
  

Int. J. Mol. Sci. 2019, 20, 4606; doi:10.3390/ijms20184606 www.mdpi.com/journal/ijms 

Article 

Bioactivity of Curcumin on the Cytochrome P450 
Enzymes of the Steroidogenic Pathway 
Patricia Rodríguez Castaño 1,2, Shaheena Parween 1,2 and Amit V Pandey 1,2,* 

1 Pediatric Endocrinology, Diabetology, and Metabolism, University Children’s Hospital Bern,  
3010 Bern, Switzerland 

2 Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland 
* Correspondence: amit@pandeylab.org; Tel.: +41-31-632-9637 (A.V.P.) 

Received: 5 September 2019; Accepted: 16 September 2019; Published: 17 September 2019 

Abstract: Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the 
roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric 
is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. 
Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. 
While curcuminoids have been studied for many years, not much is known about their effects on 
steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, 
we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 
enzyme activities. When using 10 µg/ml of curcuminoids, both the 17α-hydroxylase as well as 17,20 
lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in 
CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of 
control when using 1–100 µg/ml of curcuminoids in a dose-dependent manner. Molecular docking 
studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as 
CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in 
CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances 
of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid 
metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a 
dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. 
The molecular structure of curcuminoids could be modified to generate better lead compounds with 
inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast 
cancer. 
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1. Introduction 

Turmeric, the well-known yellow spice and coloring agent, is found in the cuisine of numerous 
Asian countries. Turmeric is also recognized for its use in Chinese and Ayurvedic medicine and has 
been tested for anti-microbial activity as far back as 1949 [1,2]. Turmeric is produced commercially 
from the dried rhizomes of the plant Curcuma longa, which belongs to the ginger family 
Zingiberaceae. Curcumin (CI-75300, diferuloylmethane, E100, Natural Yellow 3) is the most 
abundant of the curcuminoids and enhances wound healing, modulates angiogenesis and the 
immune system, and has anti-inflammatory, anti-oxidant, anti-infective and anti-cancer activities [3]. 
Since the discovery of curcumin as a bioactive compound, many biological activities have been 
described [4]. Curcumin has been shown to modulate molecular signaling pathways, such as the aryl 
hydrocarbon receptor, the induction of Nuclear factor erythroid 2-related factor 2 (Nrf2) or the 
inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), initiating the 
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activation of inflammatory and immunogenic factors. Curcumin can also inhibit angiogenesis and 
induce apoptosis on cancerous cells [5,6]. Curcumin is also involved in the increase of insulin in 
plasma and the decrease of blood glucose in diabetic patients [7,8]. 

Several investigators have studied the effect of curcumin in prostate cancer [9]. Chendil et al. 
showed that curcumin treatment of prostate cancer cell line PC-3 in combination with radiation 
inhibited tumor necrosis factor (TNF)-alpha-mediated NF-κB activity resulting in B-cell lymphoma 2 
(bcl-2) protein downregulation [10]. Curcumin has been shown to downregulate the androgen 
receptor in prostate cancer cells [11]. Several curcumin analogues have been made and tested in 
prostate cancer cells and many compounds with cytotoxicity toward prostate cancer cell lines have 
been identified in these studies [12–18]. Curcumin was also found to exhibit a protective effect against 
natural and chemical toxicities [19]. Structurally, curcumin has two aryl moieties connected by a 
seven-carbon chain. By varying the motifs from the primary structure, synthetic molecules can be 
created and a liposomal curcumin preparation can also be prepared for improved stability and 
bioavailability [20–22]. A more recent approach to improve bioavailability of curcumin has been to 
use nano formulations of curcumin [23–25]. Several different nanocurcumin preparations have been 
made and tested for in vitro as well as in vivo effects and toxicities [26–28]. The nano particle 
formulations of curcumin have been shown to improve bioavailability and therapeutic potential of 
curcumin and its analogues and can be considered a medium of choice for delivery of curcuminoids 
[29–33]. 

Anti-cancer activity of curcumin was first described by Kuttan et al. in 1985 [34]. Since then, 
different research groups have been testing curcumin in vitro, and several clinical trials have been 
carried out to test the biological activities of curcumin preparations [35]. The curcumin molecule itself 
has poor solubility in water, and therefore, often shows low bioavailability when consumed directly 
[20,36]. Different methods have been developed to increase curcumin bioavailability, and in it has 
been shown that combining curcumin with piperine ((2E,4E)-5-(2H-1,3-Benzodioxol-5-yl)-1-
(piperidin-1-yl)penta-2,4-dien-1-one), a component of black pepper obtained from Piper nigrum, the 
bioavailability of curcumin was increased significantly [20,22,37]. 

