
REGULAR ARTICLE

Integrated phosphoproteomics and transcriptional classifiers reveal
hidden RAS signaling dynamics in multiple myeloma

Yu-Hsiu T. Lin,1 Gregory P. Way,2 Benjamin G. Barwick,3 Margarette C. Mariano,1 Makeba Marcoulis,1 Ian D. Ferguson,1

Christoph Driessen,4 Lawrence H. Boise,3 Casey S. Greene,2,5 and Arun P. Wiita1

1Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA; 2Department of Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania, Philadelphia, PA; 3Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA; 4Experimental
Oncology and Hematology, Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; and 5Childhood Cancer Data Laboratory, Alex’s
Lemonade Stand Foundation, Philadelphia, PA

Key Points

•NRAS and KRAS
mutations lead to
different downstream
transcriptional signa-
tures and patient
prognoses under
current myeloma
therapies.

• RAS genotype alone
does not strongly
predict degree of active
MAPK signaling,
suggesting alternate
precision medicine
approaches are
needed.

Amajor driver of multiple myeloma (MM) is thought to be aberrant signaling, yet no kinase

inhibitors have proven successful in the clinic. Here, we employed an integrated, systems

approach combining phosphoproteomic and transcriptome analysis to dissect cellular

signaling in MM to inform precision medicine strategies. Unbiased phosphoproteomics

initially revealed differential activation of kinases across MM cell lines and that sensitivity

to mammalian target of rapamycin (mTOR) inhibition may be particularly dependent on

mTOR kinase baseline activity. We further noted differential activity of immediate

downstream effectors of Ras as a function of cell line genotype. We extended these

observations to patient transcriptome data in the Multiple Myeloma Research Foundation

CoMMpass study. A machine-learning–based classifier identified surprisingly divergent

transcriptional outputs betweenNRAS- and KRAS-mutated tumors. Genetic dependency and

gene expression analysis revealed mutated Ras as a selective vulnerability, but not other

MAPK pathway genes. Transcriptional analysis further suggested that aberrant MAPK

pathway activation is only present in a fraction of RAS-mutated vs wild-type RAS patients.

These high-MAPK patients, enriched for NRAS Q61 mutations, have inferior outcomes,

whereas RAS mutations overall carry no survival impact. We further developed an

interactive software tool to relate pharmacologic and genetic kinase dependencies in

myeloma. Collectively, these predictive models identify vulnerable signaling signatures and

highlight surprising differences in functional signaling patterns between NRAS and KRAS

mutants invisible to the genomic landscape. These results will lead to improved

stratification of MM patients in precision medicine trials while also revealing unexplored

modes of Ras biology in MM.

Introduction

Multiple myeloma (MM) is an incurable malignancy of plasma cells. Considerable effort has gone into
deep sequencing of MM to genomically classify patients for risk assessment and targeted therapy.1-5

While these studies have offered significant insight into MM biology and prognosis, this genomic
knowledge largely remains untranslated into therapeutic strategies.6
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We hypothesized that one reason genomic profiles alone have
not improved clinical outcome is that they may not be fully pre-
dictive of higher-level processes, such as dysregulated signaling,
that drive cancer phenotypes. Mass spectrometry–based phos-
phoproteomics has therefore proven a powerful tool to explore
cellular-wide signaling alterations in cancer.7,8 For example,
studies in acute myeloid leukemia have shown that phosphory-
lation signatures can be used to predict sensitivity to kinase
inhibitors in cell lines and primary samples.9,10 Alternatively, as an
indirect measure of cellular signaling, downstream transcriptional
signatures may reveal specific functional readouts of upstream
kinase activity.11

In MM, it is thought that aberrant signaling is strongly driven by
mutations in the RAS family of proto-oncogenes. These mutations
are proposed to activate oncogenic signaling primarily via the
MAPK and phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(AKT) pathways.12,13 An outstanding mystery in oncology is tumor-
specific selection of mutations in different RAS isoforms, despite
.80% sequence homology and highly similar function.13,14

Furthermore, it is not known why mutations in specific RAS codons
predominate in some cancers but not others.15,16

