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Abstract  25 

Lipocalin 2 (Lcn2) has been implicated to play a role in various neurodegenerative diseases, and 26 

normalizing its overexpression may be of therapeutic potential. Iron chelators were found to reduce 27 

Lcn2 levels in certain animal models of CNS injury. Focusing on Alzheimer’s disease (AD), we found 28 

that the iron chelators deferoxamine and deferiprone inhibited amyloid-β (Aβ)-induced Lcn2 29 

production in cultured primary astrocytes. Accordingly, Aβ-exposure increased astrocytic ferritin 30 

production, indicating the possibility that Aβ induces iron accumulation in astrocytes. This effect was 31 

not significantly modulated by Lcn2. Known neuroprotective effects of iron chelators may rely in part 32 

on normalization of Lcn2 levels.  33 

 34 
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1. Introduction  40 

Lipocalin 2 (Lcn2, also known as neutrophil gelatinase-associated lipocalin (NGAL)) is involved in 41 

several physiological processes including inflammation, iron metabolism, cell death and cell survival. 42 

Increased Lcn2 levels were found in the central nervous system (CNS) of patients with 43 

neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease. Moreover, 44 

mechanistic studies showed that Lcn2 may contribute to their pathophysiology (Kim et al., 2016; 45 

Mesquita et al., 2014; Naudé et al., 2012). Regarding AD, it was shown that amyloid-β (Aβ) induces 46 

Lcn2 production in cultured primary astrocytes, and that Lcn2 sensitizes primary neurons and 47 

astrocytes to Aβ-induced cell death (Mesquita et al., 2014; Naudé et al., 2012). Astrocytes appear to 48 

be the major producers of Lcn2 in the brain (Kim et al., 2016; Mesquita et al., 2014). The reported 49 

neurotoxic effects of Lcn2 indicate that inhibition of Lcn2 overexpression may be a promising 50 

therapeutic strategy for different CNS conditions.  51 

 52 

Iron chelators such as deferoxamine and deferiprone have been shown to exert neuroprotective 53 

effects (Belaidi and Bush, 2016), maybe partly via reducing the brain iron accumulation that 54 

characterizes many CNS conditions. Interestingly, deferoxamine was found to decrease Lcn2 levels in 55 

certain animal models of CNS injury (Dong et al., 2013; Zhao et al., 2016). However, it is still unknown 56 

if iron chelators may reduce Lcn2 production in the context of AD.  57 

 58 

The aim of this study was to explore (1) whether the iron chelators deferoxamine and deferiprone 59 

are able to inhibit Aβ1-42-induced Lcn2 production in cultured astrocytes, and (2) whether Aβ may 60 

affect astrocytic iron metabolism, and the potential effect of Lcn2 hereon by comparing Aβ-treated 61 

wild-type (WT) and Lcn2 knock-out (Lcn2 KO) astrocytes.  62 

 63 

  64 
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2. Methods  65 

Primary astrocytes were obtained from newborn (P0-P3) WT and Lcn2 KO (Berger et al., 2006) mouse 66 

pups, according to a protocol approved by the local and national animal ethics committees 67 

(DEC6659A and CCD-AVD105002016630). Astrocytes were cultured as described previously (Naudé 68 

et al., 2012). Six hours before treatment, medium was exchanged for medium containing 5% fetal 69 

bovine serum. Human recombinant Aβ1-42 (A-1002-1, rPeptide) was prepared as described previously 70 

(Granic et al., 2010). Before use, the Aβ stock solution (100 μM in DMEM) was allowed to oligomerize 71 

for 6h at 4 °C (Ahmed et al., 2010). The oligomeric state of Aβ was confirmed with non-reducing SDS-72 

PAGE Western blotting. Astrocytes were treated with 1 μM Aβ, 10 ng/ml interleukin 1 beta (IL-1β) or 73 

100 ng/ml lipopolysaccharide (LPS), or were co-treated with 1 μM Aβ and either 0-150 μM 74 

deferoxamine (D9533, Sigma-Aldrich), 0-500 μM deferiprone (S4067, SelleckChem), 0-200 µM 75 

bathocuproine disulfonic acid (B1125, Sigma-Aldrich) or 0-25 µM tetrathiomolybdate (323446, 76 

Sigma-Aldrich) for the indicated periods of time. Collection of proteins and Western blotting were 77 

performed as described previously (Naudé et al., 2012). Primary antibodies used include anti-Lcn2 78 