Most of the hormonal-dependent cancers, such as breast and prostate cancer, are treated by 
blocking the synthesis of estrogens and androgens [38], by targeting enzymes from the 
steroidogenesis pathway (Figure 1). The CYP17A1 enzyme (GeneID: 1586, 10q24.32, GRCh38 
chr10:102,830,531-102,837,533, NCBI: NM_000102.4 , NP_000093.1, OMIM: 609300) regulates sex 
steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of the 
anti-prostate cancer drug abiraterone [39–41]. Aromatase (CYP19A1) converts androstenedione and 
testosterone into estrogens and is a target for the treatment of breast cancer [42–44]. The CYP19A1 
protein contains 503 amino acids (NP_000094) and is encoded by the CYP19A1 gene (GeneID:1588, 
NCBI: NM_000103, 15q21.2, GRCh38 15:51208056-51338597). The cytochrome P450 21-hydroxylase, 
coded by CYP21A2 (GeneID: 1589, NCBI: NM_000500.9, NP_000491.4, 6p21.33, GRCh38 
chr6:32,038,265-32,041,670, OMIM: 613815) is needed for biosynthesis of mineralocorticoids and 
glucocorticoids. In the adrenals, CYP21A2 converts progesterone into 11-deoxycorticosterone and 
17α-hydroxyprogesterone into 11-deoxycortisol [39]. All these cytochromes P450, the CYP17A1, 
CYP19A1, and CYP21A2 are membrane-bound proteins and belong to the cytochrome P450 protein 
superfamily. Cytochromes P450 enzymes are involved in the biotransformation of drugs, xenobiotics, 
and steroid hormones [45]. There are different types of cytochrome P450 proteins in humans. The 
cytochrome P450 proteins located inside the mitochondrion metabolize steroids and sterols in 
partnership with ferredoxin and ferredoxin reductase and are called type 1 cytochrome P450 [46]. 
The majority of cytochrome P450 proteins in humans (50 out of 57) are located in the smooth 
endoplasmic reticulum and depend on cytochrome P450 oxidoreductase [47] as their redox partner 
(type 2 cytochrome P450). The microsomal P450 enzymes metabolize drugs, xenobiotics as well as 
endogenous substrates, including many steroid hormones like pregnenolone, 17α-
hydroxypregnenolone, dehydroepiandrosterone, testosterone, and androstenedione [39,47]. 
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Figure 1. Synthesis of steroid hormones in humans. After entering the mitochondrion, cholesterol is 
converted into pregnenolone, which is used as a substrate by CYP17A1 in the endoplasmic reticulum 
to produce sex steroids. First, the cholesterol is converted into pregnenolone by the enzyme CYP11A1 
(P450scc) inside the mitochondria. Pregnenolone is converted into progesterone by HSD3B2 and into 
17OH-pregnenolone by the 17α-hydroxylase activity of CYP17A1. Progesterone is converted into 
deoxycorticosterone by CYP21A2 and into 17OH-progesterone by the 17α-hydroxylase activity of 
CYP17A1. The 17,20 lyase activity of human CYP17A1 converts 17OH-pregnenolone into DHEA but 
has poor specificity for 17OH-progesterone as a substrate. The 17OH-progesterone is converted into 
11-DOC by the 21-hydroxylase activity of CYP21A2. The CYP19A1 (aromatase) converts androgens 
into estrogens and uses androstenedione as its major substrate. The 5α-reductase, SRD5A2, converts 
testosterone into dihydrotestosterone. Abbreviations: Preg = pregnenolone, Prog = progesterone, 
DOC = deoxycorticosterone, 11DOC = 11-deoxycortisol, DHEA = dehydroepiandrosterone, HSD3B2 
= 3β-hydroxysteroid dehydrogenase type 2, HSD17B1/2 = 17β-hydroxysteroid dehydrogenase type 
1/2, SRD5A2 = 5α-reductase type 2. 

Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are the most abundant 
components of turmeric; together, these are called curcuminoids (Figure 2). While activities of 
curcuminoids have been tested against a wide range of metabolic targets, not much is known about 
the effect of curcuminoids on the steroid metabolism in humans. Considering the widespread use of 
turmeric powder, which is rich in curcuminoids, we sought to examine the effects of curcuminoids 
extracted from C. longa on the metabolism of steroid hormones. Here we report that curcuminoids 
may inhibit the biosynthesis of steroid hormones. We tested the effect of curcuminoids at different 
dosages on the activities of steroid-metabolizing enzymes, CYP17A1 and CYP21A2, using adrenal 
carcinoma cell line NCI-H295R and the endoplasmic reticulum from the placental carcinoma cell line 
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JEG3 was used for CYP19A1 activity. Inhibition of CYP17A1 and CYP19A1 activities by 
curcuminoids indicate similar molecular entities or modified compounds based on core structures of 
curcuminoids could be explored as potential treatments for prostate cancer by targeting CYP17A1 
and for breast cancer by targeting CYP19A1. 

 
Figure 2. Chemical structure of curcuminoids, and characterization of curcuminoids extracted from 
turmeric used in this study. The main components of turmeric are curcumin, desmethoxycurcumin, 
and bis-desmethoxycurcumin. Curcuminoids were obtained from the dried turmeric powder (from 
Curcuma longa) by solvent extraction using ethanol and purified further by selective extraction and 
crystallization using hexane and isopropanol as described in the methods section. Curcuminoid 
composition of our turmeric extract was checked by thin-layer chromatography using 
chloroform:hexane:methanol (1:1:0.1, v/v/v) as the mobile phase. Curcuminoids in our turmeric 
extract were identified as curcumin (69.7%), bisdemethoxycurcumin (25.8%), and 
demethoxycurcumin (4.5%) and curcumin was the major component as has been shown in previous 
publications describing curcuminoid content of C. longa [48]. 

2. Results 

2.1. Isolation of Curcuminoids from Turmeric Powder and Characterization 

We used dried turmeric powder to obtain the curcuminoid preparation used in our experiments. 
An initial extraction in ethanol was carried out to dissolve the curcuminoids, and then curcuminoids 
were separated by filtration. Ethanolic extract was dried under nitrogen and then extracted with 
hexane to remove bound impurities as curcuminoids are not soluble in hexane. After two rounds of 
hexane extraction, curcuminoids were crystallized in a 50:50 mix of hexane and propanol and then 
dried. A stock solution of curcuminoids was made in ethanol. For the determination of the nature of 
curcuminoids present in our preparation, a thin-layer chromatographic separation was carried out as 
described previously. Our curcuminoid preparation indicated the presence of curcumin as the major 
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curcuminoid (69.7%) and demethoxycurcumin (4.5%)/bisdemethoxycurcumin (25.8%) were present 
as minor components (Figure 2), which is similar to previous reports describing curcuminoid 
separation from the powders of C. longa. We performed a UV–Vis spectrum analysis of our 
curcuminoid preparation and saw an absorption maximum at 427 nm in ethanol (Figure 3A), which 
was in agreement with values reported previously [49,50]. Further analysis with fluorescence 
spectroscopy indicated an emission maximum between 532–538 nm (Figure 3B). Using the known 
molar extinction coefficient values of purified curcumin (ε=61.864 cm−1 mM−1), we calculated the total 
amount of curcuminoids present in our preparation and observed that estimated values were in 
agreement with the experimentally determined results, indicating high purity of our curcuminoid 
preparation (Table 1). 