MM is a unique case study of Ras biology, as ;40% of MM patient
tumors have predicted activating mutations in KRAS or NRAS,4,5

with an approximately equal distribution between the two.
Notably, these mutations are very rare in the precursor lesion
monoclonal gammopathy of uncertain significance, suggesting
that RAS mutations are important for disease transformation.17

The majority of MM research has treated mutations in these RAS
isoforms as largely indistinguishable, though some distinctions
have emerged. For example, under earlier MM therapies, patients
with KRAS mutations had worse overall survival than those with
NRAS mutations.18,19 However, later observations suggested
that patients with NRAS mutations responded more poorly to
bortezomib-based therapies than patients with KRAS muta-
tions.20 Cell line studies indicated that KRAS leads to more rapid
proliferation in the absence of interleukin-6 stimulation than
NRAS.21,22 More recent sequencing studies have suggested that
NRASmutations tend to cluster with specific genomic aberrations.5

Finally, bone marrow immunohistochemistry suggested differ-
ences in extracellular signal-regulated kinase (ERK) phosphoryla-
tion depending on the RAS isoform and specific mutation.23

Therefore, this evidence suggests that KRAS and NRAS in MM
are not exactly equivalent, but much about the biology of these
differences remains unclear.

Here, we apply an integrated approach using both unbiased
phosphoproteomics and machine-learning classifiers of transcrip-
tional response to dissect signaling in MM. Our results reveal
differential kinase activity across MM cell lines with potential
implications for selective kinase vulnerability. We next uncover
underlying transcriptional output differences for patients with
KRAS and NRAS mutations, with particular prognostic implica-
tions of NRAS Q61 mutations. Surprisingly, we find that only
a fraction of RAS-mutated patients are predicted to have highly
activated MAPK signaling vs wild-type (WT) RAS patients. Our
results identify RAS-mutated MM patients who may benefit from
precision medicine strategies and reveal modes of RAS isoform-
driven biology with implications across RAS-mutated cancers.

Methods

Cell culture and phosphoproteomics

Cell lines were cultured and phosphoproteomics experiments and
analysis were performed as described previously.24 Additional
details can be found in supplemental Methods.

Kinase inhibitor screens on myeloma cell lines

Briefly, 1e3 myeloma cells were seeded per well in a 384-well plate
and treated with the designated inhibitor at each dose in quadru-
plicate. Viability was determined at 48 hours using CellTiterGlo
reagent (Promega) and 50% inhibitory concentration calculated
using GraphPad Prism software v6. Additional details are available
in supplemental Methods.

RAS classifier for MM

We downloaded RNA sequencing (RNA-seq) and somatic
mutation data from the Multiple Myeloma Research Foundation
(MMRF) CoMMpass (version IA11a); 90% of patient data with
transcriptome and genotype information (n 5 706) was used to
optimize and train the machine-learning classifier, and the remaining
10% of data (n 5 80) was withheld as a test set. The data were
split to ensure balanced representation of total KRAS, NRAS,
andWT RAS samples. We adapted our previously published elastic
net penalized logistic regression classifier for predicting RAS
pathway activation25 with a one-vs-rest approach to classify KRAS
and NRAS mutations separately. Additional details can be found in
supplemental Methods.

MAPK pathway activity and the Multiple Myeloma

Kinome Browser

We applied a perturbation-response machine-learning model
called PROGENy (https://github.com/saezlab/progeny) imple-
mented in R on RNA-seq data from myeloma cell lines (www.
keatslab.org) and patient samples (CoMMpass IA11). The MAPK
PROGENy score quartiles were compared with patient progression-
free survival (PFS) and overall survival (OS) using a Cox pro-
portional hazards regression; score quartiles were compared with
patient clinical characteristics (age, sex, race, b2 microglobulin,
and M-protein) using a linear regression for continuous variables
and Fisher’s exact test for discrete variables. Common trans-
locations and copy-number alterations were determined as pre-
viously described.26 Additional details are available in supplemental
Methods.