(ab63929, Abcam, 1:1000), anti-ferritin (ab75973, Abcam, 1:1000) and anti-actin (691002, MP 79 

Biomedicals, 1:500.000). All treatments were performed three times in duplicate or triplicate.  80 

 81 

3. Results  82 

Firstly, it was confirmed that Aβ1-42 induced Lcn2 production and secretion by astrocytes (Fig. 1a-b). 83 

Intracellular Lcn2 levels peaked 36h after Aβ1-42 treatment (p < 0.0001). This corresponds to kinetics 84 

of Lcn2-induction upon TNF-α, IL-1β and LPS-stimulation ((Naudé et al., 2012) and Suppl. Fig. 1a-b). 85 

Secondly, deferoxamine significantly reduced Aβ-induced Lcn2 production, after 36h co-incubation (p 86 

< 0.0001, Fig. 1c-d). The inhibitory effect of deferoxamine on Aβ-induced Lcn2 production was 87 

confirmed with another iron chelator; deferiprone (Suppl. Fig. 1c-d).  88 

 89 

- Include Figure 1 around here - 90 
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 91 

The finding that the Lcn2-inducing effects of Aβ can be suppressed by iron chelators, points to the 92 

possibilities that (1) Aβ may provoke iron accumulation in astrocytes, and (2) this disturbance in iron 93 

metabolism correlates with the induction of Lcn2 expression. As shown in Fig. 1e, Aβ indeed 94 

increased ferritin protein levels in WT and Lcn2 KO astrocytes (p < 0.05 at 36h, compared to control), 95 

indicating an increase in astrocytic iron accumulation upon Aβ exposure, independent of endogenous 96 

Lcn2 production. Although increased astrocytic iron levels might be an important co-factor in the 97 

induction of Lcn2, it appeared that iron alone is not sufficient to induce Lcn2 upregulation (Suppl. Fig. 98 

1e).  99 

 100 

4. Discussion  101 

Results from this study suggest that iron chelators are potent inhibitors of Aβ-induced Lcn2 102 

production in astrocytes, which may contribute to their reported neuroprotective effects. 103 

Interestingly, it was proposed that iron-loaded deferiprone (unlike deferoxamine) may bind to Lcn2, 104 

after which the iron-deferiprone-Lcn2 complex is excreted from the body (Zughaier et al., 2014). 105 

Certain iron chelators, i.e. deferiprone, might thus not only affect Lcn2 production but also its 106 

removal from the body.  107 

 108 

The modulation of Aβ-induced Lcn2 production by iron chelators further suggests that Aβ may act in 109 

part via increasing iron levels in astrocytes (also illustrated in Fig. 1f). This is supported by our result 110 

showing that Aβ causes an increase in astrocytic ferritin levels. This is the first study to our best 111 

knowledge that indicates iron accumulation in astrocytes upon direct Aβ-stimulation. This is in 112 

accordance with the previously reported Aβ-induced iron accumulation in microglia ((McCarthy et al., 113 

2018) and Suppl. Fig. 1f) and a neuronal cell line (Wan et al., 2011). Future experiments are required 114 

to confirm the finding in astrocytes, including direct read-outs of iron accumulation. Moreover, 115 

further investigations are needed to elucidate the role of disturbed iron metabolism in Aβ-induced 116 
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astrocyte activation and Lcn2 production. Namely, while the current results may suggest a potential 117 

involvement of disturbed iron metabolism in Aβ-induced Lcn2 production, it is possible that iron is 118 

not essential, and that other factors and pathways are also involved. In addition, more work is 119 

required to determine whether deferoxamine and deferiprone inhibit Aβ-induced Lcn2 production by 120 

chelating iron, or also via alternative pathways. For example, it is known that deferoxamine and 121 

deferiprone are not entirely specific for iron but are also able to chelate copper, suggesting that their 122 

effects might partly rely on chelation of copper. Interestingly, we found that Aβ-induced Lcn2 123 

production can be modulated by certain copper chelators: while bathocuproine disulfonic acid (a 124 

membrane impermeable copper chelator) did not affect Lcn2 protein levels, tetrathiomolybdate (a 125 

membrane permeable copper chelator) was shown to significantly reduce intracellular Lcn2 levels 126 

