
Article

Elucidating essential kinases of endothelin
signalling by logic modelling of
phosphoproteomics data
Alexander Schäfer1,* , Enio Gjerga2 , Richard WD Welford3, Imke Renz3, Francois Lehembre3,

Peter MA Groenen3, Julio Saez-Rodriguez2,4 , Ruedi Aebersold1,5 & Matthias Gstaiger1,6,**

Abstract

Endothelins (EDN) are peptide hormones that activate a GPCR
signalling system and contribute to several diseases, including
hypertension and cancer. Current knowledge about EDN signal-
ling is fragmentary, and no systems level understanding is avail-
able. We investigated phosphoproteomic changes caused by
endothelin B receptor (ENDRB) activation in the melanoma cell
lines UACC257 and A2058 and built an integrated model of
EDNRB signalling from the phosphoproteomics data. More than
5,000 unique phosphopeptides were quantified. EDN induced
quantitative changes in more than 800 phosphopeptides, which
were all strictly dependent on EDNRB. Activated kinases were
identified based on high confidence EDN target sites and vali-
dated by Western blot. The data were combined with prior
knowledge to construct the first comprehensive logic model of
EDN signalling. Among the kinases predicted by the signalling
model, AKT, JNK, PKC and AMP could be functionally linked to
EDN-induced cell migration. The model contributes to the
system-level understanding of the mechanisms underlying the
pleiotropic effects of EDN signalling and supports the rational
selection of kinase inhibitors for combination treatments with
EDN receptor antagonists.
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Introduction

Endothelin is the most potent and longest lasting vasoconstrictor in

human vasculature. The three EDN isoforms endothelin-1, endothe-

lin-2 and endothelin-3 are paracrine and autocrine signalling

peptides, each consisting of 21 amino acids. Their receptors EDNRA

and EDNRB are class A GPCRs and differ in their expression

patterns and physiological roles (Barton & Yanagisawa, 2008). The

three EDN isoforms bind both receptors with sub-nanomolar affi-

nities and are redundant in their function, with the exception of

endothelin-3 which has ~ 100-fold lower affinity for EDNRA

(Kedzierski & Yanagisawa, 2001).

Intense study of the EDN system has established its physiological

functions in regulating vascular tone, the cardiopulmonary system

and salt homeostasis in the kidney (Kedzierski & Yanagisawa,

2001). EDN is also a crucial factor in neural crest and melanocyte

development (Saldana-Caboverde & Kos, 2010). Aberrations in the

EDN system have been associated with a range of pathologies, and

consequently, EDN receptor inhibition has proven beneficial for

pulmonary arterial hypertension, congestive heart failure and

kidney failure (Barton & Yanagisawa, 2008). EDN receptor blockers

have become one of the main treatment options for managing

pulmonary arterial hypertension (Galie et al, 2013).

The EDN system has also been recognised to influence a range of

basic cellular functions related to cancerogenesis. Most notably, it

activates cell proliferation, inhibits apoptosis, induces extracellular

matrix remodelling (Nelson et al, 2003) as well as angiogenesis

(Spinella et al, 2002) and activates cell migration (Rosano et al,

2006). Furthermore, EDN autocrine or paracrine activation has been

described in ovarian, prostate, colon, breast, bladder and lung

cancer. Increased EDN pathway activation is associated with

tumour malignancy (Rosano et al, 2013). Despite convincing

preclinical evidence for a range of different tumour types (reviewed

in Nelson et al, 2003), most clinical studies in the field of oncology
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to date have not shown significant benefit of EDN inhibition

(Rosano et al, 2013), suggesting that a deeper molecular and

system-oriented understanding of EDN signalling is required to

devise more promising, knowledge-based treatment strategies, e.g.

through matching specific drug combinations with patient

subgroups.

A case in point is EDN signalling in melanoma. Despite new

treatment modalities, cancer death rates in advanced melanoma

remain high, with a 5-year survival rate of 20% (Siegel et al, 2018).

A strong induction of EDNRB has been described in a subgroup of

melanoma patients (Asundi et al, 2011), and EDNRB expression has

been found to correlate with melanoma malignancy (Demunter

et al, 2001). Functional studies have shown that EDNRB inhibition

leads to melanoma cell death in culture (Asundi et al, 2011) and

reduces melanoma growth in mice (Lahav et al, 1999) through

induction of apoptosis (Lahav et al, 2004). Melanoma invasiveness,

another hallmark of cancer, has been linked to aberrant EDN signal-

ling: overexpression of EDNRB in melanoma mouse models

increases metastasis while its inhibition has the reverse effect (Cruz-

Munoz et al, 2012). The most prevalent oncogenic driver mutation

in melanoma, BRAF (V600E), activates the MAPK pathway. Treat-

ment with mutant BRAF targeting drugs leads to dramatic responses

and regression, but drug resistance develops in most cases and

patients’ relapse (Fedorenko et al, 2015). A number of different

mechanisms have been implicated in the relapse, including EDN

signalling (Smith et al, 2017). Two recent studies have shown that

EDNRB inhibition can counter BRAF resistance development in

mouse models, significantly increasing survival (Smith et al, 2017;

Renz et al, manuscript in preparation). Mechanistic details of this

interaction between MAPK pathway inhibition and EDN signalling

have remained elusive.

Despite the profound and well-documented influence of EDN

signalling on physiology and disease development, current knowl-

edge of the underlying signalling mechanisms is fragmentary. The

consensus model of ENDRA signalling integrates evidence from

more than 20 studies performed in various model systems from five

different species (Rosano et al, 2013). These studies relied on anti-

bodies for targeted analysis of established signalling pathways, high-

lighting well-known molecular circuits. The EDN signalling pathway

is probably much more complex than presently appreciated, as

GCPRs are known to interface with an extensive kinase network

through heterotrimeric G proteins and arrestin (O’Hayre et al,

2014). The existing EDN consensus model is heterogeneous, does

not take into account the systemic character of the phosphorylation

response and contains conflicting evidence for some important

mechanistic aspects, e.g. MAPK activation (Imokawa et al, 2000;

Cramer et al, 2001).

As a consequence, a comprehensive map of EDN-mediated

protein phosphorylation, EDN-responsive kinases and the connect-

ing network structure is currently lacking. To address this scientific

need, phosphoproteomics was used to generate the first comprehen-

sive network model of EDN signalling, derived from a single system.

EDNRB signalling in melanoma cells was chosen, as it has a defined

role in the development and homeostasis of this cell type and its

dysregulation has been implicated in melanoma pathogenesis

(Saldana-Caboverde & Kos, 2010).

The melanoma cell lines UACC257 and A2058 were selected for

the time-resolved phosphoproteomic study because (i) they have no

measurable EDNRA expression (Renz et al, manuscript in prepara-

tion), so that EDN signalling is mediated purely through EDNRB, (ii)

a CRISPR/Cas9 EDNRB knockout was available, and (iii) the system

is of broad medical interest.

We systematically quantified time resolved, EDNRB activation-

induced protein phosphorylation changes. We related reproducibly

observed phosphopeptide patterns to upstream kinases and estab-

lished the first large-scale network model of EDNRB signalling based

on prior knowledge of kinase–substrate (K-S) relationships and

protein–protein interactions (PPI) trained with the phosphopro-

teomics data. Finally, the functional relevance of four kinases,

predicted to be central nodes in the network, was demonstrated by

testing the effect of kinase inhibition on EDN-induced cell migration.

Overall, this study and the resulting model provide a deeper under-

standing of the molecular network effecting EDN signalling and may

enhance the pharmacological exploitation of this clinically relevant

pathway.

Results

Phosphoproteomic analysis of EDNRB activation
in melanoma cells

Quantitative and time-resolved phosphoproteomic study
of EDNRB signalling
In a first step, experimental conditions to study EDNRB were opti-

mised. To establish the timeframe for EDNRB signalling, intracellu-

lar Ca2+ release and two known EDNRB target phosphosites AKT

S473 (Liu et al, 2003) and CREB S133 (Schinelli et al, 2001) were

measured in both parental cell lines and the respective EDNRB-KO

derivatives. EDN caused a rapid release of Ca2+ in UACC257 and

A2058 cells, which peaked after a few seconds and subsided over

approximately 10 min (Fig 1A). The response in UACC257 cells was

more sustained than in A2058. EDNRB knockout abrogated the

calcium transient in both cell lines (Fig 1A). On the phosphorylation

level, EDN caused a transient induction of CREB S133 phosphoryla-

tion (Fig 1B) with a maximum at 10 min in UACC257 and 2 min in

A2058. In contrast, AKT S473 phosphorylation was induced after

10 min and plateaued until 90 min (Fig 1B) in both cell lines. Both

phosphorylation events were dependent upon the expression of

EDNRB in UACC257 (Fig 1B). The observed time dependencies indi-

cate that EDNRB signalling consists of both, rapid transient and

sustained responses in these cell lines.

