space and predict the activities of 

novel kinase inhibitors across the kinome32. Using DDM, they discovered new inhibitors 

for FMS-like tyrosine kinase 3 (FLT3).
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To verify the generalizability and transfer learning effect of our MTDNN model, a parallel 

comparison with previously reported models was carried out. Here, we chose the method 

of Merget et al. as a reference because it requires the same form of input and because 

its source code for deriving prediction models is available. Based on the same sets of training data 

used for MTDNN, we built a total of 391 single-task random forest models (RFs) with their 

provided code. First, we evaluated the RFs on our internal testing dataset, among which 

226 kinases had auROCs higher than 0.7 and 134 kinases had auROCs higher than 0.8. 

These results agree well with the high-quality performance (i.e., auROC> 0.7 was 

achieved for ~200 kinases, of which 118 prediction models had an auROC ≥ 0.8) reported 

by Merget et al., confirming that these RFs are correctly established. In comparison with 

these high-quality RFs, we may notice that MTDNN further improved the predictive 

capability. As shown in Figure 4A, the MTDNN showed consistently higher average 

auROC values than those of the RFs on all four external datasets and achieved more 

high-quality (auROC>0.7) predictions than RFs.

For all individual tasks, we further investigated the relation between the size of the 

training datasets and their auROCs on the external datasets (Table S2). As shown in 
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Figure 4B, MTDNN demonstrated decent performance even when the number of training 

bioactivity data points for the kinases was quite small. In contrast, for these small-data 

tasks, RF can give the results only barely better than random prediction (auROC of ~0.5). 

Given a kinase with fewer than 100 training data points, the performance of MTDNN 

significantly exceeded that of RF. As the amount of training data increases, the gap 

between MTDNN and RF gradually narrows but remains. These results corroborate the 

transfer learning effect of MTDNN, which can take advantage of tasks with larger amounts 

of training data to improve the predictive performance of tasks with smaller training data. 

Obviously, the predictive capability for kinases without sufficient training data is an 

essential feature of our model, resulting in its practical value for developing a selective 

inhibitor for the previously less studied or untargeted kinases.
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Figure 4. Prediction performance comparison between MTDNN and RF of Merget et al. 

(A) Violin plots of auROCs for kinases, grouped by underlying external datasets and 

coloured by method (RF in blue and MTDNN in red). The white dots are the average 
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auROCs. The upper and lower endpoints of the black segments are the first and the third 

quartile, respectively. The p-values of the t-tests are shown above the violin. (B) Bar plots 

of model performance on tasks with different amounts of bioactivity data in external 

datasets. A bar indicates the average auROC of tasks with the number of bioactivity data 

points within the underlying range. ‘*’: 0.01<p<0.05; ‘**’: 0.001<p<0.01; ‘***’: p<0.001.

Experimental validation

In addition to retrospective model validation with previously reported data, we also 

performed more rigorous prospective experimental validation to investigate the practical 

benefits of the model for drug discovery or repurposing applications. Five kinase inhibitors 

with unknown activity profiling data and diverse structures were used for this validation, 

including the clinically approved drugs BAY73-4506 and K-115 and the investigational 

inhibitors NVP-BHG712, E31, and DC381016 (Table 2). BAY73-4506, K-115 and NVP-

BHG712 were purchased from Selleck, E31 and DC381016 were provided by our co-

workers33-34. These five kinase inhibitors have different primary targets under 

investigation, while their complete kinase spectra have not been reported by the time we 
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performed the experimental validation. All commercially available compounds were used 

without any further purification. Reversed-phase HPLC analyses were performed on an 

Agilent 1100 HPLC system with a DAD detector (area normalization). Purity of all 

compounds for biological evaluation was confirmed by HPLC to be >95%.

