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SUMMARY

Known as a histone H3K9methyltransferase, SETDB1
is essential for embryonic development and pluripo-
tent inner cell mass (ICM) establishment. However,
its function in pluripotency regulation remains elusive.
In this study, we find that under the ‘‘ground state’’ of
pluripotency with two inhibitors (2i) of the MEK and
GSK3 pathways, Setdb1-knockout fails to induce tro-
phectoderm (TE) differentiation as in serum/LIF (SL),
indicating that TE fate restriction is not the direct
target of SETDB1. In both conditions, Setdb1-
knockout activates a group of genes targeted by
SETDB1-mediated H3K9 methylation, including Dux.
Notably, Dux is indispensable for the reactivation of
2C-like state genes upon Setdb1 deficiency, delin-
eating the mechanistic role of SETDB1 in totipotency
restriction. Furthermore, Setdb1-null ESCs maintain
pluripotent marker (e.g., Nanog) expression in the 2i
condition. This ‘‘ground state’’ Setdb1-null population
undergoes rapid cell death by activating Ripk3 and,
subsequently, RIPK1/RIPK3-dependent necroptosis.
These results reveal the essential role of Setdb1 be-
tween totipotency and pluripotency transition.

INTRODUCTION

The genome senses and integrates intrinsic and environmental

signals via epigenetic regulation. This heritable process modu-

lates gene activity through DNA and histone modifications

without DNA sequence alteration. Spatiotemporal epigenetic

modification plays a crucial role in cell fate decision during em-

bryonic development. As a well-known epigenetic mark of het-

erochromatin (Stancheva, 2005), histone H3K9 methylation is
This is an open access article under the CC BY-N
crucial to regulate both differentiation and somatic reprogram-

ming (Chen et al., 2013; Liu et al., 2018; Matoba et al., 2014;

Nicetto et al., 2019; Soufi et al., 2012; Torrano et al., 2019;

Wang et al., 2018; Wei et al., 2017). Among known H3K9 meth-

yltransferases, Setdb1 is the only molecule whose deficiency

leads to peri-implantation lethality (around 3.5–5.5 days post co-

itum [dpc]) (Dodge et al., 2004), underlying its importance in early

embryonic development. SETDB1was initially identified as an in-

teracting partner of ETS-related transcription factor, ERG

(Blackburn et al., 2003; Wang et al., 2003; Yang et al., 2002).

Setdb1-null blastocysts exhibited defective growth of the inner

cell mass (ICM) and the incapability of deriving embryonic

stem cell (ESC) lines (Dodge et al., 2004). Besides, SETDB1

may associate with OCT4 to maintain pluripotency of ESC iden-

tity and suppress trophectoderm differentiation (Lohmann et al.,

2010; Yuan et al., 2009). However, the regulatory mechanism of

Setdb1-H3K9me during this pluripotency-associated cell fate

decision is unclear.

ICM-derived ESCs are pluripotent cells capable of generating

various embryonic tissues, except for extraembryonic tissues

(Beddington and Robertson, 1989; Tsunoda and McLaren,

1983). In contrast, the cleavage or two-cell (2C) state of embryos

retains the totipotency to generate both embryonic and extraem-

bryonic tissues (Beddington and Robertson, 1989; Rodriguez-

Terrones et al., 2018; Tsunoda and McLaren, 1983). However,

totipotent 2C-like cells arise in extremely low proportion in ESC

culture (Macfarlan et al., 2012). At the 2C-like state, endogenous

retroviruses (ERVs), particularly MERVL, are transiently de-

repressed (Macfarlan et al., 2012), subsequently reactivating

2C-state marker genes, including members of Zscan4 and

Usp17l families (Falco et al., 2007; Hendrickson et al., 2017; Hirata

et al., 2012; Macfarlan et al., 2012). Meanwhile, core factors of the

pluripotency transcriptional network, such as OCT4 and NANOG

are degraded in the 2C-like state (Ishiuchi et al., 2015; Macfarlan

et al., 2012), suggesting the incompatibility between pluripotency

and totipotency. Notably, the transcription factor Dux is a major
Cell Reports 30, 25–36, January 7, 2020 ª 2019 The Author(s). 25
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Figure 1. Culturing Conditions Specify Distinct ESC Pluripotency States upon Setdb1-KO
(A) Setdb1-conditional KO (CKO) strategy via Cre-Lox system. Briefly, two LoxP sites flank exon 16 within SET domain of Setdb1. The KO event initiates upon

4OHT addition.

