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Accumulation of advanced glycation end products (AGEs) in the articular cartilage is a major risk factor 
for osteoarthritis (OA). To determine the mechanistic basis of AGE action in OA, we treated human articular 
chondrocytes with AGEs, and found that they not only up-regulated the pro-inflammatory cytokines inter-
leukin (IL)-1β and tumor necrosis factor (TNF)-α, but also inhibited AMP-activated protein kinase (AMPK) 
phosphorylation and decreased sirtuin 1 (SIRT-1) levels in a concentration- and time-dependent manner. 
Pioglitazone, a peroxisome proliferator-activated receptor-γ (PPARγ) agonist restored the inhibited AMPK 
and SIRT-1 by AGEs. Pre-treatment of the cells with the agonists or antagonists of AMPK and SIRT-1 re-
spectively abolished and augmented the inflammatory state induced by AGEs. Furthermore, AMPK agonist 
also restored the levels of SIRT-1 in the AGE-stimulated chondrocytes. Our findings indicate AGEs induce 
an inflammatory response in human articular chondrocytes via the PPARγ/AMPK/SIRT-1 pathway, which is 
therefore a potential target in OA therapy.
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INTRODUCTION

Osteoarthritis (OA) is a degenerative disease of the articu-
lar joints that can lead to disability in the advanced stages. A 
major risk factor for OA is aging,1,2) specifically the accumula-
tion of advanced glycation end products (AGEs) with age.3) 
Since AGEs are degraded with routine protein recycling, they 
tend to accumulate in regions with low renewal rate, such as 
the articular cartilage.4,5) AGEs cause degeneration of the ar-
ticular cartilage by triggering autophagy6) and apoptosis7) in 
the chondrocytes, and by increasing matrix metalloproteinase 
(MMP) production,8) which eventually lead to arthritic symp-
toms. Recent studies show that accumulation of AGEs is the 
pathological basis of OA.9)

The relationship between inflammation and OA has been 
well established,10) and the pro-inflammatory cytokines inter-
leukin (IL)-1β and tumor necrosis factor (TNF)-α are directly 
linked to the progression of OA.10) IL-1β and TNF-α levels 
were significantly elevated in the superficial zone of grade 2 
and grade 3 arthritic cartilage, but undetectable in the normal 
cartilage specimens.11) These cytokines inhibit the synthesis 
of extracellular matrix (ECM) components by blocking the 
anabolic pathways in chondrocytes.12,13) They not only de-
crease proteoglycan and type II collagen synthesis14,15) but also 
stimulate the chondrocytes to release MMP-1 and MMP-13, 
which further degrade the ECM.16–18) Recent studies have 
linked the AMP-activated protein kinase (AMPK) and sirtuin 
1 (SIRT-1) with OA. Both are crucial mediators of metabolic 
pathways.19,20) AMPK is an conserved serine/threonine kinase 
which regulates cellular energy homeostasis, and is implicated 
in multiple age-related diseases.21–23) SIRT-1, a member of the 
Sirtuin family, is downstream of AMPK and deacetylates pro-
teins in response to changes in the nicotinamide adenine dinu-

cleotide+/reduced nicotinamide adenine dinucleotide (NAD+/
NADH) ratio.24) AMPK and SIRT-1 levels are significantly 
lower in the osteoarthritic human and murine knee chondro-
cytes and cartilage, as well as in aged mouse knee cartilage.25) 
In addition, chondrocytes deficient in AMPK and SIRT-1 are 
known to accelerate osteoarthritic progression.26) On the other 
hand, activation of AMPK and SIRT-1 reverses homocysteine-
induced oxidative stress in human chondrocytes.27)