 

Figure 3. Spectral analysis of curcuminoid preparation used in our studies. (A) UV–Vis spectra of 
curcuminoid preparations. Curcuminoids were dissolved in ethanol and spectra were recorded on a 
SpectraMax M2e spectrophotometer between 350–550 nm. Different concentrations of the 
curcuminoid extract (1.25–20 µM) were used for recording the spectra. An absorption maximum of 
427 nm was observed for our curcuminoid preparation. Based on absorption values obtained from 
our preparation, an estimation of curcuminoid concentration was performed using a millimolar 
extinction coefficient of 61.864 cm−1 mM−1 for pure curcumin (Table 1). (B) Fluorescence spectra of 
increasing concentrations (1.25–20 µM) of curcuminoid preparation were used in our studies. First, 
an initial scan of excitation wavelength was performed, then in the emission scans, the excitation 
wavelength was fixed at 425 nm. A smooth emission maximum between 532–538 nm was observed 
for our curcuminoid preparation. 
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Table 1. Calculation of curcuminoid concentration based on spectral analysis. Different 
concentrations of our curcuminoid preparation were analyzed in a SpectraMax M2e 
spectrophotometer in a volume of 200 µl (pathlength 0.56 cm). The calculated values were in good 
agreement with the estimated values, indicating a high degree of purity in our curcuminoid 
preparation. 

Estimated Concentration (µM) A427 

Pathlength 0.56 cm Observed Concentration (µM) 

1.25 0.0477 1.4 
2.5 0.0915 2.6 
5 0.1787 5.2 
10 0.3366 9.7 
20 0.663 19.1 

2.2. Toxicity of Curcuminoids on NCI-H295R Cells 

We first determined the toxicity of the curcuminoids towards the steroid metabolizing NCI-
H295R adrenal cancer cell line, which was then used in subsequent experiments (Figure 4). A range 
of curcuminoid concentrations were tested with NCI-H295R cells to determine the maximum 
concentration of curcuminoid preparation that was not toxic for the cells. We observed that at 50 
µg/ml or higher concentrations of curcuminoid preparation, only 25% of the NCI-H295R cells 
survived, while at 25 µg/ml or lower concentrations of curcuminoids, most of the cells were found to 
be viable. We did not observe cell death between 0.78–12.5 µg/ml of curcuminoid preparation, and a 
standard concentration of 10 µg/ml curcuminoid preparation was used in further experiments. 
Similarly, the toxicity of curcuminoid preparation was also tested for HEK-293 cells, and no 
significant toxicity was observed below 6.25 µg/ml or higher concentrations. These results are in 
agreement with the previously reported toxicity values for curcumin in NIH3T3, H9C2, and HepG2 
cells [51]. Human trials using up to 8000 mg of curcumin found no evidence of toxicity [52]. 

 
Figure 4. Measurement of cytotoxicity of curcuminoid preparation. Effect of curcuminoids on 
cytotoxicity and viability of human adrenal NCI-H295R cells was determined using a range of 
curcuminoid concentrations between 0.78–100 µg/ml over 24 h as described in methods. The NCI-
H295R cells were grown overnight and then treated with varying concentrations of curcuminoids for 
24 h. After the incubation with curcuminoids, culture medium was removed, and cell viability was 
determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction 
assay. No significant effect on the viability of NCI-H295R cells was observed at 25 µg/ml or lower 
doses of curcuminoids. In subsequent experiments, the concentration of curcuminoids was kept 
below 10 µg/ml. Data are presented as the mean and standard deviation of three independent 
replicates. The test for statistical significance was done between each sample with the control (Ctrl) 
by one-way ANOVA groups marked as *p < 0.05; **p < 0.001 confirmed significant changes. 
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2.2. Bioactivity of Curcuminoids on Steroid Biosynthesis 

We tested the bioactivity of our curcuminoid preparation of steroid production by human 
adrenal NCI-H295R cells [53]. A primary cell line model representing adrenals is not available. The 
NCI-H295 cells have been shown to express the enzymes involved in the biosynthesis of steroids in 
human adrenals and therefore, the NCI-H295R cells have been an excellent model to study the 
molecular mechanisms of steroid regulation and human adrenal steroidogenesis [54,55]. To test the 
effects of curcuminoids on adrenal steroid production, we treated the NCI-H295R cells with 10 µg/ml 
of curcuminoid preparation and used pregnenolone as a substrate. We compared the effect of 
curcuminoids on steroid biosynthesis in NCI-H295R cells with abiraterone, a known inhibitor of 
CYP17A1 and CYP21A2 activities. The curcuminoids, as well as abiraterone, blocked the production 
of 17α-hydroxypregnenolone and dehydroepiandrosterone (DHEA), indicating inhibition of 
CYP17A1 activities (Figure 5). 