The phosphoproteomic experiment design was derived from the

optimised stimulation conditions. Samples were processed accord-

ing to the digestion and phospho-enrichment protocol and LC-MS/

MS data-dependent acquisition workflow described in the Materials

and Methods section. Two time-resolved EDN phosphoproteomic

data sets with the time points 2, 10, 30, 60 and 90 min were gener-

ated: one for UACC257 WT and UACC257 EDNRB-KO (Fig 1C), and

one for A2058 WT. For UACC257 cells (WT and EDNRB-KO), a total

of 5,240 unique phosphopeptides (Table EV1) and 5,172 non-redun-

dant phosphosites (Table EV1) were quantified. For the A2058 cell

line, 5,832 unique phosphopeptides (Table EV2) and 5,568 non-

redundant phosphosites (Table EV2) were quantified. These

numbers are already corrected for phosphate localisation, which

was controlled with LuciPHOr (Fermin et al, 2013) at 1% false
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Figure 1. UACC257 and A2058 melanoma cells are a model system to globally study EDNRB signalling.

A Kinetics of intracellular Ca2+ after EDN stimulation. UACC257 and A2058 (WT and ENDRB-KO) were seeded on 96-well plates, loaded with Fluo-4 dye and stimulated with
100 nM EDN or PBS. Fluo-4 fluorescence was monitored over 10 min (n = 6). Representative example of three independent experiments. The error bars indicate �
standard deviation.

B Time course of AKT and CREB phosphorylation. Melanoma cell lines were stimulated with 100 nM EDN for 2–90 min. AKT and CREB phosphorylation and expression
were evaluated by Western blot. Representative example of three independent experiments.

C Experiment design for the UACC257 phosphoproteomic study, showing time points, cell line derivatives, replicate structure and GIST composition. The GIST was
generated by pooling all heavy SILAC plates (blue) and spiked into all UACC257 (red) and UACC257 EDNRB-KO (green) samples. The A2058 cell line was also analysed
in biological triplicates and a GIST but without EDNRB-KO cells.

D High reproducibility in the UACC257 and A2058 data sets. CV distributions for triplicates were calculated and are provided in Fig EV1D. All CV values were grouped
according to cell line to represent data set-specific CV distributions. Numbers and lines indicate the median.
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localisation rate (FLR; see “Data analysis to generate phosphopro-

teomic data sets”). To achieve consistent quantification across WT

and KO cells, multiple time points and mock-stimulated controls, a

SILAC labelled global internal standard (GIST) spike-in approach

was devised (Fig 1C). Heavy labelled cells were subjected to most

experimental conditions and pooled to generate the GIST, which

was spiked into the non-SILAC labelled lysates as an internal refer-

ence sample.

Reproducibility was assessed by comparing the CV distributions

for all 30 biological triplicates in this study. CV distributions of tripli-

cates were combined into one distribution per data set to assess over-

all reproducibility (Fig 1D), with median CV values 13.2 and 12.0%

for UACC257 and A2058, respectively. A detailed analysis with indi-

vidual CV distributions in all triplicates is provided in Fig EV1D and

showed median CVs ranging from 11.1 to 14.6%. These values were

in agreement with a previous benchmarking of the workflow (see

“Data analysis to generate phosphoproteomic data sets”).

The descriptive characteristics of the generated phosphopeptide

data sets were highly similar to previously published TiO2 enrich-

ment data (Olsen et al, 2006). Most [75% (UACC257) and 78%

(A2058)] phosphopeptides were singly phosphorylated, while the

rest were mostly doubly phosphorylated (Fig EV1E). Phosphoserine

was most frequently observed (82 and 85% for UACC257 and

A2058, respectively), while phosphotyrosine residues were rare

(2–3%; Fig EV1F).

The GIST approach has the key advantage that the analysis struc-

ture of a label-free experiment can be used, generating a data matrix

in which all values for the same peptide can be compared directly,

while retaining the high quantitative reproducibility and robustness

of SILAC in the lengthy tryptic digest and phosphopeptide enrich-

ment procedure. However, the GIST approach shares a major draw-

back of SILAC—a reduction of identification rates due to increased

sample complexity.

The extensive and high-quality phosphoproteomic data sets in

UACC257 and A2058 were used as the basis for all subsequent anal-

yses.

ENDRB activation leads to robust phosphorylation changes affecting
hundreds of target phosphosites in UACC257 and A2058 cells
Effects of EDNRB stimulation were assessed on the level of phos-

phorylation patterns and individual phosphopeptides to determine

EDNRB-dependent phosphorylation events. Principal component

analysis of the phosphoproteomic data set for UACC257 indicated a

clear separation of experimental groups (Fig 2A). PC1 separated WT

from EDNRB-KO samples, while PC2 separated EDN-stimulated WT

from mock-stimulated WT samples. EDNRB-KO samples were not

separated by PC2 according to their EDN stimulation status. It was

even possible to discern a trend for stimulation duration in the WT

EDN-stimulated group along PC2 (Fig 2A). A similar separation of

samples according to the presence and activation of EDNRB was

obtained using hierarchical clustering (Fig EV2A). PCA of phospho-

peptide MS1 intensities for the A2058 data set also showed a clear

separation of control and EDN-stimulated samples as well as separa-

tion of samples according to stimulation duration (Fig EV2B). The

PCA analysis demonstrated that the expression and activation of

EDNRB translated into two different alterations of the phosphoryla-

tion pattern. In addition, it supported the quality of the data set by

showing that biological replicates clustered together.

Next, differentially abundant phosphopeptides were identified by

statistical testing with multiple testing correction at q < 0.1 and fold

change of > 1.5 up or down. Using these criteria, between 200 and

500 EDN target peptides were discovered for each time point in both

UACC257 and A2058 (Table 1). The same analysis was performed

for the EDNRB-KO data set, with only two peptides crossing the

threshold at a single time point (Table 1). This demonstrates that all

observed changes in the UACC257 cell line were a consequence of

EDNRB activation and were strictly dependent on this receptor. In

total, 918 (UACC257) and 665 (A2058) EDNRB target peptides were

identified (Table 1).

To exclude that differential phosphopeptide abundances were

caused by changes in protein abundance rather than changes in

phosphorylation, quantitative protein profiles were generated by

DIA-SWATH on protein extracts from UACC257 and A2058 cells that

were either mock or EDN stimulated for 90 min. The latest (90 min)

time point was chosen because differential protein expression was

expected to be particularly pronounced. Almost 3,000 proteins were

quantified in each cell line by proteotypic peptides. No proteins with

differential abundance between EDN and mock-treated cells were

identified at q < 0.1 with no FC cut-off (Table 1 and Table EV3).

However, only half of the almost 2,000 phosphoproteins from which

phosphopeptides were quantified after phosphopeptide enrichment

were included in the protein abundance data set (Table 1). Never-

theless, the analysis indicates that most of the observed changes on

the phosphorylation level were likely to be caused by differential

phosphorylation.

Next, the EDN response between the two cell lines was

compared. The purpose was to establish a core set of EDN-respon-

sive target peptides which were affected consistently in both cell

lines. On the identification level, the overlap of phosphoproteins

identified between cell lines was 57.6% (1,433), and for phospho-

peptides identified, the overlap was 38.2% (2,899; Fig 2B). Compar-

ing EDN-regulated phosphopeptides, 375 target peptides (19.6%)

were shared at q < 0.1. When the FC cut-off was applied, this inter-

sect was reduced to 242 (18%; Fig 2B). After removal of phospho-

peptides which were only identified in one cell line, the 242 shared

target peptides accounted for 33.6% of all EDN target peptides. The

time–response curves of the 242 shared target phosphopeptides

were highly similar between the cell lines (Fig 2C). It was also

apparent that EDN-induced phosphorylation changes up to 90-min

stimulation were predominantly increases (green in Fig 2C).

The comparison identified a core set of 242 shared target

peptides, which were induced in both cell lines with similar kinetics,

but also a significant difference in the overall response pattern on

the level of individual phosphosites.

The data sets contained many EDN target phosphosites without

functional annotation, but also some very well-established sites like

ERK1 T202/Y204 and novel EDN-responsive phosphorylations on

established kinases like MEK2 and ROCK2 (Fig EV2C).

Systems biology analysis of EDNRB-mediated
phosphoproteomic changes

EDNRB-targeted phosphosites delineate a discrete subset
of cellular processes
To gain an overview of the functional implications of EDN-induced

phosphorylation, pathway enrichment analysis was performed.
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Each time point in each cell line was analysed separately using IPA

(Fig 3). Separate analyses yielded similar list of terms which were

compiled into an integrated comparison shown in Fig 3. For clarity

of presentation, lower order terms are not shown and a complete list

of terms is provided in Table EV4. Enriched processes and pathways

showed strong similarity between cell lines, including a similar

temporal pattern. The largest increase in enriched terms occurred

between 2 and 10 min, following the dynamics of the number of

regulated phosphopeptides. The significance and number of terms

decreased after 30-min stimulation.

Significant similarity of the EDNRB targets with known GPCR

signalling pathways (e.g. Thrombin, CXCR4) was found, but the

targets also shared similarity with multiple receptor tyrosine kinase

(e.g. VEGF, HGF) and cytokine receptor signalling pathways (e.g.

IL4, EPO; Fig 3A). Furthermore, EDN target sites were involved in

cytoskeleton-associated signalling (e.g. integrin signalling) or

belonged to established kinase cascades (Fig 3A). The latter

contained known GPCR-responsive kinases (PKC, ROCK) but also

kinase not commonly associated with GPCR signalling (e.g. p70S6K,

PAK or stress-activated MAPKs). For cellular processes, EDN target

A B

C

Figure 2. EDN elicits a robust phosphorylation response, which is partly shared between melanoma cell lines.