Peroxisome proliferator-activated receptor-γ (PPARγ) is a 
nuclear receptor that functions as a regulator of catabolism 
and inflammatory response.28,29) It is down-regulated in OA 
cartilage,30) and knockout of PPARγ leads to the development 
of OA, suggesting it is risk factor for OA.31) Our previous 
research revealed that agonists of PPARγ had a protective 
effect on articular cartilage in animal models.32) Furthermore, 
our previous results indicated AMPK and SIRT1 could be 
regulated by PPARγ, which was consistent with previous re-
ports, Shen et al. and Chiang et al. reported that the inhibited 
AMPK and SIRT-1 could be up-regulated by PPARγ agonist in 
ethanol-fed mice and TNF-α-treated human neural stem cells 
(hNSCs).33,34) Zhang et al. reported that activation of PPARγ 
has been shown to induce phosphorylation of AMPK and de-
crease inacticvation of SIRT-1 in the renal tissue of C57BL/6 
mice.35)

Pioglitazone, an anti-diabetic thiazolidinedione, increases 
insulin sensitivity and lowers blood sugar by binding to 
PPARγ. In our previous study, we found that pioglitazone re-
duced the AGEs-triggered high levels of IL-1β and TNF-α in 
chondrocytes in a concentration-dependent manner.36) Based 
on these findings, we hypothesized that AGEs increase the 
levels of pro-inflammatory factors in the cartilage chondro-
cytes by inhibiting PPARγ/AMPK/SIRT-1.
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MATERIALS AND METHODS

Chemicals  Pioglitazone (a selective PPARγ agonist), 
A-769662 (a selective AMPK agonist), Dorsomorphin 2HCl (a 
selective AMPK inhibitor), SRT1720 (a selective SIRT-1 ago-
nist) and EX 527 (a selective SIRT-1 inhibitor) were purchased 
from Selleck Chemicals (U.S.A.). Monoclonal antibodies 
specific for TNF-α, p-AMPK, AMPK, SIRT-1 and β-actin 
were purchased from CST Inc (U.S.) and rabbit polyclonal 
antibody against IL-1β from Bioss. AGE-BSA (a complex of 
N3-carboxymethyllysine (CML), pentosidine and other AGEs) 
was supplied by BioVision, Inc. (U.S.A.).

Chondrocytes  Human articular chondrocytes were pur-

chased from CHI-Scientific, and cells of generation ≤4 were 
used for the experiments. Chondrocytes were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM)/F12 supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin at 37°C under 5% CO2. The cells were stimu-
lated with varying concentrations (0–100 µg/mL) of AGEs for 
0, 6, 12, 18 and 24 h, and based on the experiment, pre-treated 
for 1h with Pioglitazone, A-769662, Dorsomorphin 2HCl, 
SRT1720 or EX 527.

Immunoblotting  The chondrocytes were lysed, and the 
lysates were boiled at 100°C for 5 min with the sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
loading buffer to denature the proteins. Equal quantities 

Fig. 1. Induction of Inflammatory Factors by AGEs in Human Articular Chondrocytes
(A, C and E). Cells were stimulated with varying doses of AGEs (0 to 100 µg/mL) for 24 h. Immunoblots and RT-PCR results showing levels of IL-1β and TNF-α pro-

teins (A) and mRNA (E) levels, with the IL-1β/β-actin and TNF-α/β-actin ratios (C). * p < 0.05 compared with control group (AGEs 0 µg/mL). (B, D and F). Cells were 
stimulated with 100 µg/mL AGEs for varying durations. Immunoblots and RT-PCR results showing levels of IL-1β and TNF-α proteins (B) and mRNA (F) levels, with the 
IL-1β/β-actin and TNF-α/β-actin ratios (D). * p < 0.05 compared with control group (0h). The values are represented as mean ± standard deviation (S.D.) from three differ-
ent experiments. β-Actin was used as a loading control.

Table 1. Primers for Real-Time Fluorescent Quantitative PCR

Genes Forward primer (5′→3′) Reverse primer (5′→3′)

TNF-α GTAGCCCATGTTGTAGCAAACC CTGATGGTGTGGGTGAGGAG
IL-1β AGGATATGGAGCAACAAGTGGT AACACGCAGGACAGGTACAG
β-actin TCATGAAGTGTGACGTGGACATC CAGGAGGAGCAATGATCTTGATCT
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of protein per sample were resolved on 10% SDS gels and 
electro-transferred to polyvinylidene difluoride membranes 
(Millipore, U.S.A.). The latter were blocked with 5% BSA, 
and then incubated overnight with primary antibodies at 4°C, 
followed by horseradish peroxidase (HRP)-conjugated second-
ary goat anti-rabbit antibody. The signals were amplified by 
enhanced chemiluminescence (ECL) reagent and captured by 
Tanon 5500.