 

Figure 5. Effect of curcuminoids on steroid production. A representative thin layer chromatogram is 
shown illustrating the effect on steroid production by the NCI-H295R cells from the curcuminoids 
extracted from turmeric. Human adrenal NCI-H295R cells were incubated with tritium labeled 
pregnenolone and then treated with curcuminoids and abiraterone, a known inhibitor of CYP17A1. 
After incubations, steroids were extracted by organic solvents, dried under nitrogen and separated 
by thin layer chromatography (TLC). Radioactivity contained in steroids was visualized using 
autoradiography on a phosphorimager and quantitated by densiometric analysis. Curcuminoids 
inhibited the formation of 17OH-pregnenolone and DHEA in human adrenal NCI-H295R cells. A 
block of DHEA production indicates that curcuminoids caused inhibition of both the 17α-hydroxylase 
as well as 17,20 lyase activities of CYP17A1. Ethanol and dimethyl sulfoxide (DMSO) were used as 
controls at 0.1% of the total reaction volume. 

2.3. Bioactivity of Curcuminoids on CYP17A1 

After we saw the preliminary results indicating a block of DHEA production by curcuminoids 
that were similar to inhibition caused by abiraterone, we did further experiments to check the details 
of steroid biosynthesis inhibition by curcuminoids. We tested the effect of different concentrations of 
curcuminoids on the 17α-hydroxylase and 17,20 lyase activities of CYP17A1 (Figure 6A). We 
observed inhibitory effects of curcuminoids on both the 17α-hydroxylase as well as 17,20 lyase 
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activities of CYP17A1 in a dose-dependent manner (Figure 6B, C). Abiraterone, a known inhibitor for 
CYP17A1, which was used as a control, also inhibited the CYP17A1 activities. Overall, inhibition by 
curcuminoids of the CYP17A1 17,20 lyase activity seemed stronger compared to the inhibition of the 
17α-hydroxylase activity (Figure 6C). A stronger inhibition of 17,20 lyase activity may be due to direct 
competition with 17OH-pregnenolone or blocking the interaction of CYP17A1 with cytochrome b5 
[56]. 

 
Figure 6. Inhibitory effects of curcuminoids (CCM) on CYP17A1 activities. Abiraterone, a known 
inhibitor for CYP17A1, was used as a control. Human adrenal NCI-H295R cells were treated with 
different concentrations of the curcuminoid preparation extracted from turmeric. The CYP17A1 
converts pregnenolone into 17α-hydroxypregnenolone by its 17α-hydroxylase activity, and 17α-
hydroxypregnenolone is converted into DHEA by the 17,20 lyase activity of CYP17A1. Each 
experiment was done in triplicate. The final volume of ethanol in experiments was 0.1%, and trilostane 
(at 1 µM concentration) was used to block the activity of HSD3B2, which converts pregnenolone into 
progesterone. First a pilot experiment was performed to test the effect of curcuminoids (A), and then 
several different concentrations of curcuminoids were used to determine the inhibition of CYP17A1 
activities by curcuminoids (B, C). (A) Inhibition of CYP17A1 17α-hydroxylase activity at a 
curcuminoid (CCM) concentration of 10 µg/ml, and inhibition of CYP17A1 17,20 lyase activity at a 
curcuminoid concentration of 10 µg/ml. (B) Differential inhibition of curcuminoids on CYP17A1 17α-
hydroxylase activity. (C) Differential inhibition of curcuminoids on CYP17A1 17,20 lyase activity. 
Data are presented as the mean and standard deviation (error bars) of three independent replicates 
with *p < 0.05; **p < 0.001 considered significant. One-way ANOVA was performed between each 
sample with its own ethanol control to confirm the CYP17A1 inhibition by curcuminoids. 

2.4. Bioactivity of Curcuminoids on CYP21A2 

We used 17-hydroxyprogesterone as a substrate for CYP21A2 activity and monitored the 
production of 11-deoxycortisol to quantify the effect of curcuminoids. Human adrenal NCI-H295R 
cells do not use 17-hydroxyprogesterone as a substrate of CYP17A1 and therefore, are a good model 
for assay of CYP21A2 activities using 17-hydroxyprogesterone. We tested the bioactivity of 
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curcuminoids at 5 µg/ml and 10 µg/ml concentrations for effect on CYP21A2 activity (Figure 7). At 
10 µg/ml concentration of curcuminoids the reduction in activity of CYP21A2 was not found to be 
significant compared to the control and was less than the effects observed for inhibition of CYP171 
and CYP19A1 activities. The anti-prostate cancer drug abiraterone inhibited CYP21A2 activity as we 
have shown previously [40,41]. 

 

Figure 7. Effect of curcuminoids on CYP21A2 activity. Bioactivity of curcuminoids on CYP21A2 was 
measured at two different concentrations. Human adrenal NCI-H295R cells were used as a source of 
CYP21A2 activity. In human adrenals, CYP17A1 does not utilize 17α-hydroxyprogesterone as a 
substrate, and therefore, for the assay of CYP21A2 activity, 17α-hydroxyprogesterone was used as a 
substrate and reaction was monitored by measuring the production of 11-deoxycortisol. NCI-H295R 
cells were seeded overnight and then incubated with curcuminoids. After the incubations, [3H]-17α-
OH progesterone was added to the medium as the substrate. Following the reactions, steroids were 
extracted by organic solvents, dried under nitrogen and separated by TLC. Production of 11-
deoxycortisol from 17α-OH progesterone was measured by autoradiographic analysis of steroids on 
TLC plates as described in methods. The reduction in activity of CYP21A2 observed was not 
statistically significant at 10 µg/ml of curcuminoids. Ethanol concentration was 0.1% in the control 
reaction and abiraterone (Abi), a known inhibitor of CYP21A2, was used as a positive control. Data 
shown here are from the mean and standard deviation (error bars) of three independent experiments. 
One-way ANOVA was used as a statistical method to compare each sample with the control giving 
significant results when **p < 0.001. 