Results

Kinase activity from phosphoproteomics is modestly

predictive of kinase inhibitor sensitivity in myeloma

cell lines

We first aimed to predict differential kinase activity across
MM cell lines and investigated whether increased kinase activity
led to increased vulnerability to selective inhibitors. We used
immobilized metal affinity chromatography to enrich phosphopep-
tides across 7 MM cell lines and 1 in vitro–evolved bortezomib-
resistant cell line27 (Figure 1A). In total, 19 155 phosphosites from
4941 proteins were quantified across all cell lines (supplemen-
tal Data Set 1; supplemental Table 1). As expected, .99% of
all identified phosphorylation events were on Ser or Thr sites.
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The Pearson R of phosphosite intensity correlations within each
line ranged from 0.86 to 0.95, underscoring the reproducibility of
this analysis (supplemental Figure 1).

We used kinase-substrate enrichment analysis (KSEA)28 to identify
kinases with predicted differential activity in$1 cell line vs all others.
As an initial validation of KSEA, we found that KMS-11, with both

Pe
rc

en
t v

iab
ilit

y v
s c

on
tro

l

AMO1 BtzR
AMO1 WT

INA6
KMS11

KMS34
L363

MM1S
RPMI8226 

NVP-BGJ398 (pan-FGFR)

0.1 1 10 100
0

50

100

150
Trametinib (MEK)

0.1 1 10 100
0

50

100

150

[Drug] (uM)

AZ3146 (MPS1K)

0.1 1 10 100
0

50

100

150
Afatinib (EGFR)

0.1 1 10 100
0

50

100

150

Alisertib (AURKA)

0.01 0.1 1 10
0

50

100

150
KY-05009 (TNIK)

0.1 1 10 100
0

50

100

150

INK128 (mTOR)

0.001 0.01 0.1 1
0

50

100

150
CA-4948 (IRAK4)

0.1 1 10 100
0

50

100

150

D

C

−2
0
2

Re
lat

ive
 K

SE
A-

pr
ed

ict
ed

kin
as

e 
ac

tiv
ity

 (l
og

2)

PA
K

1
E

G
FR

M
A

P
2K

1
R

O
C

K
1

TTK
A

U
R

K
A

C
LK

1
M

TO
R

E
R

B
B

4
P

LK
2

FG
FR

3
IR

A
K

4
TN

IK
D

A
P

K
2

AMO1
MM1S
AMO1br
L363
INA6
RPMI8226
KMS34
KMS11

**
*

*

**
***

***

*

*

**
***

***

***

***

**

**

***
**

*

**
***

***

*

*
**
*

*

E

Relative kinase activity

Se
ns

itiv
ity

 (l
og

 L
C5

0)

INK128 (mTOR)

–2.5

–2.0

–1.5

–1.0

–0.25 0.00 0.25 0.50

y = –1.8 + –0.78 x, r2 = 0.431
p = 0.077

Cell Lines

AMO1
AMO1br

INA6
KMS11

KMS34
L363

MM1S
RPMI8226

Alisertib (AURKA)

y = –1.4 + –0.37 x, r2 = 0.186–2.0

–1.6

–1.2

–0.8

–0.2 0.0 0.2 0.4 0.6

p = 0.335

B
KMS11
KMS34
RPMI8226
AMO1
MM1S
L363
INA6
AMO1br

–3
–2
–1
0
1
2
3

FGFR3

FGFR3
Mutations

t(4;14)

-
-
-
-
-
-
-

-
-
-
-
-
-

Re
lat

ive
 K

SE
A-

pr
ed

ict
ed

kin
as

e 
ac

tiv
ity

 (l
og

2)+ +
+

A

m/z

7 MM Cell Lines +
1 Resistant Line

Predicted Activity

Ce
ll l

ine
s

Kinase

IMAC 
phospho

enrichment

3. Trypsinize 

1. Lysis
2. Reduce/

alkylate
LC-MS/MS

(4-hour runs)
1. MaxQuant

analysis

2. Kinase-Substrate
Enrichment

Analysis

P

P

P

P

P

P

P

P
P P

Figure 1. Predicting kinase activity and inhibitor sensitivity in MM by unbiased phosphoproteomics. (A) Schematic of the pipeline for kinase activity prediction from

phosphoproteomic data. All phosphoproteomics were performed in biological triplicate and combined by averaging the log2-transformed intensities of phosphosites associated

with each kinase to generate activity scores. (B) Association of predicted FGFR3 activity from KSEA with known genetic aberrations. (C) Heatmap of the KSEA-predicted

activities of 14 kinases that exhibited differential activity signatures across myeloma cell lines. The significance of the score from the median activity across cell lines was

calculated by z-statistics (see “Methods”). *P # .05, **P # .01, ***P # .001. (D) Viability curves showing the drug response of 8 myeloma cell lines to 8 kinase inhibitors