Quantitative RT-PCR  RNA was extracted using TRIzol 
according to the manufacturer’s instructions, and 1 µg RNA 
per sample was reversed transcribed into cDNA using Hiscript 
II Reverse transcription kit. The PCR reaction mix was pre-
pared using SYBR® Green master mix, 50 µL template DNA, 
and 200 nM each of the sense and antisense primers (shown in 
Table 1). Real-time PCR was conducted on a thermal cycler 
(Bio-Rad Laboratories Inc., U.S.A.) with the following condi-
tions: denaturation at 95°C for 5 min, and 40 cycles of 95°C 
for 10 s and 60°C for 30 s. The relative mRNA expression was 
calculated by the ΔΔCT method, and the fold changes were 
compared to the control and measured as 2(−ΔΔCT).

Statistical Analysis  Data were reported as the mean with 
a 95% confidence interval (CI). Variances between groups 
were assessed by one-way ANOVA and Newman–Keuls mul-
tiple comparison test. Similarities between two groups were 
assessed using a Student’s t-test. A p-value <0.05 was consid-
ered statistically significant.

RESULTS

AGEs Induces Inflammatory Factors and Inhibits 
AMPK and SIRT-1 in the Human Articular Chondro-
cytes  Human articular chondrocytes were stimulated in 
vitro with varying doses of AGEs (0–100 µg/mL) for 24 h or 

with 100 µg/mL AGEs for 0, 6, 12, 18 and 24 h. The AGEs 
significantly increased IL-1β and TNF-α protein (Figs. 1A–D) 
and mRNA (Figs. 1E, F) levels in a dose- and time-dependent 
manner. Based on the initial results, we used treated cells with 
100 µg/mL AGEs for 24 h for the subsequent experiments. 
Since AMPK and SIRT-1 are involved in the inflammatory re-
sponse in chondrocytes, we also analysed the effects of AGEs 
on their expression and activity levels. AGEs decreased the 
levels of p-AMPK and SIRT-1 in the chondrocytes in a con-
centration- and time-dependent manner (Fig. 2).

AGE-Induced Inflammation Is Regulated by AMPK and 
SIRT-1  To determine a potential mechanistic role of AMPK 
and/or SIRT-1 on the pro-inflammatory effects of AGEs, we 
treated the chondrocytes with the respective agonists and 
antagonists prior to AGE stimulation. As shown in Fig. 3 and 
Fig. 4, pre-treatment with either AMPK or SIRT-1 agonist 
abolished the AGE-induced increase in the levels of pro-
inflammatory cytokines, whereas their respective antagonists 
further augmented the effect of AGEs. Taken together, AMPK 
and SIRT-1 inhibit AGE-mediated inflammation in human 
chondrocytes.

AMPK Blocks AGE-Mediated Inhibition of SIRT-1  To 
determine the relationship between AMPK and SIRT-1 in 
AGE-stimulated chondrocytes, we pre-treated the cells with 
different concentrations of the AMPK agonist. Cells pre-treat-
ed with AMPK agonist showed high levels of SIRT-1 even in 
the presence of AGEs, indicating that AMPK restored AGE-
induced down-regulation of SIRT-1 (Fig. 5).

Pioglitazone Restores the Activity of AMPK and SIRT-1 
Inhibited by AGEs  To determine whether PPARγ affect 
the activity of AMPK and SIRT-1, Pioglitazone was used as 
PPARγ agonist in our experiments. We found that both of 
AMPK and SIRT-1 inhibited by AGEs were restored by Pio-

Fig. 2. Effect of AGEs on AMPK and SIRT-1 Levels in Human Articular Chondrocytes
(A, C). Cells were stimulated with varying doses of AGEs (0 to 100 µg/mL) for 24 h. Immunoblot showing AMPK and SIRT-1 protein levels (A), and the p-AMPK/

AMPK and SIRT-1/β-actin ratios (C). * p < 0.05 compared with control group (AGEs 0 µg/mL). (B, D). Cells were stimulated by 100 µg/mL AGEs for varying durations. 
Immunoblot showing AMPK and SIRT-1 protein levels (B), and the p-AMPK/AMPK and SIRT-1/β-actin ratios (D). * p < 0.05 compared with control group (0 h). The val-
ues are represented as mean ± S.D. from three different experiments. β-Actin was used as a loading control for SIRT-1, and AMPK was used for p-AMPK.
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glitazone treatment in a dose-dependent manner (Fig. 6).