(B) Western blot analysis validated conditional SETDB1 removal in two CKO cell lines at day 3 post 4OHT treatment.

(C) Integrative genomics viewer (IGV) graphs of H3K9me3 occupancy ± 4OHT treatment, as well as SETDB1 occupancy, in two culturing conditions at Zfp982m

Zfp987, Zfp600, and Olfr1055 loci. Blue lines represent the relative localization of TE.

(D) Phase-contrast and fluorescence microscopic images of wild-type (WT; left panel) and Setdb1-CKO (right panel) ESCs cultured in SL/2iL condition with

±4OHT treatment. Scale bars, 250 mm.

(E) qPCR analysis of Setdb1, Nanog, Esrrb, Hand1,Mmp9, and Cdx2 in CKO cells ± 4OHT treatment (n = 3 biological replicates each with 2 technical replicates;

error bar, SD; *p < 0.05.

(F) Immunofluorescence (IF) analysis of NANOG in CKO cells ± 4OHT treatment under two culture conditions. Scale bars, 250 mm.

(G) Western blot analysis result of samples in (F).
driver inducing zygotic genome activation (ZGA) genes and 2C-

like state (De Iaco et al., 2017; Eckersley-Maslin et al., 2019; Hen-

drickson et al., 2017; Whiddon et al., 2017). Additionally, loss of

function of LSD1, G9a, KAP1, SUMO-2, and Ring1b has been re-

ported to facilitate 2C-like state transition from ESCs (Cossec

et al., 2018; Hisada et al., 2012;Macfarlan et al., 2011;Maksakova

et al., 2013; Rodriguez-Terrones et al., 2018). Although the

SETDB1 partner KAP1 is a known restrictor toward the 2C-like

state, there is no direct evidence that SETDB1-mediated

H3K9me3 inhibits 2C-like state transition.

In this study, we have demonstrated that Setdb1 deficiency

strongly induced 2C-like state marker genes, such as Zscan4

and Dux. However, totipotency transition from Setdb1-knockout

(KO) ESCs depends on culture conditions. The ‘‘ground-state’’

ESCs cultured with two inhibitors (2i) of MEK1/2 and GSK3

(Ying et al., 2008) underwent rapid cell death during Setdb1-
26 Cell Reports 30, 25–36, January 7, 2020
KO-induced 2C-like state transition. Specifically, Setdb1-KO-

mediated cell death under 2i condition is induced by Ripk3

upregulation, followed by RIPK1/RIPK3-dependent necroptosis.

This chaotic cellular status may attribute to the sustained

expression of pluripotency genes. These data revealed that

SETDB1-mediated H3K9me3 is essential for pluripotency estab-

lishment and pluripotent cell survival, highlighting SETDB1’s role

in early embryonic development.

RESULTS

Setdb1-KO in ESCs Does Not Induce Trophectoderm
Differentiation under 2i Condition
Previous studies have summarized that SETDB1 is essential for

pluripotency maintenance, as Setdb1 deficiency in the ESCs

promotes trophectoderm (TE) differentiation. TE marker genes,
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Figure 2. Setdb1 Deficiency Initiates the Transition into 2C-Like State

(A) Heatmap profile from RNA-seq analysis classifies gene expression of Setdb1 CKO cells upon SL or 2iL condition into 10 clusters. Simulated mRNA levels of

clusters 0100, 0001, 0101, and 1011 are illustrated in the right panel.

(B) A heatmap displays the enrichment of SETDB1 (± 20 kb), H3K9me3 (± 20 kb), and H3K27me3 (± 10 kb) in all clusters that are defined in (A). Significance is

derived from a Fisher exact test (*p < e-30; ***p < e-70).

(C) RNA-seq expression of transcripts per kilobase million (TPM) of 2C-like cell markers in Setdb1-CKO cells under both conditions (3 independent RNA-seq

experiments; error bar, SD; *p < 0.05)

(legend continued on next page)
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such as Cdx2 and Hand1, are activated upon Setdb1 deficiency

via conditional KO (CKO) or shRNA knockdown (KD) (Bilodeau

et al., 2009; Lohmann et al., 2010; Yuan et al., 2009). However,

adjacent genomic regions of these TE marker loci lack

H3K9me3 enrichment or credible SETDB1 binding (Figures

S1A and S1G), suggesting that SETDB1-mediated H3K9me3

does not directly regulate TE differentiation. Previous reports

have demonstrated that the ‘‘ground-state’’ pluripotency of

mouse ESC is retained under 2i condition (Ying et al., 2008).