(n 5 4, mean 6 standard deviation), with only INK128 and alisertib exhibiting strongly differential effects. (E) Correlation between inhibitor sensitivity and KSEA-predicted

kinase activity for mTOR and aurora kinase A across myeloma cell lines shows modest predictive power. P values were calculated based on the null hypothesis that no

relationship exists between the activity of a kinase and its sensitivity to an inhibitor. LC50, 50% lethal concentration; IMAC, immobilized metal affinity chromatography;

LC-MS/MS, liquid chromatography-tandem mass spectrometry.

3216 LIN et al 12 NOVEMBER 2019 x VOLUME 3, NUMBER 21

D
ow

nloaded from
 https://ashpublications.org/bloodadvances/article-pdf/3/21/3214/1506242/advancesadv2019000303.pdf by guest on 09 April 2020



a t(4;14) translocation and an activating mutation in FGFR3,
showed the highest predicted activity of FGFR3 kinase (Figure 1B).
KMS-34, with a t(4;14) translocation increasing FGFR3 expression
but no FGFR3 mutation, showed the second-highest predicted
FGFR3 activity. Overall, using KSEA, we identified 14 kinases that
appeared to have differential activity across MMcell lines (Figure 1C).

We next evaluated whether differential kinase activities predicted
sensitivity to inhibitors. Using an initial prescreening on 3 MM lines
(AMO-1, MM.1S, and RPMI-8226), we found that 8 of 13 available
selective inhibitors demonstrated anti-MM effects at #20 mM
(supplemental Figure 2A). We then tested these inhibitors on all
8 lines used for phosphoproteomics (Figure 1D).Wewere surprised
to find that only 2 of the 8 inhibitors tested in the full panel showed
a notable distribution of the lethal concentrations required to kill
50% of the population (LC50s) across the tested MM lines. We
more closely examined these inhibitors (alisertib targeting Aurora
kinase A and INK128 targeting mammalian target of rapamycin
[mTOR] kinase) and found a modest correlation between predicted
kinase activity and sensitivity to the inhibitor (Figure 1E). Within the
smaller range of LC50s for other inhibitors, we did not find
correlations between predicted kinase activity and inhibitor LC50,
though we note that KMS-11 and KMS-34 were 2 of the 3 most
sensitive lines to the pan-FGFR inhibitor NVP-BGJ398 (supple-
mental Figure 2B). Overall, these results suggest that kinase
activities from KSEA are modestly predictive of sensitivity to targeted
kinase inhibitor therapy.

Phosphoproteomics reports on specific alterations in

MAPK pathway activity as a function of RAS
mutation status

As mutations in RAS are the most commonly seen single-nucleotide
genomic alteration in MM,5 we next examined the known Ras
effectors. The KSEA-predicted activity of the RAF isoforms ARAF,
BRAF, and CRAF/RAF1 is reflective of MAPK activation immedi-
ately downstream of Ras.29 We first noted that cell lines with RAS
mutations did not show uniform RAF isoform activity as inferred by
KSEA on our phosphoproteomic data. Instead, the 2 lines (MM.1S
and RPMI-8226) with canonical activating mutations in KRAS
(both G12A) showed the highest levels of predicted BRAF and
ARAF activity (Figure 2A). We note that while relative BRAF and
CRAF phosphorylation at a single canonical site alone appears
largely unchanged across lines, KSEA kinase activity scores
reflect aggregate signaling effects across annotated phosphosites
on multiple proteins. Similar to findings in other studies,30 by
western blotting, we further found that RAS mutation status did
not lead to consistent levels of ERK1/2T202/Y204, AKTT308/S473,
and 4EBP1T37/46 phosphorylation, commonly used readouts of
downstream MAPK and PI3K/AKT activities (Figure 2B).