Figure 5 also summarizes the predicted kinase activity profile of the five molecules. To 

validate the prediction, the commercial KinaseProfiler Service (Eurofins Scientific, Inc.) 

was utilized to evaluate the experimental activity of each molecule against a panel of 405 

kinases, among which 282 fall in our MTDNN capacity panel (391 kinases). Filter-binding 

radiometric kinase activity assays were performed at a concentration of 1 μM, with the 

active threshold defined as 50% (Table S3). It is gratifying to note that, for the 1,410 

kinase-compound pairs in our MTDNN capacity panel, the model produced high-quality 

predictions that were generally in agreement with the experimental data with an average 

auROC of 0.75 (Table 2). Moreover, in addition to the activities reported previously, many 

novel “off-target” activities have been successfully predicted by the model and confirmed 

by subsequent experiments at lower compound concentrations.
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BAY73-4506 (Regorafenib) is an orally available antineoplastic agent launched for the 

treatment of colorectal cancer35, gastrointestinal stromal tumour (GIST)36 and 

hepatocellular carcinoma37. On the one hand, many previously published inhibitory 

activities, e.g., its known potent inhibitory effects against VEGFR1, VEGFR2, VEGFR3, 

PDGFRβ, Kit, RET and c-Raf38, have been accurately identified by our model. On the 

other hand, there are inhibitory activities for several other kinases that have not been 

reported (Table 3). Examples include the following: (1) Targeting p38α, ZAK, and TAO1, 

which are involved in p38 MAPK signal transduction pathways. As a member of the p38 

MAPK family that plays a critical role in cancer cell biology, p38α is an investigational 

target for the treatment of several types of cancer, including colorectal cancer and 

cardiovascular disorders. ZAK and TAO1 have been shown to trigger p38 MAPK 

activation39. (2) Targeting TrkB and TrkC, which are important therapeutic targets for 

neuroblastoma, non-small cell lung cancer (NSCLC) and colorectal cancer, for patients 

harbouring alterations in TRK expression or activity40. (3) Targeting DDR1, which has 

recently been identified as a new therapeutic target for colorectal cancer41 and could also 

be a biomarker of epithelial ovarian cancer and a prognostic marker for NSCLC patients42. 
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(4) Targeting LOK, which is a previously untargeted kinase with little indication of its 

function25. Overall, the successful prediction of kinase “off-targets” of BAY73-4506 

provides additional explanations for its anticancer mechanisms of action and informs the 

search for new clinical applications. Moreover, identifying BAY73-4506 as a potent 

inhibitor of LOK may help to accelerate the related functional study of this untargeted 

kinase.

K-115 is a Rho-kinase inhibitor approved and launched in Japan as an ophthalmic 

solution for the treatment of glaucoma and ocular hypertension in 201443. Several “off-

target” inhibitory activities against AGC kinases, including PKG and PKC, that could 

contribute to clinical cancer therapy were revealed by the MTDNN model44-46. NVP-

BHG712 is a specific EphB4 receptor inhibitor that blocks vascular endothelial growth 

factor-mediated angiogenesis in vivo47. In addition to c-Src, NVP-BHG712 was predicted 

to inhibit other Src family kinases (SFKs), including Lyn, Hck, Lck and Yes. Thus, NVP-

BHG712 could potentially inhibit the proliferation and survival of cancer cells, especially 

pancreatic cancer and non-small cell lung cancer48-49. E3134 was predicted to inhibit 

additional SFKs (Src, Yes, Blk, Lyn, Fgr, Lck), but the subsequent experiment excluded 
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the activity against Src. This false positive prediction may indicate molecular structural 

similarity with known Src inhibitors, which suggested that a relatively minor structural 

modification could improve the inhibitory activity of E31 against Src and thus increase its 

therapeutic potential. For DC381016, a compound designed and synthesized for c-Met 

inhibition33, the MTDNN model also revealed inhibitory effects against several important 

or novel therapeutic kinases, including Abl, Trk, DDR1 and ACK150. In summary, based 

on the impressive experimental verification results obtained here, in addition to its high 

throughput, we envisage that the MTDNN model can be used as a practical tool for large-

scale target identification and drug redirection.