(Suppl. Fig. 1g-j). The observed inhibitory effect of tetrathiomolybdate on Lcn2 production may be 127 

explained by a previous finding from Spisni et al. (2009), showing that copper treatment results in 128 

increased Lcn2 secretion from cultured neurons. It thus appears that deferoxamine and deferiprone 129 

are not the only chelators that can affect Lcn2 production, and that possibly different biometals 130 

might influence Lcn2 production.  131 

 132 

Finally, although Lcn2 is known to play a role in iron regulation and is able to mediate both cellular 133 

iron import and export, no effect of Lcn2 was found on Aβ-induced ferritin protein production in 134 

astrocytes when comparing Aβ-treated WT and Lcn2 KO astrocytes (despite a previously reported 135 

effect of Lcn2 on ferritin mRNA expression (Mesquita et al., 2014)). This finding indicates that Lcn2 136 

may not significantly affect Aβ-mediated changes in iron metabolism in astrocyte cultures. 137 

Interestingly however, Lcn2 appeared to significantly aggravate brain iron accumulation in mouse 138 

models of hemorrhagic stroke and AD (Dekens et al., 2018; Ni et al., 2015). In a mouse model of AD, 139 

Lcn2 promoted iron accumulation in Aβ plaques and neuronal layers of the hippocampus (Dekens et 140 

al., 2018). However, the exact cellular localization of accumulated iron remains to be determined in 141 

more detail. For instance, previous studies suggested that also microglia tend to accumulate high 142 
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levels of iron under inflammatory conditions (Holland et al., 2018; McCarthy et al., 2018; Thomsen et 143 

al., 2015; Urrutia et al., 2013). As such, iron accumulation in AD (which is in part mediated by Lcn2) 144 

might occur mostly in specific cell types and structures, including plaques, neurons and microglia. 145 

Astrocytes might be less prone to (Lcn2-mediated) iron accumulation (Rathore et al., 2012; Urrutia et 146 

al., 2013), which would be in line with the similar ferritin levels in Aβ-treated WT vs. Lcn2 KO 147 

astrocyte cultures that were found here. It should be emphasized that the current study is a short 148 

report, warranting further investigation of Lcn2-mediated brain iron regulation in various other 149 

experimental conditions. For example, effects of Lcn2 on astrocytic iron metabolism might surface 150 

when more ferric and/or ferrous iron would be supplemented to the cell culture medium. Moreover, 151 

it is important to recognize that brain iron metabolism depends on intricate communication between 152 

different brain cell types (You et al., 2017). Therefore, it would be of great relevance to study iron 153 

metabolism in co-/slice-cultures and animals, rather than in single cell type cultures.  154 

 155 

Iron chelators are promising therapeutic possibilities for various neurodegenerative diseases and CNS 156 

conditions. Their beneficial effects might depend in part on normalization of Lcn2 protein levels.  157 

 158 
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Figure legend  1 

 2 

Fig. 1 The iron chelator deferoxamine blocks Aβ-induced astrocytic Lcn2 production, and indicates 3 

that Aβ induces a disturbance in astrocytic iron metabolism. a-b Intracellular (a, controlled for actin) 4 

and secreted (b) Lcn2 protein levels in primary WT astrocytes treated with 1 μM Aβ for 0-48h. c-d 5 

Intracellular (c, controlled for actin) and secreted (d) Lcn2 protein levels in primary WT astrocytes 6 

treated with 1 μM Aβ and 0-150 μM deferoxamine (DFO) for 36h. e Intracellular ferritin protein levels 7 

(controlled for actin) in primary WT and Lcn2 KO astrocytes treated with 1 μM Aβ for 0-72h. f 8 

Proposed connection between Aβ, iron and Lcn2, with uncertain points indicated in grey. Bars depict 9 

the mean and standard error of the mean (SEM). Representative blots are shown below graphs. 10 

Tested with one-way ANOVA with Dunnett’s multiple comparison post-hoc test to compare 11 

conditions to their respective control condition. * p < 0.05, ** p < 0.01 and *** p < 0.0001 compared 12 

to the respective control conditions.  13 

 14 

 15 
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Highlights  

 

• Amyloid-β (Aβ) induces Lipocalin 2 (Lcn2) production in primary cultured astrocytes.  

• Iron chelators deferoxamine and deferiprone abrogate Aβ-induced Lcn2 production.  

• Aβ affects iron homeostasis in primary astrocyte cultures.  

• Lcn2 is not essential for Aβ-induced disturbance of astrocytic iron homeostasis.  

 

 