A machine-learning–based classifier distinguishes

transcriptional output of KRAS vs NRAS mutants

in MM patients and cell lines

These findings motivated us to further evaluate the biological
differences between KRAS and NRAS mutations in MM patients.
As MM patient samples are not amenable to phosphoproteomics
due to sample input limitations, we turned to more widely available
transcriptome data. We recently reported a machine-learning
classifier based on an elastic net penalized logistic regression able
to predict RAS genotype, or RAS-mutant-like phenotype, from

tumor RNA-seq.25 This initial classifier, trained and tested on solid
tumor data from The Cancer Genome Atlas, did not distinguish
between RAS isoforms. Applying this initial classifier to RNA-seq
data from 812 patient tumors in the MMRF CoMMpass study
(release IA11a; research.themmrf.org), we observed very limited
predictive power for RAS genotype (supplemental Figure 3A).

Review of gene weights in the initial RAS classifier revealed that
many highly weighted genes were expressed minimally in hemato-
poietic cells (not shown), potentially leading to this lack of applica-
bility. Ras signaling has previously been detected using machine
learning applied to a single tumor type.31 We therefore used
a similar machine-learning strategy to build an MM-specific classi-
fier based on CoMMpass patient data. We extended our prior
computational approach by developing a 3-way classifier, attempt-
ing to distinguish transcriptional signatures of patients with WT
RAS, KRAS mutations, and NRAS mutations (Figure 3A). For
building the classifier, we included patients in the mutation cate-
gory if activating KRAS/NRASmutations in codon positions 12, 13,
and 61 were reported in CoMMpass data, irrespective of variant
allele frequency (VAF). Ten patients with subclonal mutations in
both KRAS and NRAS were excluded.

We used 90% of the CoMMpass patient data as a training set
(n 5 706 total; n 5 439 WT, n 5 138 KRAS, n 5 129 NRAS) and
the remaining 10% (n 5 106 total; n 5 49 WT, n 5 16 KRAS,
n 5 15 NRAS) as a holdout test set. The one-vs-rest, multiclass
logistic regression classifier was trained to predict RAS genotype
based on transcriptional signatures in 8000 genes that exhibited
the greatest variance in expression across CoMMpass samples.
Our classifier performed robustly in both the training and test
sets, with areas under the receiver operating characteristic curves
between 0.81 and 0.97 in the test set (Figure 3B). We also applied
the classifier to a data set of 65 MM cell lines (data from www.
keatslab.org). The classifier performed similarly well in these data,
indicating high generalizability (supplemental Figure 3B).

We next investigated whether differences exist in predictions
between patients carrying KRAS and NRAS mutations. To address
this, we first examined the “confusion matrix,” finding that incorrectly
predicted NRAS-mutant genotype samples in the training set and
incorrectly predicted KRAS-mutant genotype samples in the testing
set were more likely to be predicted as being WT RAS rather than
a mutation in the other RAS isoform (Figure 3C). This finding
underscores divergence in transcriptional output between these
mutations. We also observed that tumors with higher VAF had less
accurate classification between KRAS and NRAS mutation while
lower VAF led to less accurate classification between WT and RAS
mutant (supplemental Figure 3C). Overall, we found no statistical
difference between the clonality of activating KRAS and NRAS
mutations in MM patients (supplemental Figure 3D).

We further examined the highest weighted genes for the KRAS
mutant, NRAS mutant, or WT RAS classifiers (Figure 3D;
supplemental Data Set 2). We found a limited set of genes whose
expression levels increased the probability of classification as either
RAS mutant and decreased probability of WT RAS: SPRED2,
GRK6, F12, and ETV5. Of these genes, SPRED2 and ETV5 are
well defined as MAPK responsive.32,33 Overall, however, the genes
that specifically defined an increased or decreased probability of
KRAS or NRAS mutant classification were largely independent of
each other (genes along x- and y-axes in Figure 3D). Surprisingly,
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the only gene whose expression strongly predicted NRAS over
KRAS mutation was NRAS itself.