Table 2. Details for experimental compounds.

Model performance

Compounds
Reported 
primary 
targets auROC

Recal
l

Preci
sion

F1-
score

BA

VEGFR1, 
VEGFR2, 
VEGFR3, 
PDGFRβ, 
Kit, RET, 
c-Raf38

0.74 0.39 0.76 0.52 0.67

N
H

O

O

N
H

O

N
H

Cl

F
F

F

F

N

BAY73-4506
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ROCK1, 
ROCK251-

52

0.76 0.52 0.32 0.40 0.68

EphB4, c-
Raf, c-
Src, c-
Abl53

0.86 0.69 0.41 0.51 0.80

RET, 
EGFR, 
ERBB2, 
ERBB434

0.71 0.42 0.31 0.36 0.65

MET33 0.69 0.45 0.50 0.80 0.66

Average 0.75 0.49 0.46 0.45 0.69

NH

N

SO O

N

F

K-115

E31

O

N
H

N
N
H

NH

F

Cl

N

N O

O

O

N
H

O

O

N
H

N

N

Cl

F

Cl

DC381016

NH

N

N

N
N

N

O

N
HF

F

F

NVP-BHG712
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Table 3. The predicted active probability and experimental %activity of BAY73-4506 

against kinases.

%activityUniProt ID Kinase Family Predicted 
probability at 1 μMa at 0.1 μMb at 0.01 μMc

P10721 Kitd TK 0.7795 -1
P35916 VEGFR3 TK 0.9825 0 1 38
P07949 Ret TK 0.9928 0 6 50
P17948 VEGFR1 TK 0.9885 3 3 43
P04049 Raf1 TKL 0.8489 8 57 93
P35968 VEGFR2 TK 0.9950 17 19 68
P09619 PDGFRβ TK 0.9713 55
Q16539 p38α CMGC 0.5766 -6 52 100
P00520 Abl(m) TK 0.9867 -1 -7 22
Q9NYL2 ZAK TKL 0.9506 -1 2 27
Q8NE63 HIPK4 CMGC 0.9961 -1 3 31
Q9Y4K4 MAP4K5 STE 0.5848 0 37 104
P16277 Blk(m) TK 0.5559 1 45 52
Q16620 TrkB TK 0.9862 1 53 100
Q16288 TrkC TK 0.9487 1 17 54
P07948 Lyn TK 0.9373 1 21 32
P42685 PTK5 TK 0.9961 3 18 64
P29322 EphA8

was 
performed

TK 0.9835 5 44 85
P29317 EphA2 TK 0.9902 5 58 90
P15056 B-Raf TKL 0.8673 8 66 101
P00519 Abl TK 0.9352 8 49 79
P04049 c-RAF TKL 0.8489 8 57 93
Q4JIM5 Arg(m) TK 0.5631 9 29 97
P07333 Fms TK 0.9437 10 36 73
Q08345 DDR1 TK 0.9612 11 43 92
Q9H422 HIPK3 CMGC 0.9742 12 68 103
Q9H2X6 HIPK2 CMGC 0.7037 13 61 96
O15146 MuSK TK 0.9955 21 92 89
P36888 Flt3 TK 0.9801 31
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O94804 LOK STE 0.9604 34
Q9HBH9 Mnk2 CAMK 0.8779 34
P16234 PDGFRα TK 0.9929 35
P23443 p70S6K AGC 0.6446 36
Q7L7X3 TAO1 STE 0.9578 42
P53667 LIMK1 TKL 0.8753 46
Q92772 CDKL2 CMGC 0.9881 47

a, b, c The %activities of a kinase at BAY73-4506 concentrations of 1 μM, 0.1 μM and 
0.01 μM. A null value indicates that the activity was not tested. d Kinases in bold type have 
been previously reported as targets of BAY73-4506.
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Figure 5. Kinome map of the predicted and experimental bioactivities. Kinases coloured in red 

are experimental %activity<50% at 1 μM or predicted active probability>0.5 (left). Bar plots of 

predicted and experimental group selectivity. When a group has an odds ratio significantly greater 

than 1, the bar is coloured red (right). ‘*’: 0.01<p<0.05; ‘**’: 0.001<p<0.01; ‘***’: p<0.001.