A Phosphopeptide MS1 intensities in UACC257 samples were analysed by PCA. Colours indicate experimental groups, and shading is mapped to time.
B Overlap between UACC257 and A2058 data sets. From top to bottom: Identified proteins, identified phosphopeptides, EDN-regulated phosphopeptides at q < 0.1, and

q < 0.1 & FC > 1.5 up or down.
C Comparison of the kinetics of the 242 shared target phosphopeptides. Log2 FC of EDN/Ctr is plotted from top to bottom for each phosphopeptide for both cell lines

with increases shown in green and decreases shown in red.
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sites were strongly enriched for processes involved in cell migration

and motility as well as for functions related to the organisation of

the cytoskeleton and cell morphology (Fig 3B). Smaller groups of

terms showed enrichment for apoptosis regulation, intercellular

communication and protein synthesis (Fig 3B).

Highly similar sets of kinases are activated through EDNRB in
UACC257 and A2058 cells
One effective way to obtain a better understanding of the complex

phosphorylation patterns in response to EDNRB activation was to

identify activated kinases as the central elements organising the

signalling network. Two approaches were used to infer kinase acti-

vation: the first was based on experimentally validated kinase–

substrate (K-S) relationships using the tool PHOXTRACK (Weidner

et al, 2014). Since the overlap of experimentally validated K-S rela-

tionships and the phosphoproteomic data set was limited to a few

dozen known target sites, a second approach based on NetworKIN

(Linding et al, 2008) predicted K-S relationships was used to identify

kinase activation with a higher number of annotated sites. The ratio-

nale for two prediction approaches based on different data sources

was to generate an inclusive EDN target kinase list, which was then

used as a broader basis for validation experiments.

Combining results for different time points and both cell lines,

PHOXTRACK identified a total of 34 putative EDN target kinases

(Table 2). Redundancy in this list was due to identification of

numerous kinase isoforms. Almost all target kinases were found to

be activated (positive values in Table 2) with the exception of CDK

isoforms and PDHK. No strong time dependency was observed for

kinase activation. The largest increase in the number of activated

kinases was observed between the 2-min and the 10-min time point.

PHOXTRACK identified similar sets of kinases for both cell lines

(Table 2).

Activation of the PI3K-AKT-p70S6 axis, already inferred from the

first experiments (Fig 1B) and activation of the PKC axis, expected

to occur based on the calcium release (Fig 1A), were found. GPCR-

associated kinases PKA and ROCK were also identified. A major

fraction of the identified kinases was involved in the MAPK path-

ways leading to activation of ERK as well as activation of the stress-

regulated MAP kinases p38 and JNK. An unexpected finding was

the activation of CK2, RSK, AMPK and PAK as well as inhibition of

CDKs.

For NetworKIN-based predictions, target response profiles were

first grouped by c-means clustering and enrichment analysis was

performed for the different response kinetics in UACC257 (Fig 4A)

and A2058 cells (Fig 4B). Kinase activations were inferred from an

overrepresentation of their substrates in a cluster. In general, this

meant that the substrates of an enriched kinase only accounted for a

fraction of all curves in that cluster. A full list with target numbers

can be found in Appendix Table S1.

Separation into six clusters yielded highly similar response kinet-

ics for both cell lines. Clusters 1–4 contained phosphorylations with

increased abundance and maxima at 2, 10, 30 and 60–90 min,

respectively. Cluster 1 and 2 targets were strongly enriched for

CaMKII targets, a kinase with a small number of targets in the

prediction based on validated substrates. Cluster 3 showed the

strongest signature for PAK activation in both cell lines. Activation

of the linked kinases AKT and p70S6K was evident for clusters 2

and 3. While p70S6K appeared in both cell lines in cluster 3, AKT

appeared in UACC257 in cluster 2 but in A2058 in cluster 3. A simi-

lar difference in kinetics was observed for the MAPK pathway. MEK

activation was seen in UACC257 for sites peaking at 10 min (cluster

2) but appeared in A2058 after 60 min (cluster 4). ERK activation

was then observed in UACC257 at 60 min (cluster 4), but was

absent for A2058. PKC activation only appeared in clusters 1 and 2

for A2058, but was absent for UACC257. This was probably due to

PKC target sites being more evenly distributed over clusters 1–4 in

UACC257. Clusters 5 and 6 contained peptides with reduced phos-

phorylation with fast (cluster 5) and sustained (cluster 6) behaviour.

GSK3-b was enriched in cluster 5 and is known to be inhibited by

S9 phosphorylation downstream of different kinases, whose activa-

tion occurred at earlier time points [e.g. AKT (Salas et al, 2003)].

GSK3-b S9 phosphorylation was induced by EDN in A2058 but the

site was not contained in the UACC257 data set. On the other hand,

the fast drop in abundance suggested a more active mechanism,

possibly activation of phosphatases. Cluster 6 had a weak signature

for CDK targets, which was only significant in A2058.

The strongest signature for activated kinases identified by the

NetworKIN approach was CaMKII. This kinase is part of a complex

which is directly activated by Ca2+. Comparison of the kinetics of

217 predicted CaMKII sites in both cell lines with the Ca2+ release

kinetics showed similar curves on different time scales (Fig 4C).

CaMKII activity seems to relay the ~ 10-min calcium transient onto

Table 1. Summary of EDN-induced phosphorylation and expression
changes.

UACC257—EDN target phosphopeptides

Time point WT EDNRB�/� Union

2 min 210 0 918

10 min 505 2

30 min 496 0

60 min 429 0

90 min 389 0

A2058—EDN target phosphopeptides

Time point WT Union

2 min 242 665

10 min 233

20 min 254

30 min 275

60 min 289

90 min 251

UACC257 A2058

SWATH protein
data set

Protein IDs 2808 2965

q < 0.1 0 0

Phosphoproteomic
data set

Phosphoproteins 1976 1986

Overlap with SWATH 843 (43%) 864 (43%)

From top to bottom: The number of regulated phosphopeptides (q < 0.1 &
> 1.5 FC up or down) per time point for UACC257 WT and EDNRB-KO cells
and A2058 cells. The lower section shows the outcome of the SWATH analysis
after 90-min EDN stimulation: identified and differentially expressed proteins
for both cells lines and their overlap with the proteins from which the
phosphopeptides were derived.
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a ~ 90-min phosphorylation pattern. UACC257 showed a more

protracted response for both Ca2+ activity and CaMKII activity than

A2058 (Fig 4C).

Combining the PHOXTRACK and NetworKIN identified kinases,

and grouping their isoforms resulted in an inclusive list of 18 puta-

tive EDN target kinases. Seven kinases were identified by both

approaches (AKT, PKC, PAK, p70S6K, MEK, ERK and CDKs). Nine

kinases were only identified by PHOXTRACK (CKII, p38, JNK, RSK,

ROCK, MAPKAPK2, PKA, AMPK and RAF), and two kinases

were only identified by NetworKIN (PKD and CaMKII). The two

kinase prediction approaches complemented each other. While

PHOXTRACK found a higher number of EDN target kinases,

NetworKIN contributed confirmatory evidence in many cases and

added information about the kinetic patterns of kinase activation.

Combination of both approaches allowed identification of a broader

range of involved kinases for validation experiments.

Leveraging prior knowledge and quantitative phosphoproteomic
data to construct the first EDNRB signalling network in a single
system
Kinase activation prediction identified the spectrum of EDN

target kinases, as described in the previous section. It did not,

however, allow inference of the relationship between the

proposed kinases and the structure of the signalling network.

Computational modelling was used to generate a logic network

model which best explained the observed phosphorylation

patterns in the context of existing knowledge. Logic models are

constructed by selecting nodes and edges from an extensive prior

knowledge network to find a structure optimally describing the

observations. Such a network is better suited to infer key signal-

ling nodes, regulatory relationships and to provide mechanistic

insight how the EDN signal propagates from the receptor to its

target sites. The modelling approach described here was

performed in parallel to the analysis detailed above and did not

integrate information from PCA, IPA or kinase activation

predictions.

Prior knowledge about K-S relationships and PPI was used to

assemble binary relationships into an optimised model, predicting

network topology without the aid of generic pathway maps. To this

end, an extensive K-S database compiled from literature and online

databases (Turei et al, 2016) was employed. The background K-S

network was complemented with a generic GPCR PPI network to

enable linking of EDNRB to kinases. Using the PHONEMeS approach

(Terfve et al, 2015), all linear paths linking EDNRB to the target

sites identified by the phosphoproteomic analysis in the melanoma

cells were collected and an optimised solution combining these

paths into a network was calculated using Integer Linear Program-

ming. To make best use of the temporal resolution of the phospho-

proteomic data, models were generated in an evolving manner. A

first model was generated for the 2-min time point. This model was

then used as a starting point for the 10-min time point, extending

the existing structure with new branches to include target phospho-

sites activated at the later time point, and the process was repeated

until all time points were included.