RAS mutants drive differential expression of RAS
genes and oncogenic addiction in myeloma

This finding motivated us to further examine RAS gene expression
as a function of genotype in MM patients. Consistent with our
machine-learning classifier, we indeed found that patients with
a detected NRAS mutation had significantly increased expression
of NRAS compared with KRAS-mutated samples (Figure 4A). We
also saw a less pronounced reciprocal relationship in KRAS-
mutated samples. This finding is reminiscent of that found in a prior
analysis of numerous cancer cell lines, where mutations in one RAS
isoform were associated with increased expression of that isoform
and depressed expression of the other.34 We further confirmed

a similar relationship betweenNRASmutation and gene expression,
but not KRAS, across MM cell lines (supplemental Figure 4).

We next took advantage of data on “essential genes” required for
cell viability as determined via genome-wide short hairpin RNA
(shRNA) and clustered regularly interspaced short palindromic
repeats (CRISPR) screens.35 We confirmed earlier single-gene
knockdown results36 that RAS-mutated MM cells are highly
dependent on the specific RAS-mutated isoform (Figure 4B).
However, this genome-wide analysis did not identify any other
genes across both the shRNA and CRISPR data that led to specific
dependency in NRAS or KRAS mutants or between RAS-mutated
cell lines andWT RAS lines (Figure 4C). These findings underscore
the profound “oncogene addiction” of MM plasma cells to
mutated RAS.
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KRAS mutations at any codon and NRAS Q61

mutations lead to poorer prognosis

We next examined the relationship between RAS mutation and
clinical outcomes in CoMMpass. If we included all patients with
a detected RAS mutation, either at the level of any mutation (VAF
.0) or those with a dominant subclone (VAF .0.3), we actually
found no effect on either PFS or OS (Figure 5A), consistent with
prior studies.37

We next looked more specifically at differences in KRAS andNRAS
mutations. We found that cases with KRAS mutation at VAF .0

(n 5 161) have a significantly decreased PFS vs all others
(P 5 .034), though there was no significant difference in OS
(P 5 .55) (Figure 5B). Surprisingly, for cases with a dominant
KRAS-mutant subclone (VAF .0.3; n 5 83), any relationship with
survival difference disappeared (PFS P 5 .28; OS P 5 .74).

In contrast, we did not find any outcome effects of all patients with
NRAS mutations vs all others (supplemental Figure 5A). We next
found significantly decreased PFS at VAF .0 (P 5 .022) and
a similar trend at VAF.0.3 (P5 .074) for KRAS vs NRAS-mutated
samples but no significant difference in OS (Figure 5C). Overall,
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these findings appear somewhat consistent with earlier results,
suggesting that KRAS mutations carry a worse prognosis than
NRASmutations,18,19 though with modern treatment regimens, this
poor-prognosis effect of KRAS is perhaps not as pronounced.

We next looked at specific effects of activating mutations13 in
codons 12, 13, and 61. We did not find significant differential
survival effects for KRAS mutations in any specific codon
(supplemental Figure 5D-F). However, NRAS mutations at codon
Q61 led to strikingly worse PFS and OS vs other NRAS mutations,
but only when present in a dominant subclone (PFS P 5 .016 and
OS P 5 .026 at VAF .0.3) (Figure 5D). This finding suggests that
clonal or near-clonal NRASQ61 mutations are particularly potent in
driving disease in the setting of current therapies.

A perturbation-based transcriptional signature

identifies highly variable activation of the MAPK

pathway across RAS mutant samples

Our results thus far strongly suggest that NRAS and KRASmutants
are not equivalent in driving MM. We next examined functional

readouts of MAPK pathway activation in the context of RAS
mutation. We took advantage of a recently described method of
transcriptional classification of pathway activity termed PROG-
ENy.38 This method provides improved prediction of pathway
activation when compared with prior methods of transcriptional
analysis.38 Using PROGENy prediction for MAPK pathway activity,
we were surprised to find a very prominent overlap of MAPK
activation scores across RAS-mutated patients vs WT RAS
(Figure 6A). This result stands in contrast to the expected finding
of clearly increased MAPK activity in RAS-mutated patients vs WT
RAS, which, notably, we found in MM cell lines (Figure 6B). Despite
this large degree of overlap in patient samples, we still found that
the mean of the MAPK distribution was significantly increased for
both KRAS (P5 2.16e-6) and NRAS mutants (P5 .0123), as well
as rare patients with mutations in both genes (P5 1.53e-4), vs WT
RAS. Overall, however, our results suggest that many patients with
RAS mutations do not strongly activate the MAPK pathway over
patients with WT RAS tumors.