Selectivity
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Tracking the selectivity profile for the inhibitors is a particularly important step before 

large-scale biochemical assays for kinase drug discovery. It is of great interest to 

investigate whether the MTDNN model can provide reliable predictions of the selectivity. 

Here, we adopted a standard score54 to measure the model’s ability to rank compounds 

in terms of their overall selectivity, which is calculated as the number of kinase hits above 

or below a threshold value divided by the number of kinases tested. As an accepted 

quantitative measurement of selectivity, the standard score is simple but effective. The 

selectivity scores of the Davis dataset were calculated based on reported and predicted 

inhibitory activities, respectively. We set Kd=1 μM and predicted probability=50% as the 

activity threshold for reported and predicted inhibitory activities, respectively. The results 

show that the predicted selectivity scores have a significant rank correlation with the 

reported experimental kinase selectivity, with a Spearman correlation of 0.747 (Figure 6).
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Figure 6. Scatter plot of correlation between the experimental and predicted overall 

selectivity. The x-axis and y-axis for a point are the standard selectivity scores calculated 

from predicted active probabilities (>50% as active) and reported Kd values (>1 μM as 

active), respectively.

Moreover, we defined the odds ratio (OR)55 as a measure of group-specific selectivity, 

which reveals whether an inhibitor preferentially targets a specific kinase subfamily or a 

group of kinases of particular interest. For example, to calculate the strength of the 
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association between an inhibitor for the group of TK, the OR statistic can be calculated 

as:

OR = (NTP/NOP)/(NTN/NON)

where NTP refers to the number of positive interactions of the inhibitor within the TK family 

and NOP refers to the number of its positive interactions with kinases other than TK. 

Similarly, NTN and NON are defined as the number of negative interactions for TK and other 

kinases, respectively. If the OR is significantly greater than 1.0, the kinases inhibited by 

this inhibitor can be considered to be enriched in the TK group, indicating that the inhibitor 

is TK-selective. Figure 5 compares the ORs of the abovementioned 5 inhibitors for each 

of the major groups described by the kinome phylogenetic tree based on the activity 

spectrum predicted by the MTDNN. Clearly, the predicted group-specific selectivity 

revealed a high correlation with the experimental results. Even for molecules with 

relatively low predictive precision results, e.g., K-115, the ORs still provide a pronounced 

effect separating the kinase subfamily most associated with their primary studied targets.

In addition to subfamily selectivity, predicting disease-specific selectivity is a compelling 

application of the model in a clinical setting. Taking NSCLC as an example, which is 
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known to be associated with a variety of oncogenes encoding protein kinases, we defined 

a group of NSCLC-related kinases, including EGFR, ALK, ROS1, B-raf, Ret, ErbB2, Met, 

FGFR1, IGF1R and Src49, 56-60. A total of 48 FDA-approved small-molecule kinase inhibitors 

were collected for analysis of whether they can be used in NSCLC treatment or exhibit 

repositioning potential for such treatment based on the predicted group selectivity. As 

shown in Figure 7, some well-known NSCLC drugs, such as gefitinib, crizotinib, and 

erlotinib, are ranked high among all those drugs. Interestingly, the top ranked three drugs 

are not initially approved for NSCLC treatment, but all of them have been reported to 

exhibit monotherapy activities for NSCLC. Examples include the following: (1) Lapatinib 

is an ErbB2 and EGFR kinase inhibitor launched for the treatment of advanced or 

metastatic HER2 (ErbB2)-positive breast cancer61. A randomized phase II study has 

shown that although lapatinib monotherapy does not induce a significant number of 

tumour regressions in NSCLC, it showed equivalent progression-free survival as first-line 

chemotherapy in the 1,500 mg once daily group62. In addition, another study has 

demonstrated that lapatinib single treatment may be an effective option for the therapy of 