2.5. Bioactivity of Curcuminoids on CYP19A1 

To test the effect of curcuminoids on the aromatase activity of CYP19A1, we used 
androstenedione as substrate and monitored its metabolism by quantifying the release of tritiated 
water from radiolabeled androstenedione. A preparation of endoplasmic reticulum obtained from 
the placental JEG3 cells was used for the assay of aromatase enzyme activity. A dose-response effect 
showing the inhibition of aromatase with the increasing amounts of curcuminoids was seen from 
0.78 to 100 µg/ml concentration of curcuminoids (Figure 8). A known inhibitor of CYP19A1, 
anastrozole was used as a positive control at 100 nM concentration and showed inhibition of 
CYP19A1 activity as expected. 
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Figure 8. Effect of curcuminoids on CYP19A1 activity. A dose-response profile is shown indicating 
the inhibition of aromatase by curcuminoids. A preparation of endoplasmic reticulum obtained from 
JEG3 placental cells was used as a source of aromatase activity, and tritium-labeled androstenedione 
was used as a substrate. The CYP19A1 reaction was monitored by calculating the amount of tritiated 
water released by CYP19A1 during the aromatization of androstenedione. A known inhibitor of 
CYP19A1, anastrozole (100 nM) was used as a positive control. Curcuminoids showed a small effect 
on CYP19A1 activity 6.25 µg/ml and higher inhibition was observed at 12.5, 25, 50, and 100 µg/ml 
concentrations of curcuminoids, indicating natural curcuminoids present in C. longa are not potent 
inhibitors of aromatase activity. Data are presented as the mean and standard deviation of three 
independent replicates. One-way ANOVA was used as a statistical method to compare each sample 
with the control (Ctrl) giving significant results at *p < 0.05 and **p < 0.001. 

2.6. Computational Docking of Curcumin into the Human CYP17A1, CYP21A2, and CYP19A1 Crystal 
Structures 

After observing the inhibitory effects of curcuminoids on CYP17A1, CYP19A1, and CYP21A2, 
we performed computational docking of curcumin into the protein structures of these cytochromes 
P450 to understand the molecular nature of inhibition. The molecular structure of curcumin 
resembles steroid substrates of cytochromes P450 studied in this report, and therefore, we wanted to 
check whether curcumin fits into the active site of these steroid metabolizing enzymes. Curcumin 
was docked into the crystal structures of human steroid metabolizing cytochrome P450 CYP17A1, 
CYP19A1, and CYP21A2 using the docking program Autodock VINA (Figure 9). Superimposition of 
P450 structures with either their substrates or the curcumin docked into the active site revealed 
similar binding poses (Figure 9). We observed a close binding pattern from the docking of curcumin 
into the active sites of CYP17A1 and CYP19A1 crystal structures (heme iron to curcumin distances < 
2.5 Å) (Figure 9). The binding pose of curcumin into CYP21A2 structure was also like its binding into 
the CYP17A1 and CYP19A1 structures. A comparison of the CYP17A1 and CYP19A1 crystal 
structures in complex with curcumin and docked curcumin into the crystal structure of CYP21A2 
revealed similar binding conformations, but the distance of the curcumin to the central heme iron of 
CYP21A2 was longer (3.4 Å versus 2.4 Å) (Figure 9). Binding of curcumin with CYP17A1, CYP19A1, 
and CYP21A2 shares many similarities with the binding of steroid substrates into the active sites of 
these cytochrome P450 proteins with many similar active site residues involved in binding. These 
results indicate that curcumin may act as an active site inhibitor and occupy the same space in 
cytochrome P450 active sites as used by their steroid substrates. 
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Figure 9. Docking of curcumin into the protein structures of CYP17A1 (A), CYP19A1 (B), and 
CYP21A2 (C). Published crystal structures of CYP17A1, CYP19A1, and CYP21A2 were used for 
docking of curcumin by software AUTODOCK-VINA as described in materials and methods. Bound 
steroid ligands were removed before docking of curcumin into the active site of P450s. The poses in 
which curcumin docks are similar to steroid substrates of all three P450s, with closer fitting in case of 
CYP17A1 (A) and CYP19A1 (B) as compared to CYP21A2 (C) (distance from heme 2.5 Å for 
CYP17A1/CYP19A1 versus 3.4 Å for CYP21A2). 
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3. Discussion 

All steroid hormones are produced from cholesterol [57]. The abnormal production of steroid 
hormones, for example, the hypercortisolemia seen in Cushing´s syndrome, is a life-threatening 
condition [58,59]. The hyperandrogenism is not life-threatening by itself but creates many severe 
complications during all phases of life. Androgens regulate sexual differentiation in both the female 
as well as male and disruption of androgen biosynthesis by mutations in steroid metabolizing 
enzymes, or their redox partners, cause metabolic disorders [60]. Non-tumoral cases of 
hyperandrogenism include polycystic ovary syndrome (most common metabolic disorder in 
females), congenital adrenal hyperplasia caused by 21-hydroxylase deficiency, and Cushing’s 
syndrome [61,62]. Overproduction of cortisol and androgens could be therapeutically controlled by 
inhibitors that block specific steps in steroid biosynthesis. 