Examining codon-level effects (Figure 6C) for KRAS, we found no
significant differences between MAPK scores for mutations in
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codons 12, 13, and 61. For NRAS, in contrast, we found
significantly higher MAPK scores for mutations in codon 61 vs
codons 12 and 13. MAPK scores were also markedly higher for
codon 61 vs rare mutations in other noncanonical NRAS codons in
patients.

Increased MAPK activity predicts worse

patient outcomes

These observations led us to hypothesize that high levels of tumor
MAPK pathway activity, regardless of RAS mutation status, may
manifest in more aggressive disease. Consistent with our hypoth-
esis, we indeed found that patients in the highest quartile MAPK
score had significantly decreased PFS (P5 7.21e-7) and OS (P5
2.17e-5) (Figure 6D).

We sought to rule out the possibility that an increased MAPK score
served as a proxy for known prognostic features in MM. We did not
find any relationship between MAPK score and sex, race, age, or b2
microglobulin, though we identified an association with increased
M-protein at diagnosis (supplemental Figure 6A). We next
evaluated the relationship between MAPK score and MM genomic
subtypes (Figure 6E). We found a significant relationship between
MAPK score and t(4;14) translocation,39 consistent with the
ability of FGFR-family tyrosine kinases to activate MAPK upstream
of Ras.40 We also observed more limited associations with other
poor prognosis features such as del(1p) and del(13q) (Figure 6E;
supplemental Figure 6B). We further evaluated the relationship
between MAPK score and common sequence variants present
in .2% of CoMMpass patients (supplemental Figure 6C;
supplemental Data Set 3), finding a significant association with
FGFR3, KRAS, and BRAF mutations, but not NRAS. Together,
these results confirm MAPK-related genomic lesions can lead
to increased MAPK activity, consistent with known biology.
However, these results also underscore the limitation of genome-
only testing; a majority of patients with these well-characterized
changes are not in the top quartile of MAPK activity associated with
poor prognosis. Overall, our results support the transcriptome-
based PROGENy MAPK score as a differential predictor of MM
outcomes from other previously known biochemical or genomic
markers.

Integrated analysis of kinase activity and drug

sensitivity informs precision medicine in MM

Our results suggest that targeting therapies specifically for
patients with increased MAPK activity, as opposed to RAS
genotype alone, may be a fruitful strategy in MM precision
medicine. To suggest agents which may be most effective in this
context, we analyzed data from the Genomics of Drug Sensitivity
in Cancer database.41 Of 265 total compounds tested, we
identified 3 small molecules, the MEK inhibitor refametinib, the
MEK inhibitor PD0325901, and the BRAF inhibitor dabrafenib,
that showed the greatest correlation (R2 . 0.65; supplemental
Figure 7) between the Genomics of Drug Sensitivity in Cancer
IC50s in MM cell lines (n5 15) and PROGENy MAPK scores from
transcriptome data (Figure 7A). These agents could be potentially
considered in clinical applications with targeted use based on
tumor transcriptome-based MAPK score.

To assist in further integration of kinase activity into precision
medicine, we developed an interactive software tool called the

Multiple Myeloma Kinome Browser (https://tony-lin.shinyapps.io/
depmap_app/) combining our phosphoproteome-based kinase
activity predictions with multiple data types on MM cell lines from
the Cancer Dependency Map (18Q2 release). We integrated
functional studies, such as drug sensitivity, CRISPR deletion, and
shRNA screens, with features including gene expression, copy-
number variation, and mutations, for 297 kinases across seven MM
cell lines. As one example of its use, we show that a strong, negative
association exists between the predicted activity and the sensitivity
of checkpoint kinase 1 to 2 different Chk1 inhibitors (Figure 7B).
This freely available resource may prove beneficial for future
investigation of targeted therapies in MM.

Discussion

Here, we used an integrated approach of unbiased phosphopro-
teomics and transcriptional classifiers to identify differential
regulation of signaling in MM. Our results delineate prominent
differences in KRAS and NRAS signaling outputs, biology, and
patient outcomes.