The resulting signalling model for UACC257 cells predicted a

network of intermediary proteins (blue nodes) that transmit the

signal from EDNRB to its target sites (red nodes). Each edge was

assigned an entry time into the network (edge colour). Edges that

were added at later time points were generally farther away from the

receptor. In this way, evolution of the signalling cascade could be

visualised on a network level. The topology of the network suggests

that the signalling system branch into five modules from the receptor

(Fig 5). First, the arrestin module leads to MAPK cascade activation

and accounts for many target sites phosphorylated by the effector

MAPKs ERK1/2 p38 and JNK. The second module is smaller and

involves the Ca2+-dependent kinases CaMKII and CaMKK2 and their

A

B

Figure 3. EDN-activated substrates are associated with a defined set of
cellular functions and canonical signalling pathways.

A, B EDN phosphoproteomic data were analysed in IPA. Significance of term
enrichment is indicated through shading as �log (P-value). Regulated
pathways belonging to the classes “Canonical Pathways” (A) and “Disease
and Biofunction” (B) with significant enrichment (P < 10�3) are shown
for UACC257 and A2058. Regulated terms were grouped according to
highest order ontology terms, which are shown on the left.
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downstream kinase AMPK. This part would be activated by the Ca2+

transient which is modelled here as a direct edge from Gq/11. The

third module is in the centre of the network and revolves around the

PI3K-PDK1-AKT axis. Most probably activated by free bc dimers, it

involves downstream activation of p70S6K, CKII and inhibition of

CDKs. CKII, AKT and CDK1 account for a significant part of target

site phosphorylation. The fourth and fifth modules are the well-

known GPCR-activated kinases PKC and PKA. The PKC module has a

rather simple structure. PKC is activated downstream of Gq/11 and

activates a sizeable number of targets, but there are very few inter-

mediated kinases leading deeper into the network. The PKA module

is similar, but differs from the PKC module by the presence of down-

stream intermediate kinases (EEF-2K, STK38, CKI-a, CDK5, STK11
and MARK1) which add more layers and lead to crosstalk with other

modules. A comprehensive table with all K-S relationships and PPIs

in the networks and PMID numbers for the primary evidence for

these edges is provided in Table EV5.

Although only one-third of EDN target sites were shared

between the two cell lines tested, the network models for

UACC257 (Fig 5) and A2058 (Fig EV3) shared a strikingly similar

modular topology. This is in line with the strong overlap of acti-

vated kinases (Table 2). Thirty-four intermediary proteins were

Table 2. PHOXTRACK kinase enrichment shows that EDN activates similar sets of kinases in UACC257 and A2058.

Kinase Sites 2 min 10 min 30 min 60 min 90 min Sites 2 min 10 min 20 min 30 min 60 min 90 min

AKT 15 2.1 2.6 2.1 1.7 1.7 21 1.2 2.3 2.7 1.8 2.3 2.3

PDK1 0 NA NA NA NA NA 5 1.7 1.6 1.4 1.7 1.4 2.0

AMPK 6 2.2 1.6 1.0 1.2 2.1 4 1.8 1.2 2.2 1.5 0.9 0.7

CaMKII 0 NA NA NA NA NA 3 2.0 2.0 1.7 2.0 1.9 1.2

CDK1 24 �1.2 �1.8 �1.0 �1.5 �2.3 70 �2.3 �1.5 �1.4 �1.5 �1.6 �1.2

CDK12 7 1.5 �1.7 �1.0 1.2 0.9 5 1.7 1.2 0.9 1.3 �1.2 �1.0

CDK5 8 �1.1 �1.5 �1.8 �1.4 �1.6 8 �0.9 �1.5 �1.2 �1.7 �1.0 �0.7

CDK2 90 �1.2 �1.5 �1.3 �1.0 �1.6 110 �2.0 �1.8 �1.8 �1.9 �1.9 �1.3

CKII 42 1.1 1.4 1.6 1.7 1.0 53 1.3 1.7 1.8 1.8 0.9 �1.1

JNK1 8 �1.2 1.2 1.7 1.5 1.1 8 �0.9 1.0 1.1 1.4 0.9 �0.9

JNK2 3 �2.1 NA 1.8 2.1 NA 3 �2.0 �0.8 1.3 1.4 1.2 �1.7

p38-a 3 �1.4 �1.4 2.2 1.3 1.7 3 �2.1 �0.8 1.3 1.4 1.6 �1.7

p38-b 3 �2.1 �2.1 1.9 1.8 1.7 0 NA NA NA NA NA NA

cRAF 4 1.4 1.2 0.8 1.8 1.3 4 0.7 �0.7 �0.5 0.7 �0.9 0.8

MEK 4 1.6 2.1 2.1 1.4 1.9 4 �0.8 1.5 1.6 1.6 1.8 1.6

ERK1 6 1.6 2.2 2.0 1.6 1.6 11 �1.2 1.9 2.0 1.6 1.3 1.0

ERK2 8 1.1 2.1 2.1 1.9 1.8 7 0.6 2.1 1.7 1.7 1.7 2.0

MAPKAPK2 3 1.3 1.7 1.2 1.3 1.3 0 NA NA NA NA NA NA

mTOR 16 �1.2 1.7 2.2 1.4 1.1 18 �1.1 �1.1 �1.2 �1.3 �1.0 1.3

PAK1 11 1.1 1.5 1.8 2.3 2.0 11 0.9 0.6 0.9 1.5 1.8 1.1

PAK2 9 1.9 2.2 2.3 2.2 2.2 8 0.8 1.9 2.0 2.2 2.1 2.4

PKA 22 1.5 2.5 2.5 1.9 2.0 26 2.3 1.6 2.2 2.8 2.1 1.4

PKC-a 9 3.2 3.2 2.3 2.0 1.8 12 2.9 3.0 2.8 2.0 2.6 1.0

PKC-b 4 1.7 1.7 1.0 1.4 1.4 4 1.3 0.8 0.8 1.0 1.3 1.2

PKC-d 9 1.7 1.9 1.9 1.9 1.8 13 1.3 1.5 1.8 1.7 2.1 1.4

nPKC-e 0 NA NA NA NA NA 5 1.4 1.6 1.7 1.7 1.6 1.4

nPKC-l 8 2.0 1.6 1.4 2.4 2.3 3 2.1 2.2 2.2 2.2 2.2 2.1

nPKC-g 3 1.8 NA NA 1.7 1.6 4 1.9 2.1 2.0 1.9 2.1 2.2

ROCK1 3 1.4 1.3 1.1 1.9 1.4 3 1.2 1.2 NA 1.9 1.4 1.5

ROCK2 4 1.8 1.7 1.5 2.1 1.5 4 1.5 1.2 1.5 2.1 1.6 1.7

PDHK1/2 3 �2.2 �2.0 �1.8 �1.3 �1.8 0 NA NA NA NA NA NA

S6K 6 1.5 1.8 2.5 2.8 2.6 8 0.8 2.1 2.7 2.4 2.5 2.6

RSK1 8 1.6 2.1 2.2 2.0 1.7 10 1.0 2.2 2.2 1.9 2.3 2.3

RSK2 5 1.9 1.8 2.2 1.4 1.7 7 1.0 1.9 2.2 1.8 2.2 2.2

Kinase activation was predicted based on experimentally validated K-S relationships for each time point in both cell lines. The consensus table lists normalised
enrichment values (NEV), positive for activation and negative for inhibition. The number of measured sites for the NEV calculation is given for each cell line. Grey
shading indicates significance at q < 0.1. Kinases isoforms and kinases belonging to the same cascade were grouped manually.
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shared between the two cell lines, while 22 and 2 proteins were

unique to the UACC257 and A2058 models, respectively. The

A2058 intermediary nodes constituted a subset of the UACC257

intermediary nodes. On the target site level, the overlap was

much smaller. Fifty-two target sites were shared between models,

77 occurred only in the UACC257 model, and 37 target sites were

A B

C

Figure 4. Target phosphopeptides show six distinct response kinetics, which are shared between cell lines and are associates with similar sets of kinases.

A, B EDN target phosphopeptides for (A) UACC257 and (B) A2058 were segregated into six clusters each, using c-means clustering (MFuzz). Each line represents one
phosphopeptide, and cluster membership is indicated by colour. Most likely kinases for each phosphosite were predicted using NetworKIN, and enrichment of
kinase substrates was calculated for each cluster. Enriched kinases are indicated above each cluster. Note that substrates of these kinases only account for a
fraction of all phosphosites in a cluster. Detailed information on the kinase enrichment is provided in Appendix Table S1.

C Average MS1 intensity z-score kinetics for 217 predicted CaMKII-a sites that are shared between both cell lines. For comparison, average (n = 6) calcium
abundance kinetics from Fig 1A are shown.
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only found in the A2058 model. However, it cannot be excluded

that less well-studied pathways are different between the two cell

lines, since kinase activation prediction and network modelling

rely on publically available prior knowledge which is biased in

favour of well-studied signalling pathways.

To explore whether the similar network structures resulted from

constraints imposed by the modelling approach, a control network

was generated based on randomisation of the UACC257 phospho-

proteomic data set. Quantitative data of the identified EDN target

sites were assigned phosphosite identifiers from non-regulated phos-

phosites. The resulting control network (Appendix Fig S1) did not

contain most of the network structure of the UACC257 and A2058

models. However, it did feature PKC, PKA and AKT. In contrast to

the UACC257 and A2058 networks, these kinases appeared as

connecting nodes rather than central hubs with many substrates.

The control network also contained a part of module 3 based on

CKII, CDK1 and CDK2. Occurrence of these kinases is probably due

to higher frequencies of their substrates in the prior knowledge data-

base. This analysis showed that the network structure was strongly

dependent upon the selection of EDN-regulated sites as input for

PHONEMeS.