CYP17A1 catalyzes multiple reactions in the steroid biosynthesis pathway [63–65]. The main 
activities of CYP17A1 include the 17α-hydroxylase activity needed for the biosynthesis of 17OH-
pregnenolone (17OH-PREG) and 17OH-progesterone (17OH-PROG), the precursors of cortisol. The 
CYP17A1 provides qualitative regulation of steroid production in humans by its 17,20 lyase activity 
that produces dehydroepiandrosterone (DHEA), the precursor of sex steroids. The two distinct 
enzyme activities of CYP17A1 dictate the nature of steroids synthesized in different types of cells 
[39,56]. Overproduction of androgens by the activation of CYP17A1-17,20 lyase activity has been 
linked to polycystic ovary syndrome. CYP17A1 is also a metabolic target for chemotherapy of 
castration-resistant prostate cancer [40,66]. 

Novel compounds that are safe and non-toxic are needed to target CYP17A1 and CYP19A1 
activities to treat metabolic disorders resulting from excess production of androgens or estrogens. 
Here we have probed the potential of curcuminoids as possible test candidates for synthesizing novel 
chemicals to target CYP17A1 and CYP21A2. We found a dose-dependent inhibition of both CYP17A1 
and CYP19A1 by curcuminoids. In our current study, curcuminoids caused a reduction of CYP21A2 
activity. A reduction in CYP21A2 activity was observed at 10 µg/ml concentration of curcuminoids. 
Based on these results, we can conclude that curcuminoids may cause an intricate pattern of changes 
in steroid metabolites due to small to moderate inhibition of CYP19A1 and CYP21A2 activities in 
addition to significant inhibition of 17α-hydroxylase as well as 17,20 lyase activity of CYP17A1. 

Curcumin has been tested on the five drug-metabolizing enzymes from the cytochrome P450 
family, in vivo [67] and in vitro [68,69], showing that CYP1A2, CYP2B6, CYP2C9, CYP2D6, and 
CYP3A4 can be inhibited by curcuminoids in a dose-dependent matter. Our studies provide an 
analysis of the inhibitory effects of curcuminoids on CYP17A1 and CYP19A1 activities. These results 
indicate that steroid production in people with high amounts of curcuma consumption may be 
affected not only by the inhibition of CYP17A1 activities but also by the inhibition of CYP19A1 and 
to a smaller extent, the inhibition of CYP21A2 enzyme activity. Also, use of curcuminoids as a 
common over the counter health supplement requires further caution as inhibition of both CYP17A1 
and CYP19A1 activities may potentially result in complications of steroid metabolism in both males 
and females. Inhibitors of steroidogenesis act on multiple steps in steroid biosynthesis. Many drugs 
have been approved for use as steroid biosynthesis inhibitors (Ketoconazole, Metyrapone, Etomidate, 
Mitotane). All these drugs inhibit CYP17A1, CYP11A1, CYP11B1, and CYP19A1 [70]. Also, many 
other inhibitors which can block androgen biosynthesis in androgen-dependent prostate cancers are 
being studied [41,71–73]. Curcumin in native forms as well as in nano particle preparations of 
curcuminoids and their analogues have been tested for their therapeutic role in prostate cancer 
[25,74]. However, the effect of curcuminoids on steroid metabolizing cytochrome P450 enzymes that 
play a major role in regulation of androgens and estrogens in normal as well as cancerous tissues, has 
not been studied. Our results describing the inhibitory effect of curcuminoids on CYP17A1 as well as 
CYP19A1 indicate that some of the effects of curcuminoids seen in studies on prostate cancer and 
breast cancer cell lines, may be due to inhibition of steroidogenic cytochrome P450 enzymes. 

Stability of curcuminoids has been a major concern for its direct use as it degrades rapidly into 
trans-6-(4′-hydroxy-3′-methoxy phenyl)-2,4-dioxo-5-hexenal, vanillin, ferulic acid, and feruloyl 
methane [75]. Some of the curcumin degradation products can have toxic side effects [76]. 
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Bioavailability and stability of curcumin could be improved by the use of sustained-release 
nanoparticles or liposome preparations [29–33,77]. Several different approaches to prepare 
nanoparticle formulations of curcumin have been used in recent years and tested in different disease 
models. A poly(lactic-co-glycolic acid) (PLGA) nanoparticle preparation of curcumin was shown to 
have good activity in tests on prostate cancer cell lines [25]. An important formulation has been the 
use of curcumin with piperine, which has been found to enhance the bioavailability as well as effects 
of curcumin [78,79]. A recent study had shown inhibition of SRD5A2 activity by curcumin and some 
of its synthetic analogues [80]. Synthetic analogues of curcumin have also been shown to have 
antiparasitic activities against Trypanosoma and Leishmania parasites [81]. A nanocurcumin 
preparation has been shown to protect against the neurodegenerative effects from cerebral malaria 
in a mouse model [32]. There is good indication from work on nano particle-based curcumin and its 
synthetic analogues that bioavailability as well as stability of curcuminoids could be improved. In 
addition to prostate cancer cell models, curcumin nano particle formulations have been used in many 
different conditions with improved efficacy and are considered safe for human consumption [82–84]. 
However, most information about substances like curcumin which are known from traditional 
medicine is based on herbal formulations and purified active ingredients and their synthetic 
analogues need validation [85]. 

4. Materials and Methods 

4.1. Materials 

Radiolabeled [3H]-pregnenolone, [7(N)-3H]-pregnenolone (12.6 Ci/mmol), and [3H]-
androstenedione: Andros-4-ene-3, 17-dione, [1β-3H(N)]-, 250 µCi (9.25 MBq) were purchased from 
PerkinElmer (Waltham, MA, USA). [3H]-17α-OH progesterone [1, 2, 6, 7-3H] (60-120 Ci/mmol 2.22-
4.44 TBq/mmol) was obtained from American Radiolabeled Chemicals Inc. (St. Louis, MO, USA). 
Silica gel-coated aluminum backed TLC plates were purchased from Macherey-Nagel (Oensingen, 
Switzerland). The tritium-screens used for the autoradiography were purchased from Fujifilm 
(Dielsdorf, Switzerland). Turmeric extract capsules (from Curcuma longa) were obtained from the 
Finest Natural (Item: 943.17, Deerfield, IL, USA). Trilostane was extracted in absolute ethanol (EtOH) 
from tablets commercially available as Modrenal® (Bioenvision, NY, USA). Abiraterone was 
purchased from Selleckchem (Houston, TX, USA). Anastrozole was obtained from AstraZeneca 
(Cambridge, UK). 