Notably, only 2 of 13 inhibitors we tested showed any notable
correlation between predicted kinase activity and sensitivity. For
INK128 (TAK-228/sapanasertib), a phase 1/2 trial in MM showed
only minimal responses to single-agent therapy.42 Our data
suggest that selecting patients based on mTOR pathway
activation may lead to better results for other mTOR inhibitors,
such as the newly described molecule RapaLink-1.43 Some of the
lack of predictive power of our phosphoproteome analysis is likely
biological; simply because a specific kinase activity is increased
does not mean a tumor will selectively depend on it for survival.
We are also limited by current bioinformatics tools, which are
imperfect in predicting kinase activity across thousands of
phosphopeptides.44

We next shifted our focus to RAS. Both in MM cell lines and primary
samples, there has been surprisingly little correlation between
MAPK activity as measured by ERK phosphorylation and sensitivity
to tested MEK/ERK inhibitors.30,45 We also found no relationship
between predicted MEK activity and sensitivity to the MEK inhibitor
trametinib (Figure 1D). Immunohistochemistry of MM patient bone
marrow has suggested that the majority shows ERK phosphoryla-
tion, regardless of RAS mutation status.46 These findings suggest
that ERK phosphorylation is not a specific readout of MAPK activity
that drives tumor aggression. Broader transcriptional signatures,
such as those we derive here, could be more effective in identifying
patients who could benefit from targeted therapies.

By adapting a machine-learning classifier,25 we demonstrated that
mutated NRAS and KRAS are associated with divergent down-
stream transcriptional signatures. The relationship between RAS
mutation status and gene expression may align with emerging
evidence of allelic imbalance across oncogenes, where both
mutation status and gene expression converge to drive tumor
proliferation.47,48 These findings further elucidate underlying bi-
ological differences among these Ras isoforms in MM that were not
previously observed.

Our finding that patients with the highest predicted PROGENy
MAPK scores carry the poorest prognosis leads to a pressing
question: is there a way to exploit this observation for MM precision
medicine? Our results strongly support the notion that genotype
alone is not enough to stratify MM patients to receive MEK or ERK
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inhibitors, for example. Instead, we should focus on patients with
high MAPK scores, regardless of RAS genotype. We found strongly
increased MAPK scores in RAS-mutant cell lines vs WT, but not in
patient samples, suggesting the tumor microenvironment in vivo
may play an important role in modulating MAPK pathway activity.
This hypothesis is in line with our prior evidence that interleukin-6
in the microenvironment strongly modulates MEK signaling and
MM survival.49 Furthermore, the high degree of intratumoral
heterogeneity in MM creates particular hurdles for any therapy that
may only eliminate specific subclones.4 However, new approaches
to directly target Ras,12 in addition to existing strategies, may be
particularly intriguing in these high-MAPK patients. We therefore
suggest a functionally driven, as opposed to genotype-driven,
approach to kinase inhibitor selection in MM. Though currently
limited to cell lines, our publicly available tool at https://tony-lin.
shinyapps.io/depmap_app/ will enable others to readily extract other
kinase- and signaling-level relationships.

While we cannot definitively separate causation from correlation
based on observational CoMMpass data, our results suggest that
increased MAPK signaling is a driver of poor prognosis and that this
increased signaling can be driven by various genomic lesions. In
particular, the increased MAPK signaling and poorer outcomes
driven by NRAS Q61 mutations are of interest. Q61 mutations in
RAS (any isoform) may activate downstream signaling via complete
abolition of guanosine triphosphate hydrolysis, as opposed to G12
and G13 mutations, which decrease but do not eliminate it.13 This
biochemistry may underpin the greater MAPK scores we find here
for Q61 but does not necessarily explain the correlation between
higher MAPK activity and poorer outcomes. Murine modeling in
melanoma suggests similar increased potency of Q61 mutations,50

and a minimal overexpression model of NRASQ61 in WT RASMM
cell line (ANBL-6) confirmed increased proliferation with the
introduction of this oncogene.51 Further evaluating the effects of
NRAS Q61 in myeloma is an intriguing path forward.
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In summary, our results reveal the power of extending genomic
studies to the dissection of functional changes within tumor
cells using both phosphoproteomics and transcriptional data.
We propose these findings will have broad implications in
both MM precision medicine and the wider study of Ras
biology.
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