KRAS-mutated NSCLC that is resistant to erlotinib and gefitinib. (2) Ponatinib is a potent, 
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oral multi-targeted kinase inhibitor of Abl, PDGFRα, VEGFR2, FGFR1 and Src and has 

been approved for the treatment of patients with resistant or intolerant chronic myeloid 

leukaemia (CML)63. Recently, Ren et al. reported that ponatinib can be used as a 

treatment for established NSCLC cell lines with FGFR1 overexpression, resulting in 

marked cell growth inhibition64. (3) Bosutinib is a dual Src/Abl inhibitor for the treatment 

of CML. A phase I study of bosutinib has shown good tolerance and efficiency in NSCLC 

patients65. Also worth noting are vandetanib and ibrutinib, which have shown efficacy in 

patients with NSCLC harbouring RET rearrangement66 and NSCLC cell lines carrying 

EGFR mutations67, respectively. These results highlighted the practicality of our model in 

finding novel medical indications for pioneering drugs. With a clearer definition of 

therapeutic targets related to a certain disease, the capability of the MTDNN model to 

guide the development of drugs with precise multi-targeting selectivity can be envisaged.

In summary, the above analyses illustrated how MTDNN can be used to better 

understand the intra-family and inter-species selectivity of kinase inhibitors, which 

highlighted the significant value of the model in repositioning inhibitors for new kinase 

targets and exploring their unknown therapeutic potential. Moreover, MTDNN can also be 
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used to prioritize compounds on the basis of their overall selectivity or selectivity towards 

certain kinase subfamilies or diseases.

Figure 7. The odds ratio of 48 FDA-approved small-molecule kinase inhibitors for the 

group of NSCLC-related kinases. Red bars indicate the FDA-approved drugs for NSCLC. 

The bars with red stripes indicate that there have been reported evidence showing 

monotherapy efficacy against NSCLC for the drugs. Blue bars indicate that there have 

been reported evidence showing efficacy against NSCLC when combined with other 

drugs. The bars filled with blue stripes indicate drugs that, to the best of our knowledge, 
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have not been reported for treating NSCLC. ‘*’: 0.01<p<0.05; ‘**’: 0.001<p<0.01; ‘***’: 

p<0.001.

CONCLUSION

In this study, a virtual kinase chemogenomics model was developed for predicting the 

interaction profiles of kinase inhibitors against a panel of 391 kinases based on large-

scale bioactivity data and the MTDNN algorithm. As a result of the high relatedness 

among tasks (meaning widespread cross-reactivity of kinase inhibitors) and the transfer 

learning effect of MTDNN, the obtained model yields excellent prediction ability with an 

auROC of 0.90 on an internal testing dataset. On external datasets, the MTDNN model 

also shows impressive high-quality prediction results, despite the apparent deviation of 

chemical diversity distribution and the uncertainty in different data sources. The analysis 

revealed that the prediction results of the model could be further improved by expanding 

the scale and increasing the diversity of chemotypes in the training dataset. Compared 

with conventional single-task RF models, the model consistently shows higher auROCs 

on external datasets, especially for kinases with insufficient activity data. Moreover, 
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rigorous experimental validations were performed using compounds with diverse 

structures and unknown kinase activity profiles. The predicted spectrum shows significant 

agreement with experimental data, with a high-quality average auROC of 0.75, and many 

novel and therapeutic “off-target” activities have been successfully predicted by the model 

and confirmed by subsequent experiments. Based on the predicted kinase profile, the 

MTDNN model can also be used to depict the overall selectivity, the selectivity towards a 

subfamily of kinases, and the strength of association with certain diseases such as 

NSCLC. Overall, MTDNN enables us to create a comprehensive kinome interaction 

network for designing novel chemical modulators or drug repositioning and is of practical 

value for exploring previously less studied kinases.