4.2. Cell Lines and Culture Media 

Human placental JEG3 cells [86] were purchased from American Type Culture Collection 
(ATCC) (ATCC: HTB-36™) and cultured in minimal essential medium (MEM) with Earle’s salts 
(Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum, 1% L-
glutamine (200 mM GIBCO), 1% penicillin (100 U/ml; GIBCO), and streptomycin (100 µg/ml;(Thermo 
Fisher Scientific, Waltham, MA, USA)). Human adrenocortical NCI-H295R (NCI-H295R) cells 
[53,87,88] were purchased from ATCC (ATCC: CRL-2128) and grown in DMEM/Ham’s F-12 medium 
containing L-glutamine and 15 mM HEPES ((Thermo Fisher Scientific, Waltham, MA, USA)) 
supplemented with 5% NU-I serum (Becton Dickinson, Franklin Lakes, NJ USA), 0.1% insulin, 
transferrin, selenium (100 U/ml;(Thermo Fisher Scientific, Waltham, MA, USA)), 1% penicillin (100 
U/ml; (Thermo Fisher Scientific, Waltham, MA, USA), and streptomycin (100 µg/ml; GIBCO) and 
passage numbers during the experiments remained below 30 according to established protocols 
[40,41,55,56,89,90]. Human embryonic kidney HEK293 cells (ATCC: CRL-1573) [91] were grown in 
DMEM GlutaMAX TM medium supplemented with 10% fetal bovine serum (FBS), 1% antibiotic mix 
(100 ×), and 1 mM sodium pyruvate. 

4.3. Curcuminoid Extraction and Analysis 

To obtain a crude turmeric extract, we mixed 20 g of turmeric in 200 ml of ethanol and kept it 
overnight. The ethanol extract was filtered and dried under nitrogen. Pure curcuminoids were 
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obtained by recrystallization using hexane and propanol as described previously. In brief, dried 
ethanol extract powder was dissolved in hexane and centrifuged at 2000 ×g for 15 min, and the 
supernatant was discarded. The pellet from the hexane extraction was dissolved in a 
propanol/hexane mixture (50% propanol + 50% hexane). The solution was mixed for 90 min and then 
stored at 4 °C overnight for crystallization. The next day, the soluble fraction was removed, and the 
crystallized curcuminoids were dried under nitrogen. A stock solution of curcuminoid stock was 
made by mixing 10 mg of the crystallized curcuminoid powder in 1 ml of 100% ethanol. The purity 
of the curcuminoid extract was tested by thin-layer chromatography [92] (Figure 2). Curcuminoid 
extract was further analyzed by UV–Vis and fluorescence spectroscopy to compare the spectral 
properties of our preparation with previous extraction procedures. 

The absorption spectra of curcumin in ethanol were collected using a microplate reader 
(Spectramax M2e, Molecular Devices, Sunnyvale, CA, USA). In brief, different concentrations of 
curcumin (1.25–20 µM) in ethanol were scanned within the wavelength range of 350–550 nm at 1 nm 
intervals in a total volume of 200 μl. All UV–Vis measurements were performed at 25 °C and corrected 
for the solvent medium (ethanol). Similarly, the fluorescence spectra of varying concentrations of 
curcuminoids were also recorded at 25 °C on a microplate spectrofluorometer system (Spectramax 
M2e, Molecular Devices, Sunnyvale, CA). Ethanol solutions of curcuminoids at 1.25, 2.5, 5, 10, and 20 
µM concentrations in a volume of 100 μl were scanned at 2 nm intervals. The emission spectra were 
measured with an excitation wavelength set at 425 nm, and emission was scanned between 480–650 
nm. 

4.4. Cell Viability Assay Using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) 

Human adrenal NCI-H295R cells were seeded in 96-well culture plates at a density of 3 × 105 
cells per well and grown overnight at 37 °C under 5% CO2, and 90% humidity. After 24 h, the medium 
was changed, and serial dilutions of curcuminoids were added to the medium and incubation of cells 
was continued for another 24 h. After the incubation of cells with curcuminoids, 20 µl of MTT reagent 
(5 mg/ml in PBS) was added into each well, and the incubation was continued for another 4 h. After 
the incubation with MTT reagent, culture medium was removed and 200 µl of DMSO was added in 
each well, and the plate was incubated for 20 min in the dark. The absorbance in individual wells was 
then measured at 570 nm, and calculations of cell viability were performed based on residual MTT 
reduction activity of cells compared to controls without curcuminoids. As another control, the 
toxicity of curcuminoids on human HEK-293 cells was also tested under similar conditions using the 
methods described for NCI-H295R cells. 