DISCUSSION

The prevalence of geriatric diseases is steadily increasing 
with a globally aging population. OA is a common disease 
among the elderly, and often leads to disability at the end 
stage.37,38) There are no effective strategies at present for the 
prevention or treatment of OA.38) The pathological basis of OA 
is cartilage degeneration,39) which in turn is a result of the in-
hibition of cartilage ECM synthesis and increased production 

of proteolytic enzymes.40) In addition, cartilage erosion is also 
associated with increased inflammation, and pro-inflammatory 
cytokines like IL-1β and TNF-α are elevated in OA,41) which 
not only suppress ECM synthesis in the articular cartilage14,15) 
but also degrade the ECM.16–18)

AGEs refer to a large group of macromolecules, including 
proteins and lipids, that are glycated through a series of non-
enzymatic reactions. AGEs are routinely formed and cleared 
in physiological conditions, but tend to accumulated with 
age due to impaired degradation mechanisms. Mahmoud and 
Elshazly demonstrated that AGE production and accumula-
tion was significantly associated with the development and 
progression of OA.42) In fact, AGEs are the molecular basis 

Fig. 3. Effect of AMPK Agonist and Inhibitor on Inflammatory Cyto-
kine Expression

Human articular chondrocytes were pre-treated with A-769662 (0.15 mM) and 
Dorsomorphin 2HCl (10 µM) for 1h before stimulation with AGEs (100 µg/mL). 
Immunoblots and RT-PCR results showing levels of IL-1β and TNF-α proteins 
(A) and mRNA (C) levels, with the IL-1β/β-actin and TNF-α/β-actin ratios (B). A-
769–A-769662; Dor, Dorsomorphin 2HCl; * p < 0.05 compared with control group 
(AGEs 0 µg/mL); # p < 0.05 compared with AGEs 100 µg/mL group. The values are 
represented as mean ± S.D. from three different experiments. β-Actin was used as 
a loading control.

Fig. 4. Influence of SIRT-1 Agonist and Inhibitor on Inflammatory 
Cytokine Expression

Human articular chondrocytes were pre-incubated with SRT1720 (5 µM) and EX 
527 (3 µM) for 1 h before stimulation with AGEs (100 µg/mL). Immunoblots and 
RT-PCR results showing levels of IL-1β and TNF-α proteins (A) and mRNA (E) 
levels, with the IL-1β/β-actin and TNF-α/β-actin ratios (B). SRT, SRT1720; EX, EX 
527; * p < 0.05 compared with control group (AGEs 0 µg/mL); # p < 0.05 compared 
with AGEs 100 µg/mL group. The values are represented as mean ± S.D. from three 
different experiments. β-Actin was used as a loading control.
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of age-related increase in OA risk.43) However, the specific 
mechanism of its action in OA is still unknown.

AGEs are closely related to chronic inflammatory diseases. 
Upon binding to the specific RAGE (receptor for advanced 
glycation end products), the AGEs enhance the production 
of reactive oxygen species (ROS) and activate extracellular 
signal-regulated kinase 1/2 (ERK1/2) and nuclear factor kappa 
B (NF-κB) pathways in various diseases.44) In this study, we 
found that AGEs increased the concentration of IL-1β and 
TNF-α in human chondrocytes in vitro in a concentration- and 
time-dependent manner. This is consistent with a previous 
study showing that AGEs drive OA by enhancing the inflam-
matory response in the articular chondrocytes.36)