To understand the role of SETDB1 during pluripotency regula-

tion, we silenced Setdb1 using small interfering RNA (siRNA)

and cultured ESCs under two conditions: traditional medium

supplemented with 15% FBS and LIF (SL), and ‘‘ground-state’’

medium consisting of 2i and LIF (2iL). siSetdb1 slightly impaired

Oct4-GFP expression and downregulated pluripotency genes

but failed to reactivate TE marker genes in SL (Figures S1A,

S1B, and S1D), in contrast to past studies using high-efficiency

short hairpin RNA (shRNA) or KO (Li et al., 2017b; Maksakova

et al., 2013). After enhancing KD efficiency using two-round

siRNA transduction, siSetdb1 exhibited downregulation of plu-

ripotency genes and reactivation of TE markers in SL (Figures

S1C and S1E). Notably, Setdb1-KD under 2iL culture failed to

resemble the differentiation pattern as in SL (Figures S1B–

S1F), demonstrating that Setdb1 deficiency is not sufficient to

suppress pluripotency and induce TE differentiation.

The SET domain of SETDB1 is essential for its H3K9 methyl-

transferase activity. To identify the regulatory function of

SETDB1-mediated H3K9 methylation, we constructed Setdb1

CKO-ESCs by inserting loxP sites around exon 16, encoding

the key part of the SET domain (Figure 1A). Upon tamoxifen

treatment, SETDB1 was totally depleted within 3 days in CKO-

ESCs consistently expressing CRE-ERT (Figure 1B). Next, we

performed H3K9me3/SETDB1 chromatin immunoprecipitation

sequencing (ChIP-seq) on CKO-ESCs culturing under both SL

and 2iL conditions. The SETDB1-binding and H3K9me3-enrich-

ment patterns are identical between SL and 2iL, and the

SETDB1-binding sites highly correlate with H3K9me3 peaks

throughout the genome (Figure 1C). Upon depletion of SETDB1

under 3-day tamoxifen treatment, almost all H3K9me3 peaks

were wiped out in both SL and 2iL conditions (Figures 1C,

S2A, and S2B), indicating Setdb1 is responsible for the majority

of H3K9me3 catalysis throughout the genome, at least in the

uniquely mapped regions. We found that Setdb1-KO decreased

Oct4-GFP expression in SL but exhibited no obvious effects in

2iL (Figures 1D, S2C, and S2D). Consistently, Setdb1-KO down-

regulates and upregulates pluripotency genes (i.e., Nanog and

Esrrb) and TE genes (i.e., Hand1, Mmp9, and Cdx2), respec-

tively, in SL (Figure 1E). At the protein level, expression of the

pluripotent marker, NANOG, was largely decreased in SL upon

Setdb1-KO (Figures 1F and 1G). To summarize, Setdb1 defi-

ciency induced TE differentiation only in SL condition and failed

to downregulate pluripotency genes in the ground-state culture
(D) Volcano plots showing the fold changes transcriptomes ofSetdb1-CKO cells in

0101, 2C, and ZGA genes, correspondingly.

(E) Gene set enrichment analysis (GSEA) illustrating the enrichment of 2C and ZG

(F) IGV graphs illustrate H3K9me3 occupancy ± 4OHT treatment, SETDB1 occu

selected 2C-gene marker loci.
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condition. These data indicated that SETDB1 is not responsible

for repressing TE markers or safeguarding pluripotency gene

expression. Notably, no significant SETDB1-binding or

H3K9me3 peaks were observed near TE genes (Figure S1G),

suggesting that, contrary to the previous notion, SETDB1 may

not directly suppress TE fate.