While the modelling approach did not directly build on kinase

activation predictions, the same kinases appeared again in the

model as central nodes organising the network. For EDNRB

signalling, kinase activation prediction and network modelling

converged on 18 kinases, suggesting their central role in EDNRB

signalling.

Validating the activation of central kinases of the EDNRB
signalling model
Experimental validation of the derived network was performed by

analysing the activation of central kinases of the network in

response to EDN. For this purpose, phosphorylation of established

marker substrates for 12 of the identified central kinases following

EDN stimulation was assayed by Western blot, as a proxy for kinase

activation.

In addition to the already validated AKT (Fig 1B), the activation

of 11 kinases through EDN was tested (Fig 6A–K). Increasing

concentrations of specific inhibitors for the kinase under study were

used to support the specificity of substrate phosphorylations

(Fig EV4A–L). EDN induced phosphorylation of all substrates tested

(Fig 6A–K), except for Rb, a model substrate of CDKs, for which

PHOXTRACK and NetworKIN predicted inhibition.

Eight of the marker substrates for the activated kinase predic-

tions were not measured in the phosphoproteomic data sets (Rb

S807/811, CaMKII S286, MAPKAPK2 T222, cJun S73, cRaf S338,

ACC S79, PKA motif and PKC motif). PKA activity and PKC activity

were evaluated with motif-specific antibodies recognising a pattern

of substrates. Activation of PKA through EDNRB was a surprising

finding, since ENDRB activates Gi (Takagi et al, 1995) in the few

systems studied until now. The validity of this finding is supported

through inhibition of EDN-mediated PKA target motif phosphoryla-

tion by the adenylate cyclase inhibitor ddcAMP (Fig EV4A).

In summary, the presented data validate the activation of central

nodes predicted by the network model.

Figure 5. Prior knowledge-based time-resolved network model of EDN signalling in UACC257 cells.

Construction of the network is described in detail in Materials and Methods. EDNRB (green diamond) was connected to its target phosphorylation sites (red hexagons)
through intermediary kinases or G proteins (blue circles) in a time-resolved variant of the PHONEMeS approach. Central kinases, which were also identified by kinase
activation prediction, are shown as intermediary kinases with dark blue shading. Edge thickness corresponds to weights, whichwere assigned by downsampling the network
100 times. Entry time point was defined as the point at which edge weight reached 20 and is shown as edge colour. The network was divided into five modules, indicated as
light blue outlines and labelled 1–5. Common names are shown for kinases, and primary gene names are shown for all other proteins.
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In a second approach, parts of the network structure were vali-

dated using inhibitors against three of the central kinases—MEK,

PKC and p70S6K. The EDN stimulation experiment was repeated for

UACC257 cells at a single 20-min time point, and the impact of

kinase inhibition on EDN-induced substrate phosphorylation in the

network was tested using a separate phosphoproteomic experiment.

Of the 130 phosphosites in the network model, 103 could be

detected in the validation experiment. Seventy-two of the detected sites

were again found to be altered upon EDN treatment at the single time

point investigated. The effects of kinase inhibition are presented as

three perturbed EDN signalling networks (Appendix Fig S2).

The three inhibitors blocked activation of almost all direct and

downstream target sites for the inhibited EDN target kinases (9/10

for PKC and MEK/ERK, 4/5 for p70S6K) predicted in the model

(Appendix Fig S2).

While the p70S6K inhibitor response was constrained exclusively

to the predicted targets, additional responses were observed upon

inhibitor treatment with the MEK/ERK and PKC inhibitors. This

included activating inputs from PKC and MEK/ERK to p70S6K,

which could not have been predicted since they were not contained

in the prior knowledge. In addition, blocking PKC and MEK/ERK

prevented activation of 11 and seven sites, respectively, scattered

across the entire network with no discernible pattern.

Mechanistic implications of these experiments should be inter-

preted cautiously, considering that inhibition of a substrate phos-

phorylation may also be the result of (i) crossreactivity of the kinase

inhibitor with unrelated kinases or (ii) indirect effects between

inhibited kinase and substrate through intermediary kinases not

included in the model or (iii) adaptive responses of inhibitor treat-

ment (e.g. prevention of constitutive phosphorylations of unrelated

Figure 6. Validation of kinase predictions using marker substrates.

A–K Predicted kinases are indicated on top of each panel for which one of their marker substrate phosphorylations was assayed. UACC257 cells were serum starved and
stimulated with PBS or EDN at 100 nM for 60 min (5 min for CaMKII). Ten micrograms protein from RIPA lysates was analysed by Western blot. Kinase marker
substrate phosphorylations and corresponding loading controls are shown. For each kinase, two independent replicates were performed and are shown. Each gel
also had control lanes with increasing concentration of kinase inhibitors to support phospho band identity (extended versions with inhibitors are shown in
Fig EV4).
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kinases). Notwithstanding these known limitations, the results from

the inhibitor experiments validate the network structure for the

three tested kinases and their importance for EDN signalling

predicted by the model.

EDN-induced melanoma cell migration depends on activation of AKT,
JNK, PKC and AMPK
Finally, systemic insights from the EDNRB signalling model were

used to alter relevant cellular functions controlled by EDNRB signal-

ling. Migration and reorganisation of the cytoskeleton were the most

prominent hits in the pathway enrichment analysis (Fig 3) and play

an important role for EDN in melanoma. Pharmacological inhibition

of kinases identified by the model as central nodes of the EDNRB

network was used to test their role in EDN-induced melanoma cell

migration.

Using specific inhibitors for 17 of the 18 central kinases

(Appendix Table S2; RAF, MEK and ERK were among the 18

central kinases, but ERK was not directly targeted), different

branches within the five modules of the signalling network were

blocked. Titration of the inhibitors established their efficacy for

blocking substrate phosphorylation at 0.1 lM or 1 lM (Fig EV4A–

L). Migration was then measured with a wound healing assay and

automated microscopy (Fig 7A). Inhibition of the four kinases

PKC, AKT, AMPK and JNK blocked EDN-induced cell migration

(Fig 7B), while inhibition of all other kinases tested could not

prevent this effect. The four inhibitors only blocked EDN-induced

cell migration, without influencing basal migration (Fig 7B). A

summary of the result for 16 inhibitors is given as a heatmap

(Fig EV5A). The CDK inhibitor was excluded because it caused

complete cell death after 24 h (Fig EV5C). Among the other inhibi-

tors, only BRAF and MEK inhibitors reduced cell viability

(Fig EV5C). The presented data show migration after 48 h. To

exclude that closure of the scratch was caused by proliferation

rather than migration, proliferation was measured with a BrdU

assay. EDN did not increase proliferation for up to 72-h treatment

(Fig EV5B). When related back to the network model (Fig 5), it

becomes obvious that the four kinases controlling cell migration

are in modules 1–4 of the network. This implies that control of

EDN-induced migration involves a concerted signalling process

involving almost the entire network, rather than a single sequential

pathway. In contrast, the 12 kinases which could not be linked to

EDN controlled cell migration were in parts of parallel branches of

modules 1 (RAF, MEK, p38, PKD, RSK) and 2 (CaMKII) as well as

downstream kinases in module 3 (CKII, p70S6K, PAK1), PKA in

module 5, ROCK and MAPKAPK2.

EDN-induced migration has been linked to changes in adhesion

molecule expression, specifically downregulation of E-cadherin

(Bagnato et al, 2004). Measurement of E-cadherin with an SRM

assay showed that only the AMPK inhibitor, out of 17 kinase inhibi-

tors tested, could significantly inhibit E-cadherin repression by EDN

(Fig 7C).

In conclusion, the signalling model proved a successful tool to

identify kinases through which the EDNRB signalling network

controls melanoma cell migration. Integrative modelling of phos-

phoproteomic changes enabled these key findings, which would not

have been accessible by protein or RNA expression profiling, given

the absence of measurable protein expression changes. These

results show that insights from the EDNRB signalling model can be

used to alter phenotypic properties of melanoma cells which are

controlled by EDN signalling.

Discussion

The first unbiased quantitative phosphoproteomic study of the phar-

macologically relevant EDN signalling pathway is presented. EDNRB

activation elicited a characteristic pattern of phosphorylation

changes affecting, among others, distinct functional protein classes

controlling cytoskeleton organisation, cell signalling and cell motil-

ity. The high quality of the obtained data allowed for the prediction

of a specific set of target kinases activated downstream of EDNRB.

Utilising the comprehensive time-resolved phosphorylation analysis,

we established a logic model of the EDN signalling network

comprised of five modules. Several key kinases predicted by the

model were biochemically validated and functionally linked to EDN-

induced cell migration.

Analysis of EDNRB signalling and the logic model were based on

two phosphoproteomics data sets with high temporal resolution.

These data sets contain accurate quantification covering over 5,000

phosphorylation events measured across five time points in biologi-

cal triplicates. Comparison of observed phosphorylation changes to

mock-stimulated controls as well as EDNRB knockout controls

ensured confident identification of EDN target sites and clearly

demonstrated that all observed changes occurred downstream of

EDNRB. The obtained time-resolved phosphorylation data following

activation of a single GPCR type provided the ideal basis to develop

the first EDNRB logic signalling model.