EXPERIMENTAL SECTION

Datasets

The SARfari dataset and Metz dataset were merged into one set to generate the 

classification model. (1) The SARfari dataset refers to Kinase SARfari database 

(accessed Nov. 2017), an integrated chemogenomics workbench focused on kinases, 

which is composed of 54,189 compounds, 989 different kinase domains and 532,155 data 
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points in the form of IC50, Ki, Kd and other values. (2) The second dataset, the Metz 

dataset68, contains 1498 compounds with known structures, 173 human kinases and 

107,791 pKi data points. The inhibition activity in the merged dataset was converted to 

two classes: active (pKi/pKd/pIC50≥6) and inactive (pKi/pKd/pIC50＜6). After the deletion 

of mutant kinases and kinases without both active and inactive data points, the final 

dataset contains over 170,000 bioactivity data points composed of 391 kinases (Table 

S1) and ~32,000 compounds. The dataset is divided into 80% training and 20% testing 

datasets by random selection of compounds.

Cluster-cross-validation

In contrast to conventional k-fold cross-validation, which distributes the compounds 

randomly cross the folds, cluster-cross-validation29 identifies clusters of compounds in the 

modelling dataset and distributes them to folds to guarantee that compounds of the same 

cluster are present either only in the training or only in the test set.

We performed a 5-fold cluster-cross-validation using the hierarchical clustering single 

linkage algorithm. Single linkage represents a way to measure the dissimilarity between 
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groups of samples, in which the dissimilarity between group G and H is the smallest 

dissimilarity between two points in opposite groups:

.D(𝐺, 𝐻) =  min
𝑖 ∈ 𝐺, 𝑗 ∈ 𝐻

𝑑𝑖𝑗

With this property, single linkage cluster guarantees a minimum distance between 

compounds of all folds. The distances dij between compounds are measured by Jaccard 

distances (1 - Tanimoto similarity) on binarized ECFP4 compound representations. The 

minimum distance was set as 0.3. As a result, all compounds were clustered into 7,861 

clusters with 1,640 compounds for the largest cluster, which were then merged to 5 

different folds with about 6,400 compounds each.

Data balancing methods

For many datasets, the numbers of data points that belong to different classes are 

significantly different. The direct development of machine learning models using 

imbalanced datasets will fail to properly represent the distributive characteristics of the 

data and thus provide unfavourable accuracies across the categories. Instead of creating 

balanced data distributions through different sampling strategies, a cost-sensitive method 
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algorithm69 was applied in our model, in which the cross entropy is weighted based on 

the ratio of the numbers of different categories. To address the issue that there are far 

fewer active data points than inactive data points for many kinases, a penalty for 

misclassifying the active data points coefficient is introduced into the cost matrix. 

Accordingly, the cross entropy cost matrix of a data point for each kinase is converted to:

H(y,y') = { -Ni Na∑
m

ym
'log ym,  active data point

∑
m

ym
'log ym,  inactive data point

where  and  refer to the number of inactive data points and the number of active data N𝑖 N𝑎

points for a kinase, respectively; and  and  are the m-th class of true labels and 𝐲m′ 𝐲m

predicted outputs, respectively.

Multitask deep neural networks (MTDNNs)
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Figure 8. The architecture of a multitask deep neural network.

MTDNNs implement a straightforward solution to problems with multiple related labels. 