4.5. Assay of CYP17A1 and CYP21A2 Activities 

Human adrenal NCI-H295R cells were seeded in 6-well tissue culture plates at a density of 1 × 
106 cells per well. Steroid metabolism by NCI-H295R cells has been studied in our laboratory for 
many years and culture conditions and passage numbers (kept below 30) adhered to previously 
established protocols [40,41,55,56,89,90]. After overnight incubation, medium was changed, and 
different concentrations of curcuminoids were added to the incumation medium and incubation was 
continued for 24 h. A known inhibitor of CYP17A1 and CYP21A2, abiraterone (1 µM), was used as a 
control for both assays. NCI-H295R cells were treated with trilostane (1 µM), an inhibitor of HSD3B2, 
90 min before the addition of radiolabeled substrates. For CYP17A1 activity assays, ~100,000 
cpm/well of [3H]-pregnenolone was added to each well. For the determination of CYP21A2 activity, 
[3H]-17α-OH progesterone (~50,000 cpm/well) was used as a substrate. After incubations with 
radiolabeled substrates, medium from each well was collected, and steroids were extracted in ethyl 
acetate:isooctane (1:1). Extracted steroids were concentrated under nitrogen and dissolved in 20 µl of 
trichloromethane for separation by thin-layer chromatography on silica gel thin layer 
chromatography (TLC) plates (Macherey-Nagel, Oensingen, Switzerland). Radiolabeled steroids 
were quantified by autoradiography on a Fuji FLA-7000 PhosphorImager (Fujifilm, Dielsdorf, 
Switzerland). Quantification of steroids was done using MultiGauge software (Fujifilm, Dielsdorf, 
Switzerland).4.6. Preparation of Microsomes from JEG3 Cells 
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JEG3 cells were collected near confluency and washed with cold PBS. The cell suspension was 
then centrifuged at 1500 ×g for 5 min to pellet the cells. Afterward, the cell pellet was suspended in 
100 mM Na3PO4 (pH 7.4) containing 150 mM KCl, and the cells were lysed by sonication. Unbroken 
cells and mitochondria were pelleted by centrifugation at 14,000 ×g for 15 min at 4 °C. Microsomes 
containing endoplasmic reticulum were collected by ultracentrifugation at 100,000 ×g for 90 min at 4 
°C and resuspended in 50 mM K3PO4 (pH 7.4) containing 20% glycerol [56]. The protein content of 
microsomes was measured by the BioRad Protein Assay Kit (BioRad, Hercules, CA, USA). 

4.7. Assay of CYP19A1 Activity 

The aromatase activity of CYP19A1 was measured by calculating the release of tritiated water 
from the substrate during aromatization. Assays of aromatase activity were carried out using 40 µg 
of microsomes from JEG3 cells in 100 mM potassium phosphate buffer (pH 7.4) containing 100 mM 
NaCl in a final volume of 200 µl. Different concentrations of curcuminoids were added to reaction 
mixtures, and ethanol was used as the control. A known inhibitor of CYP19A1, anastrozole was 
included in some reactions as a positive control. Assays were performed using 50 nM 
androstenedione as a substrate and contained ~20,000 cpm of [3H]-androstenedione as a radioactive 
tracer. The aromatase reaction was initiated by the addition of reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) to 1 mM final concentration and incubations were done at 37 °C 
with constant shaking for 1 h. Afterward, 800 µl of a solution containing 5% charcoal with 0.5% 
dextran was added to each reaction mixture and mixed by vortexing followed by centrifugation at 
15,000 ×g for 10 min. From each reaction, 500 µl aliquots were taken for the measurement of 
radioactivity by scintillation counting using the Rotiszint Universal Cocktail (Carl Roth GmbH, 
Karlsruhe, Germany), and aromatase activity was calculated as described previously [93,94]. 

4.8. Docking of Curcumin into CYP17A1, CYP19A1, and CYP21A2 Protein Structures 

The published 3D structures of human CYP17A1, CYP19A1, and CYP21A2 were obtained from 
the protein data bank (PDB) database. We made in-silico calculations and structure analysis with 
YASARA [95]. For docking experiments, X-ray crystal structures of human of CYP17A1 (PDB# 
3RUK), CYP19A1 (PDB# 3EQM), and CYP21A2 (PDB # 4Y8W), were used [96–98]. Missing hydrogen 
atoms in the structures were added with YASARA [95], which was also used for all other calculations. 
The resulting minimum energy structures were used for AutoDock VINA [99] to perform docking 
experiments with curcumin (orthorhombic docking was grid established around the central heme 
molecule). The final poses of curcumin were selected based on their docking location and scores, and 
resemblance to the co-crystallized ligands in the P450 structures. Structure models were drawn with 
Pymol (Schrödinger, New York, NY, USA) 

4.9. Statistical Analysis 

For the statistical analysis, Microsoft Excel and GraphPad Prism (Graph Pad Software, Inc. San 
Diego, CA, USA) were used. Data are presented as the mean and standard deviation of 3 independent 
replicates. One-way ANOVA was used to calculate the differences between the samples with the 
corresponding controls. Significance cutoffs for experiments was set at *p < 0.05 and **p < 0.001. 

5. Conclusions 

Computational docking from our experiments showed that curcumin could bind into the active 
sites of steroid metabolizing P450s. The inhibition of CYP17A1 and CYP19A1 by curcuminoids 
provides a template for structure modification to produce effective and safe compounds that can 
target prostate cancer as well as breast cancer. Curcumin-based compounds can be further optimized 
for delivery as nano formulations, which have been tried in laboratory animals [37,100,101] as well 
as in human trials and shown to be safe [29,82]. Only a minor effect on CYP21A2 activity by 
curcuminoids compared to inhibition of CYP17A1 (50% inhibition of 17,20 lyase activity at 5 µg/ml 
compared to no significant effect on CYP21A2 activity at the same concentration) was observed. This 
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suggests that compounds based on curcuminoids may be better and safer inhibitors for use in 
hyperandrogenic states like polycystic ovary syndrome, especially in children and young adults, and 
avoid the toxic effects of abiraterone which severely inhibits CYP21A2 activity [40,41]. 
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