Logic modelling of quantitative phosphorylation data is an

emerging strategy to better understand the complex nature of cellu-

lar signalling systems and has the potential to improve research on

the control of pleiotropic signalling responses. EDN controlled cellu-

lar reactions are often context dependent, and EDN signalling has to

be integrated with concurrent cues, including hormones, paracrine

factors, cell–cell contracts and cell-matrix contacts. Reductionist

signalling models based on the sequential analysis of signalling

components using classical biochemical assays are not well suited

to reflect the complex signal integration through which cellular reac-

tions are determined. Integrative approaches based on global data

collection and curated prior knowledge are a better strategy to more

accurately model the complex organisation of cellular signalling

systems to enhance predictive knowledge on the context depen-

dency and diversity of functional outcomes. In this study, integra-

tive modelling was applied for the first time to the EDN signalling

system.

Despite the coverage of hundreds of EDN-induced changes in

protein phosphorylation, the presented data sets are incomplete

as the phosphoproteome is much more extensive. Although the

prior knowledge background covered over 15,000 reactions, it

was limited to well-established signalling processes. In spite of

these limitations, we are confident that our approach captured

the core modules of EDNRB signalling because (i) the core

model components and their interactions are in general agree-

ment with previous studies using classical approaches. (ii)

Predictions based on the model could be functionally validated.

(iii) The network models resulting from the two analysed cell

lines were strikingly similar despite the moderate overlap in
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phosphoproteomics data. These results are in line with a meta-

analysis of publicly available phosphoproteomics data set, show-

ing that the same cell perturbations in different studies led to

the same kinase activation predictions, although the actual phos-

phopeptides underlying these predictions were different (Ochoa

et al, 2016).

The EDNRB signalling model is more expansive and coherent

than the current heterogeneously assembled models of EDN signal-

ling (Bouallegue et al, 2007; Rosano et al, 2013). Moreover, it is in

accordance with a number of known mechanisms activated down-

stream of EDNRA and EDNRB supporting the overall robustness and

reliability of the study. Activation of EDN receptors is known to

A B

C

Figure 7. PKC, JNK, AMPK and AKT mediate EDN-induced cell migration.

The effect of kinase inhibitors on EDN-induced cell migration of UACC257 cells was analysed using a scratch assay. Scratches were made in UACC257 monolayers. Serumwas
removed, and cells were treated with PBS or 100 nM EDN in combination with DMSO or kinase inhibitors at 0.1 lM or 1 lM in triplicates.

A Example pictures showing the effect of EDN on migration. Cell free areas are delimited by blue lines. Migration was quantified as the change in cell free area
between 0 and 48 h.

B The four inhibitors that were effective at 1 lM are shown in detail, i.e. every point corresponds to one well.
C Abundance of E-cadherin (normalised to GAPDH and Actin) was assessed by LC-SRM after 48-h treatment with EDN or kinase inhibitors at 1 lM. Only the single

inhibitor which could reverse EDN-induced E-cadherin repression is shown. The full SRM data set is provided in Appendix Fig S3.

Data information: *P < 0.05 two-sided unpaired t-test.
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cause Ca2+ release and activate PKC through Gq as well as influenc-

ing cAMP levels and modulating PKA activity (Rosano et al, 2013).

All three of these mechanisms are contained in the network

modules 4 and 5. PI3K-AKT activation is well established for

ENDRA (Bouallegue et al, 2007). Although EDNRB activation of

PI3K-AKT has not been as extensively studied, it was shown to

involve free Gbc dimers in endothelial cells (Liu et al, 2003), which

is in accordance with module 3 of the network model. The calcium-

dependent kinase module 2 has not been well studied for EDN

signalling; it contains two branches, the first consisting of CaMKII

and the second of CaMKK2 and AMPK. CaMKII activation by Ca2+

release downstream of EDNRB is supported by the correlation of the

calcium transient with CaMKII substrate phosphorylation. While

AMPK is not commonly associated with calcium signalling, it has

recently been recognised as part of the CaMKII independent,

calcium-dependent pathway downstream of CaMKK2 predicted by

the model (Frigo et al, 2011).

Module 1 encompasses activation of the three MAPK cascades

leading to ERK, JNK and p38 activation, which was experimentally

validated here and is in agreement with previous studies. While

the mechanism through which GPCRs activate the MAPK cascades

is incompletely understood (Marinissen & Gutkind, 2001), the

modelling algorithm predicted a central role for arrestin. There are

three alternative mechanisms for MAPK activation by EDN, which

differ in how the EDN receptor activates RAF. The first mechanism

is based on arrestin acting as a scaffold bringing RAF and ASK

(MP3K5) in close proximity to their downstream kinases, thus

enhancing their sequential phosphorylation (DeWire et al, 2007).

The second mechanism involves activation of RAF by PKC (Smith

et al, 2017). The third mechanism depends on transactivation of

EGFR by arrestin-mediated src activation (Rosano et al, 2013).

Only the first mechanism is selected by PHONEMeS, but the other

two mechanisms are valid possibilities. This mechanism gets

selected because arrestin leads to activation of three MAPK

cascades from a receptor proximal node. The second mechanism

involves a much longer path to RAF and would not explain JNK

and p38 activation. The third mechanism starts with arrestin acti-

vation which then has a shorter path to RAF and ASK without

involving src and EGFR. Although arrestin activation downstream

of EDNRA has been shown (Rosano et al, 2009), the second and

third mechanisms are favoured in the EDN field. Nevertheless, the

three mechanisms only differ in how the MAPK module is

connected to EDNRB and are thus all compatible with the overall

structure of the network model.

In contrast to lists of regulated phosphosites, the EDNRB signal-

ling model better represents the complex nature of the interplay of

concurrently affected branches which orchestrate downstream

processes. The present study substantially expands the knowledge

about EDNRB signalling, uncovering a previously unknown spec-

trum of target kinases and target phosphosites, while at the same

time proposing an organising structure explaining these changes.

As such, it can serve as a blueprint to guide future studies on

EDNRB signalling. This opens many new possibilities in the EDN

field: studies into biological functions controlled by EDN can use

the model as an overview which pathways are engaged by the

receptor. Mechanistic studies can extend the proposed structure

with new insights into signalling mechanisms. Studies investigating

crosstalk between EDN and other signalling molecules may overlay

the model with different pathway maps to identify likely points of

crosstalk.

Though phosphoproteomic methodology has matured substan-

tially in the last decade, generation of meaningful signalling

networks from these studies is just becoming possible due to

computational advances. Manual integration of hundreds of phos-

phorylation events with thousands of prior knowledge reactions is

obviously not feasible. The advances that led to the model presented

here were organisation and formalisation of the accumulated knowl-

edge on signalling pathways from thousands of individual publica-

tions into databases (Turei et al, 2016) and the development of new

algorithms for network interference (Terfve et al, 2015). The

presented workflow is readily applicable to other medically relevant

GPCR signalling systems and will be of broader utility to generate

network models in different contexts.

The insights provided by the EDN signalling model were used to

enable targeted disruption of the signalling pathway to better under-

stand the mechanism of EDN-induced cell migration and how to

control it. This basic process is of crucial importance during inva-

sion and metastasis formation. Recent studies have confirmed that

EDNRB is a driver of metastasis in a melanoma mouse model (Cruz-

Munoz et al, 2012), a property originating from the ability of EDN

to induce cell migration (Scott et al, 1997). In addition to its auto-

crine effect, melanoma cell-derived EDN can activate EDNRB on

endothelial cells to induce angiogenesis and neovascularisation in a

different mouse model (Spinella et al, 2014).

Among the central kinases of the signalling model, AKT, JNK,

AMPK and PKC were linked to EDN-induced tumour cell migration.

To our knowledge, PKC and AMPK have not been associated with

EDN-induced cell migration until now. On the other hand, AKT and

JNK were already known to take part in the regulation of this EDN

phenotype. Both AKT and JNK inhibition blocked EDN-induced

glioma cell migration (Hsieh et al, 2014), and AKT inhibition

prevented EDNRA-mediated migration of hepatocellular carcinoma

cells (Cong et al, 2016).

The four kinases identified could be candidate drug targets

for combination therapy with EDNRB inhibitors to treat mela-

noma progression by reducing melanoma cell spreading and

metastatic potential. This provides one example how the devel-

oped network model can be used to assist in rational, informed

drug combination selection. Other interesting applications to be

explored are interactions or synergies between EDN receptor

blockers and drugs targeting branches contained in the EDN

signalling model to modulate other phenotypic outcomes

controlled by EDN.

Considering the established impact of EDN signalling on many

different physiological and pathological processes, the presented

data and model contain great potential for the future development

of novel biomedical applications of EDN signalling.

Materials and Methods

Material

Chemicals were purchased from Sigma-Aldrich unless otherwise

stated. Cell culture supplies were purchased from Life Technologies.