The shared hidden layers among all tasks can help the model learn a shared 

representation and thereby obtain relatively strong abstracting capabilities. Xu et al.17 

have demonstrated that an MTDNN can outperform single-task DNNs by utilizing the 

activities of molecules from the other tasks if the molecules from these tasks share similar 

structures and correlated activities (either positively or negatively correlated). Ma et al.70 

also proposed that an MTDNN can take advantage of the tasks with a larger training 

dataset to improve the predictive performance for the tasks with a smaller training set, 
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and the regularization effect produced by various task can help the MTDNN avoid 

potential overfitting. For kinases, as most inhibitors interact with the hinge motif in the 

highly conserved catalytic domain, the structures and activities of inhibitors of different 

kinases are substantially correlated. Thus, MTDNN provides an appropriate solution to 

kinome spectrum prediction, and the cross-reaction of inhibitors can boost the predictive 

performance for related kinases, especially for kinases with insufficient interaction data. 

In this study, we constructed a multitask classification DNN architecture with shared 

hidden layers among all tasks (Figure 8), where each task represents the activity to be 

predicted against a specific kinase. Extended connectivity fingerprints71 with a radius of 

2 continuous bonds (ECPF4) and a length of 1024 bits were adopted to featurize each 

molecule and fed into the input layer, which means that only two-dimensional chemical 

structural information is needed for making predictions based on the resulting model. The 

input was fed into one or more (L) fully connected hidden layers, and the rectified linear 

unit (ReLU)72 was chosen to perform the nonlinear transformation as follows between any 

two adjacent layers:

Xl + 1 =  σ(Wl
TXl + bl)
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where ,  and  represent the input, weight matrix and bias for the l-th layer, Xl Wl bl

respectively, and σ refers to the ReLU activation function. After L transformations, the L-

th layer is fed into a task-specific output layer, which consists of N softmax classifiers 

corresponding to N tasks with M labels (M=2 for binary classification) for predicting 

whether the input molecule is active or inactive towards a panel of N kinases. For the n-

th task, the probability that the input has a label of m is:

yn,m = e(wn,m
L )

T
XL + bn,m

L

∑M
m = 1e

(wn,m
L )

T
XL + bn,m

L

The cross entropy between true labels and predicted labels is calculated as the loss 

function, and thus, the weight matrix and bias vectors can be updated using the 

backpropagation algorithm:

H(Y,Y') = - ∑N

n = 1
p∑M

m = 1
yn,m

'log yn,m

where  refers to  or 1 according to the class of true labels as mentioned in the 𝑝 Ni Na

balancing method. The process of network training will repeat multiple epochs until the 

loss or other evaluation metrics converge.

Optimization of hyperparameters
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In general, DNN is sensitive to the choice of hyper parameters, and so is MTDNN. To 

optimize the generalizability of the model, we explored a number of different 

hyperparameters through a grid search73, including network architecture (layer size), 

learning rate, and batch size. An early stopping74 scheme was introduced during the 

process of training, where the auROC on the validation set was monitored every five 

epochs. The training is stopped once the auROC decreases four times continuously.

The layer size was varied from shallow (one hidden layer with 1000 nodes, i.e., [1000]) 

to moderate (two hidden layers of 1500 and 1000 nodes, i.e., [1500,1000]) and deep 

([2000,1000,500]). Additionally, as there are 1024 nodes in the input layer and 391 tasks 

in the output layer, we also tried another two-hidden-layer architecture [1024,391]. Since 

network architectures with different levels of complexity require different learning rates to 

achieve stable and improved performance, the Adaptive Moment Estimation (Adam) 

method75 was used for backpropagation with initial learning rates varying among 1×10-3, 

1×10-4, 5×10-5 and 1×10-5. Two sizes of mini batch (64 and 128) were also tested. To 

regularize our network, we used a dropout of 0.5 as well as a moderate L2 weight decay 
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of 0.002 for each hidden layer in every network. These two strategies have been proven 

to work in concert to avoid overfitting76.

MTDNN models are developed in Tensorflow (Version 1.6.0) and DeepChem (Version 

2.1.0). All trainings are performed on standard NVIDIA GPUs. The code is developed in 

Python 3.6.