Recent studies indicate a pivotal role of the energy homeo-
stasis regulator AMPK in the inflammatory response. Oval-
bumin-induced eosinophil infiltration is more severe in the 
AMPK knockout mice,45) and overexpression of constitutively-
activated AMPK in the murine macrophages significantly 
inhibited inflammatory response, while AMPK inactivation 
had the opposite effect.46) The anti-inflammatory action of 
AMPK is closely related to SIRT-1, an NAD+-dependent pro-
tein deacetylase that reduces the levels of acetylated NF-κB, 
AP-1 and histones, thereby inhibiting inflammatory path-
ways.20,47–50) Alterations in AMPK activity correlated positive-
ly with SIRT-1 level and activity.51) In streptozocin-induced di-
abetic mice, AMPK activators significantly increased SIRT-1 
activity while enhancing retinal AMPK phosphorylation.52) In 
glomerular mesangial cells, activation of AMPK increased the 
levels of SIRT-1.53) Based on these findings, we hypothesized 
that AMPK and SIRT-1 attenuate AGE-induced inflammation 
in chondrocytes. Consistent with this, AGE-treated chondro-

cytes had significantly lower levels of p-AMPK, whereas an 
AMPK agonist not only restored the AMPK activity but also 
significantly reduced the levels of the inflammatory cytokines. 
In addition, AGEs also decreased the concentration of SIRT-1 
in the chondrocytes, and a selective SIRT-1 agonist/inhibitor 
respectively inhibited and augmented AGEs-induced upregula-
tion in inflammatory cytokines. SIRT-1 inactivates NF-κB by 
deacetylating the p65 subunit,54) and in OA, inactivation of 
NF-κB inhibits the AGEs-induced inflammatory response in 
chondrocytes.36) Furthermore, pre-treatment with the AMPK 
agonist restored SIRT-1 levels in the AGE-treated chondro-
cytes.

We showed an anti-inflammatory role of pioglitazone in 
chondrocytes, wherein it reduced the levels of TNF-α and 
IL-1β in the AGE-treated chondrocytes in a concentration-
dependent manner.36) Moreover, it is reported that AMPK and 
SIRT-1 could be regulated by PPARγ in ethanol-fed mice and 
TNF-α-treated hNSCs.33,34) Therefore, we further speculated 
that pioglitazone can restore the p-AMPK and the SIRT-1 
protein levels which were downregulated by AGEs. Consistent 
with this, AMPK and SIRT-1 inhibited by AGEs were restored 
by pioglitazone in chondrocytes.

Taken together, our findings demonstrate that AGEs induce 
an inflammatory response in chondrocytes by reducing the 
activity of AMPK and downregulating SIRT-1, which could 
be restored by activation of PPARγ, and the reactivation of the 
PPARγ/AMPK/SIRT-1 pathway alleviated the inflammatory 
state induced by AGEs. Therefore, the PPARγ/AMPK/SIRT-1 

Fig. 5. Influence of AMPK Agonist on SIRT-1 Levels
Cells were pre-incubated with A-769662 (0, 0.15, 0.15, 0.25 mM) for 1 h before 

stimulation with AGEs (100 µg/mL). Immunoblot showing SIRT-1 protein levels 
(A), and the SIRT-1/β-actin ratios (B). A-769–A-769662; * p < 0.05 compared with 
control group (AGEs 0 µg/mL, BSA 0 µg/mL); # p < 0.05 compared with AGEs 
100 µg/mL group. The values are represented as mean ± S.D. from three different 
experiments. β-Actin was used as a loading control.

Fig. 6. Influence of PPARγ Agonist on AMPK and SIRT-1
Human articular chondrocytes were pre-incubated with Pioglitazone (0, 10, 30, 

50 µM) for 1h before stimulation with AGEs (100 µg/mL). Immunoblot showing 
AMPK and SIRT-1 protein levels (A), the p-AMPK/AMPK and SIRT-1/β-actin ra-
tios (B). Pio, Pioglitazone; * p < 0.05 compared with control group (AGEs 0 µg/mL); 
# p < 0.05 compared with AGEs 100 µg/mL group. The values are represented as 
mean ± S.D. from three different experiments. β-Actin was used as a loading 
control.
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pathway is critical in cartilage degeneration, and a potential 
new target in OA treatment.
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