Endothelin 1 (CSCSSLMDKECVYFCHLDIIW) was purchased from
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Bachem (Product No. 4040254) and is referred to as EDN for the

purpose of all stimulation experiments. The following key reagents

were employed in the study: TiO2 (GL Sciences), 13C6-
15N2 lysine

(Lys-8, Silantes GmbH) and 13C6-
15N4 arginine (Arg-10, Silantes

GmbH). Heavy peptides for SRM were synthesised by JPT Peptide

Technologies. Kinase inhibitors were purchased from Selleckchem,

except for ddcAMP (Enzo Life Sciences), GSK-429286, CRT0066101

and JNK-IN-8 (Sigma-Aldrich). Primary antibodies and anti-rabbit

secondary antibodies (7074) were purchased from Cell Signalling

Technologies [pAKT S473 (9271), pCREB S133 (9198), PKC motif

(6967), PKA motif (9624), pS6 S235/6 (4858), pRB S807/11 (8516),

CaMKII S286 (12716), pMAPKAPK2 T222 (3316), p-cJun S73

(3270), p-cRAF S338 (9427), pACC S79 (11818), pHSP27 S82

(9709), AKT (4691) and CREB (9197)]. Antibodies against b-Actin
(AC-15), GAPDH (MAB374) and EDNRB (21,196) were purchased

from Sigma-Aldrich, Millipore and Santa Cruz, respectively. Anti-

mouse and anti-goat secondary antibodies were purchased from

Jackson ImmunoResearch.

Cell culture and cellular assays

UACC257 and A2058 cells were obtained from NCI and ATCC,

respectively. Cells were cultured in DMEM 10% FCS and routinely

checked for mycoplasma. Cell line identity was confirmed by STR

sequencing. A2058 EDNRB knockout cells (ENDRB-KO) were gener-

ated using the TALEN technology (Cellectis). UACC257 ENDRB-KO

cells were generated using CRISPR/Cas9. UACC257 cells were trans-

fected with three plasmids encoding CAS9, a target-specific 20 nt

guide RNA and GFP (Santa Cruz) using Lipofectamine 3000

(Thermo Fisher Scientific). Single clones were obtained by limiting

dilution. Gene disruption was verified by gene sequencing and

Western blot for UACC257 and A2058 (Fig EV1A).

Cells were SILAC labelled in heavy medium (Lys-8 and Arg-10)

for five passages, and complete incorporation of isotopes was vali-

dated by LC-MS/MS. Cells grown in heavy medium were used to

generate the global internal standard (GIST) which was spiked into

phosphoproteomic samples for normalisation. Calcium release and

cell proliferation were measured using the Fluo-4 NW Calcium

Assay Kit (Thermo) and BrdU ELISA (Roche), respectively. Fluo-4

fluorescence (Calcium kit) and TMP staining (BrdU kit) were

measured with a Synergy HT plate reader (BioTek).

EDN stimulation of melanoma cells

For phosphoproteomic and SWATH analysis, 2.5 × 106 cells were

seeded on 14-cm dishes. After allowing the cells to adhere for 24 h,

they were serum starved overnight and stimulated with DMEM with

or without 100 nM EDN for 2–90 min. Cells were scraped into 1 ml

lysis buffer (8 M urea, 100 mM Tris, pH 8, Sigma phosphatase inhi-

bitors 2 & 3), DNA was sheared using an ultrasonic rod, and protein

content quantified by BCA assay (Thermo). For phosphoanalysis,

700 lg light lysates were mixed with 400 lg GIST. No GIST was

added for SWATH protein expression analysis. Samples were precip-

itated with methanol/chloroform, resuspended in lysis buffer and

subjected to tryptic digestion.

For kinase inhibitor network validation experiments, 2.5 × 106

UACC257 cells were seeded on 14-cm dishes and serum starved

overnight. Cells were treated with DMSO, 100 nM trametinib, 1 lM

Go 6983 or 1 lM LY2584702 for 1 h. Final DMSO concentration for

all plates was 0.1%. Subsequently, cells were mock-stimulated or

treated with 100 nM EDN for 20 min. All conditions were performed

in triplicate. Lysis and further processing were performed as

described for phosphoproteomic analysis.

For SRM analysis, UACC257 cells were seeded onto 6-well plates

at 180,000 cells per well. The next day, serum was removed from

the medium and cells were treated with EDN or vehicle in combina-

tion with kinase inhibitors or DMSO (final concentration 0.1%) for

48 h in triplicates. Proteins were extracted using 8 M urea in

100 mM Tris pH 8 and subjected to tryptic digestion.

Tryptic digestion and phosphopeptide enrichment

Ten micrograms (SWATH, SRM) or 600 lg protein (Phosphopro-

teomics) was reduced with dithiothreitol (DTT) at a final concentra-

tion of 5 mM for 30 min at 37°C and alkylated using iodoacetamide

at a final concentration of 10 mM for 30 min. Alkylation was

stopped by increasing the DTT concentration to 10 mM. Urea was

diluted to 6 M with 100 mM Tris pH 8, and samples were digested

with Lys-C at 1/100 enzyme/protein for 2 h at 37°C. Afterwards,

samples were diluted to reduce urea below 2 M and digested with

trypsin at enzyme/protein 1:100 for 12–16 h at 37°C. Digestions

were quenched with 0.5% trifluoroacetic acid (TFA).

Phosphopeptide enrichment was performed as described in Zhou

et al (2013). Peptide digests were desalted on a 100 mg SepPak C18

cartridge according to manufacturer’s instructions. After speedvac

drying, samples were reconstituted in 75 ll of loading buffer (80%

acetonitrile (ACN), 6% TFA). TiO2 microcolumns were prepared

from constricted GELoader tips and packed with 200 lg TiO2 mate-

rial. Samples were loaded onto the microcolumns for ~ 30 min at

100 g. After washing with 100 ll loading buffer and 100 ll 50%

ACN 0.1% TFA, phosphopeptides were eluted with 30 ll 5%

NH4OH followed by 5 ll 50% ACN, 0.5% acetic acid. Finally,

samples were cleaned-up using C18 MicroColumns (NestGroup)

according to manufacturer’s instructions.

Data-dependent acquisition (DDA) phosphopeptide analysis

DDA phosphopeptide data were acquired on a LC-MS/MS system

consisting of a Proxeon Ultra easy LC and an Orbitrap Elite

(Thermo). Peptides were separated on a PepMap100 column (C18,

0.075 × 150 mm, 2 lm, 100 A) with solvent A: 5% ACN, 0.1%

formic acid (FA) in water and solvent B: 98% ACN, 0.1% FA.

Gradient settings were 0–120 min: 5%B–25%B at 300 nl/min. The

Orbitrap Elite was run in data-dependent mode with parallel MS1/

MS2 acquisition. Survey full scan MS1 spectra (from m/z 350 to

1,600) were acquired in the Orbitrap with resolution R = 120,000

at m/z 400. Up to 15 ions with charge state ≥ +2 were selected

for fragmentation per cycle with a dynamic exclusion window of

30 s.

Data analysis to generate phosphoproteomics data sets

Peptides were identified using the Trans-Proteomic Pipeline (TPP)

v4.7 with search engines Comet, OMSSA, MyriMatch and XTandem

with the parameters: precursor tolerance: 10 ppm; fragment toler-

ance: 0.5 Da; static modifications: iodoacetamide (C); dynamic

ª 2019 The Authors Molecular Systems Biology 15: e8828 | 2019 15 of 19

Alexander Schäfer et al Molecular Systems Biology



modifications: Label:13C(6)15N(2) (K); Label:13C(6)15N(4) (R),

phospho (STY), oxidation (M); enzyme: Trypsin; missed cleavages:

2. Posterior probabilities were assigned with PeptideProphet and

iProphet, and a peptide FDR filter of 1% was applied. MS1 XIC

quantification of light and heavy peptide pairs was performed in

Skyline v3.6 using the MS1 filtering workflow. In parallel, phos-

phate localisation probabilities and corrected sequence assignments

were calculated using LuciPHOr2 (Fermin et al, 2013). Quan-

tification and localisation results were merged in Excel 2013, and

data sets were filtered to false localisation rate (FLR) 1%. Enrich-

ment specificity values scattered around 85% phosphopeptide iden-

tifications (Fig EV1B), as expected for TiO2 enrichment.

The presented data sets contain two groups of phosphopep-

tides: The first consists of peptides with phosphates localised at

high confidence, and the second consists of peptide groups with

a certain backbone sequence and number of phosphates but with-

out high confidence phosphate site localisation. The latter are

often removed from phosphoproteomics data sets when a localisa-

tion cut-off is applied. In this paper, these peptides are retained

as a separate category, because they can still indicate regulatory

processes. The characteristics of the LuciPHOr results are shown

in Fig EV1C. The difference between the curve for peptides with

localised phosphates and for groups of peptides with the same

sequence and number of phosphates (delocalised) gives the

number of positional (isobaric) isomers for a certain FLR thresh-

old. These curves converged at FLR 1%, indicating that most of

the phosphopeptides have only one high confidence localisation

pattern. At an FLR threshold of 1%, about 20% of observed

phosphopeptides for which no localisation can be determined

with high confidence would be discarded (difference between the

horizontal dashed lines). These phosphopeptide groups were

retained, and the most likely phosphate positions assigned by

LuciPHOr were used for all subsequent analyses.

Normalisation was performed in two steps using the GIST. First,

errors in mixing light samples and GIST were compensated by

median normalisation of the light-to-heavy (L/H) ratio distributions

over all samples. Second, peptide-specific normalisation was

performed for every light peptide MS1 intensity using the corre-

sponding heavy peptide intensities. The reproducibility of quan-

tification was benchmarked by comparing the coefficient of

variation (CV) for six process replicates, starting from one lysate

(Fig EV1D). Light phosphopeptide MS1 intensity CVs before (LFQ)

and after normalisation to the GIST (SILAC GIST) showed an

improvement from 29.3 to 12.3% median CV (Fig EV1D). Control

and EDN-stimulated groups were compared using two-tailed

unpaired t-tests of normalised peptide intensities for every time

point, and fold changes were calculated. P-values were corrected

for multiple testing using Benjamini–Hochberg multiple testing

correction.