Evaluation metrics

For model quality assessment, the auROC (area under the ROC curve), recall, 

precision, F1-score and BA (balanced accuracy) were evaluated (Table 4).

Table 4. Description of the evaluation metrics.

Evaluation metric Equationa

Recall  TP/(TP + FN)

Precision  TP/(TP + FP)

F1-score  2 ×
Precision × Recall
Precision + Recall

BA  (
TP

TP + FN +
TN

FP + TN)/2

aTP is the number of correctly predicted actives (true positives), TN is the number of 
correctly predicted inactives (true negatives), FP is the number of incorrectly identified 
actives (false positives) and FN is the number of incorrectly identified inactives (false 
negatives).
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NB, naïve Bayesian; KNN, k-nearest neighbours; RF, random forest; SVM, support 

vector machine; DNN, deep neural network; MTDNN, multitask deep neural network; 

auROC, area under receiver operating characteristic; BA, balanced accuracy; PKIS1, 

published kinase inhibitor set 1; PKIS2, published kinase inhibitor set 2; t-SNE, t-

distributed stochastic neighbor embedding; ECFP4, extended connectivity fingerprint 4; 

DCNB, dual-component naïve Bayes; DCSVM, dual-component SVM; DDM, drug 

discovery maps; FLT3, FMS-like tyrosine kinase 3; DAD, Diode-array detectors; VEGFR, 

vascular endothelial growth factor receptor; PDGFRβ, platelet-derived growth factor 

receptor β; Kit, mast/stem cell growth factor receptor Kit; RET, proto-oncogene tyrosine-

protein kinase receptor Ret; c-Raf, RAF proto-oncogene serine/threonine-protein kinase; 

p38α, mitogen-activated protein kinase 14; ZAK, sterile α motif and leucine zipper 

containing kinase AZK; TAO1, serine/threonine-protein kinase; MAPK, mitogen-

activated protein kinase; TrkB, BDNF/NT-3 growth factors receptor; TrkC, NT-3 growth 

factor receptor; NSCLC, non-small cell lung cancer; DDR1, epithelial discoidin domain-

containing receptor 1; LOK, serine/threonine-protein kinase 10; PKG, protein kinase G; 

PKC, protein kinase C; Src, proto-oncogene tyrosine-protein kinase Src; SFKs, Src family 
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kinases; Lyn, tyrosine-protein kinase Lyn; Hck, hematopoietic cell kinase; Lck, leukocyte 

c-terminal Src kinase; Yes, Tyrosine-protein kinase Yes; Blk, B lymphocyte kinase; Fgr, 

tyrosine-protein kinase Fgr; c-Met, hepatocyte growth factor receptor; Abl, abelson 

murine leukemia viral oncogene homologue 1; ACK1, activated CDC42 kinase 1; ROCK1, 

rho-associated protein kinase 1; ROCK2, rho-associated protein kinase 2; EGFR, 

epidermal growth factor receptor; ERBB2, receptor tyrosine-protein kinase erbB-2; 

ERBB4, receptor tyrosine-protein kinase erbB-4; OR, odds ratio; ALK, ALK tyrosine 

kinase receptor; ROS1, proto-oncogene tyrosine-protein kinase ROS; B-raf, 

serine/threonine-protein kinase B-raf; FGFR1, fibroblast growth factor receptor 1; IGF1R, 

insulin-like growth factor 1 receptor; KRAS, GTPase KRas; PDGFRα, platelet-derived 

growth factor receptor α; VEGFR2, vascular endothelial growth factor receptor 2; CML, 

chronic myeloid leukaemia; HER2, receptor tyrosine-protein kinase erbB-2; ReLU, 

rectified linear unit; GPU, graphics processing unit; TP, true positive; TN, true negative; 

FP, false positive; FN, false negative.
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