Unless otherwise stated, phosphopeptide data sets (Tables EV1

and EV2) were used for analyses. These tables contain peptides

with confidently (FLR < 1%) and ambiguously (FLR > 1%)

assigned phosphate localisations, respectively. For the latter, all

positional isomers were grouped and only the most likely localisa-

tion was used. For kinase activation prediction and network

modelling, phosphopeptide tables were converted to phosphosite

tables (Tables EV1 and EV2) assigning one row to each site in the

data set.

DIA-SWATH proteome quantification

SWATH analysis was performed on a TripleTOF 6600 (AB Sciex)

coupled to an Ekspert nanoLC 400 autosampler (Eksigent) and a

1D+ nanoLC-ultra pump (Eksigent). Samples were spiked with iRT

peptides (Biognosys), and peptides were separated on a 40-cm self-

packed emitter (0.075 lm inner diameter PicoFrit, New Objective)

packed with C18 ProntoSIL 200 3 lM AQ, 200A) using a linear

60-min gradient from 5 to 35% buffer B (98% ACN, 0.1% FA) in

buffer A (2% ACN, 0.1% FA). The TripleTOF 6600 was operated in

SWATH mode. Each cycle consisted of a 200 ms MS1 scan and 64

variable window MS2 scans, spanning the precursor mass range

between 400 and 1,200 m/z with 50 ms per scan, yielding a cycle

time of 3.4 s.

Peptide peak groups were extracted and scored from the

SWATH runs using OpenSWATH (Rost et al, 2014) against a pan-

human spectral library (Rosenberger et al, 2014) with RT extrac-

tion window 600 s, m/z extraction window 0.05 Th and iRT

recalibration enabled. The data set was then filtered with

SWATH2Stats v1.6.1 (Blattmann et al, 2016) to obtain a protein

FDR of 2% using a decoy counting approach. Finally, a median

normalised protein MS1 intensity matrix was generated using

mapDIA v2.4.2. Differential expression was tested by two-tailed

unpaired t-tests of MS1 intensities followed by multiple testing

correcting (Benjamini–Hochberg).

LC-SRM analysis

Following digestion, Lys-8/Arg-10 labelled standard peptides

for E-cadherin, b-actin and GAPDH were added at defined

concentrations before C18 MicroColumn clean-up. SRM analy-

sis was performed on a TSQ Vantage (Thermo) coupled to a

nanoLC Ultra1D+ (Eksigent). Peptides were separated on a

column (0.075 × 100 mm, C18 ProntoSIL 200 3 lM, 200A)

packed into a PicoTip Emitter (New Objective). Peptides were

separated along a linear gradient of B (98% ACN, 0.1% FA)

in A (2% ACN, 0.1% FA), running from 2 to 45% B in

40 min. The TSQ was run in scheduled SRM mode, detecting

three peptides per protein with three transitions for the light

and heavy forms. Target peptides were quantified by their L/

H XICs in Skyline v.4.1. E-cadherin was normalised to the

average abundance of beta-actin and GAPDH and exported to

GraphPad Prism v7.03.

Pathway enrichment and kinase predictions

A core analysis of each phosphoproteomics data set was

performed in Ingenuity Pathway Analysis (IPA; Build 470319M)

using “phosphorylation analysis” in the advanced analytics

module. More than 98% of phosphosites in each data set mapped

to a protein in IPA. For all analyses, the experimentally observed

phosphopeptides were used as the reference set. The differential

abundance q-value cut-off applied was 0.1. Result tables for the

categories “Canonical Pathways” and “Disease and Biofunctions”

were exported for each time point and merged. A filter requiring

two time points with significant enrichment (P < 10�3) was

applied, and the resulting table was plotted in GraphPad Prism

v7.03.
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PHOXTRACK analysis was performed on phosphosite data sets

(Tables EV1 and EV2, see Data analysis to generate phosphopro-

teomics data sets) separately for each time point against all avail-

able databases with 10,000 permutations and minimum three

substrates per kinase. For NetworKIN-based predictions, abun-

dances of target sites were averaged between replicates. The

resulting curves were split into six clusters using c-means cluster-

ing implemented in the Mfuzz package v2.4 in R v3.4. Most

likely kinases were predicted using NetworKIN 3.0 (Linding et al,

2008). Kinase–substrate enrichment in each cluster over all identi-

fied sites in the data set was calculated in R v3.4, using Fisher’s

exact test followed by Benjamini–Hochberg multiple testing

correction.

Signalling network modelling

EDNRB signalling networks were generated with a modified version

of PHONEMeS (Terfve et al, 2015) using phosphosite data sets

(Tables EV1 and EV2) as input. In its previous implementation,

PHONEMeS (https://saezlab.github.io/PHONEMeS/) was used to

build and train Boolean logic models of signalling networks down-

stream of a perturbed kinase by combining phosphoproteomics data

set with a space of K-S relationships. Differentially abundant phos-

phopeptides were identified by statistical testing with multiple test-

ing correction at qThresh = 0.1 and FC > 1.5 up or down. To each

of the measurements i for each of the time points j, a score was

assigned based on q-value si,j = log2(qi,j/qThresh). In the present

study, PHONEMeS was reformulated as an Integer Linear Program-

ming problem, enhancing model optimisation speed by orders of

magnitude (Gjerga et al, manuscript in preparation).

With PHONEMeS, paths from EDNRB to perturbed sites were

inferred using a Boolean logic modelling scheme. The network was

trained by rewarding the inclusion of correctly predicted perturba-

tions and penalising the inclusion of non-regulated sites in the

network. The ILP formulation consisted of two main parts: an objec-

tive function through which the overall sum of scores assigned to

each measurement was minimised and a set of linear constraints.

Because of the minimisation procedure, the optimal solution

network incorporates phosphosites significantly altered after EDN

treatment, while penalising the inclusion of the rest of the measured

sites. The set of constraints was used to formulate the rules in which

perturbation propagates from EDNRB and how it connects to the

downstream sites. To adapt the method to GCPR signalling,

PHONEMeS was applied as follows: first, the background K-S

network derived from Omnipath (Turei et al, 2016) was comple-

mented with a subset of all directed and signed PPIs from Omnipath

(Turei et al, 2016) associated with GPCR signalling in Reactome

(Pathway R-HSA-372790). Closely related heterotrimeric G protein

subunits and kinase isoforms were grouped in the prior knowledge

database (Table EV5). Second, PHONEMeS was extended to handle

time-resolved phosphoproteomics data. The network was generated

by running PHONEMeS successively for every time point, building

on the network structure of the previous time point. This process

was repeated 100 times where on each iteration the data were

randomly downsampled with replacement. For each run, this proce-

dure retained 61–65% unique sites that were considered for the

analysis. The individual models were then combined, and weights

were assigned to each of the interactions based on how often an

interaction appeared in the individual models. These multiple runs

enabled the capture of multiple alternative network solutions, and

the most likely interactions were assigned a higher weight. All

network modelling steps were performed in R v3.4 and visualised

using Cytoscape v3.3.

Western blots

Ten micrograms total protein were separated by SDS–PAGE and

semidry-blotted onto nitrocellulose membranes. Membranes were

blocked in TBS-T 5% skimmed milk for 1 h at room temperature

and incubated with primary antibodies diluted in TBS-T 5%

skimmed milk overnight at 4°C. Membranes were washed three

times in TBS-T and incubated with horseradish peroxidase coupled

secondary antibodies in TBS-T 5% BSA for 1 h at room temperature.

After washing the membranes four times in TBS-T, ECL was added

and pictures were documented with an Alpha Imager (Alpha Inno-

tech).

Migration assay

UACC257 cells were seeded on 24-well plates pre-coated with gela-

tine to form a closed monolayer in full medium. The next day,

scratches were generated with Wound Healing Assay plastic inserts

(Cell Biolabs). Wells were washed with PBS three times to remove

serum and scraped cells and treated with DMEM supplemented with

EDN and kinase inhibitors at 0.1 lM or 1 lM where appropriate.

Final DMSO concentration in all wells was 0.1%. Wells were imaged

with a MD2 Image Xpress Microscope (Molecular Devices) with 15

pictures at 4× magnification after 0, 24 and 48 h. At the end of the

experiment, cells were stained with MTT to assess cell viability.

Images for each well were stitched together in ImageJ v1.5.1, and

cell free areas were quantified using the ImageJ macro (http://dev.

mri.cnrs.fr/projects/imagej-macros/wiki/Wound_Healing_Tool).

Data availability

The data sets and computer code produced in this study are avail-

able in the following databases: Proteomics data: PRIDE PXD012316

(https://www.ebi.ac.uk/pride/archive/projects/PXD012316).

Modelling scripts: Github (https://github.com/saezlab/EDN_phos

pho). Networks models: Biomodels MODEL1904170001 (https://

www.ebi.ac.uk/biomodels/MODEL1904170001).

Expanded View for this article is available online.
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