Setdb1 Deficiency Initiates Totipotent 2C-Like State
Transition in ESCs
Next, we performedRNA sequencing (RNA-seq) to investigate the

impact of Setdb1-KO on the global gene expression in both SL

and 2iL conditions (Figure 2A). Differentially expressed genes

were categorized into several clusters according to their expres-

sion patterns (Figure 2A). We used ‘‘0’’ and ‘‘1’’ to represent the

low and high expression levels, respectively. Accordingly, ‘‘01’’

and ‘‘10’’ mark upregulation and downregulation, correspond-

ingly. Cluster 0100 represents genes activated only in SL upon

Setdb1-KO, including TE development genes such as Cdx2 and

Hand1 (Figure 2A); cluster 1011 contains pluripotency genes

that are suppressed only in SL upon Setdb1-KO (Figures 2A and

S2E). Of note, these two clusters enrich neither SETDB1 binding

nor H3K9me3 occupancy, suggesting that Setdb1 does not

directly regulate these genes (Figure 2B). Cluster 0101, with

elevated gene expression upon Setdb1-KO in both conditions,

enriches both SETDB1 binding and H3K9me3 occupancy (Fig-

ure 2B; Table S1). These observations suggested that Setdb1-

mediated H3K9me3 represses cluster 0101 genes independent

of culturing conditions (Figure 2B). Particularly, cluster 0001

genes, which are only upregulated in 2iL upon Setdb1-KO, enrich

H3K9me3 occupancy in both conditions (Figure 2B). We propose

that additional repressive factor other than H3K9me3 suppressed

cluster 0001 genes in SL condition. Notably, 0001 cluster has

higher DNA methylation level than 0101 clusters (Figure S2H). In

addition, it iswell known that ground state decreasesDNAmethyl-

ation level greatly (Kumar and Ivanova, 2015). The above evidence

suggests that DNA methylation may contribute to the additional

inhibitorymechanism. Toexamine the specificity of SETDB1 regu-

lation, we performed H3K27me3 ChIP-seq and observed that,

other than cluster 0100, all Setdb1-KO regulated clusters under

both conditions are H3K27me3-independent, emphasizing that

SETDB1 specifically mediates H3K9me3, directly regulating clus-

ter 0101 genes (Figure 2B). We divided the H3K9me3-occupying

regions into two groups: promoter occupation (�1.5/+0.5 kb

around transcription start site [TSS]) and others. Specifically, we

found that 0101/0001 clusters enriched H3K9me3 particularly at

the promoter region (Figure S2I). Moreover, promoter-occupied

H3K9me3 is critical for repression of its nearby genes (Figure S2J).

We further investigated the identified SETDB1-regulating

genes. We identified known 2C-like cell markers such as Zscan4

and Usp17l in the cluster 0101 and validated with RT-qPCR (Fig-

ures 2A, 2C, 2D, S2F, and S2G), suggesting Setdb1 deficiency in-

duces the 2C-specific program. Comparing RNA-seq data with
SL/2iL. Significance is derived from t test. Black, red, and green dots represent

A gene sets among upregulated genes upon loss of Setdb1.

pancy, together with transcriptomic expression in two culturing conditions at
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(A) Flow cytometry analysis showing MERVL::tdTomato (x axis) and OCT4-GFP (y axis) expression following siRNA knockdown (KD) of Setdb1 and Kap1 via

double siRNA transfection.

(B) The column graph summarizes the percentages of cells withMERVL::tdTomato level following Setdb1 andKap1-KD in SL/2iL condition (n = 3; error bar, SEM).

(C) Flow cytometry analysis illustrating Rosa26-targeted MERVL::tdTomato (x axis) and OCT4-GFP (y axis) expression upon Setdb1-CKO in SL and 2iL.

(legend continued on next page)
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pre-defined 2C and ZGA gene sets (Li et al., 2017b; Macfarlan

et al., 2012),we observed significant enrichment of 2C/ZGAgenes

in the upregulated population upon Setdb1-KO (Figures 2D and

2E). ESCs are known to derive a limited fraction of 2C-like cells

highly expressing Zscan4 family, Dux, and MERVL (Falco et al.,

2007; Hendrickson et al., 2017; Hirata et al., 2012; Macfarlan

et al., 2012). We observed that SETDB1 binding and H3K9me3

were enriched nearby some 2C-like state genes such as Dux

and Zscan4 in a SETDB1-dependent fashion (Figure 2F), suggest-

ing that SETDB1-mediated H3K9me3 hindered 2C-like state tran-

sition in the wild-type ESCs. Of note, SETDB1-mediated 2C-like

and TE gene regulation was highly dose sensitive, as increased

TE markers and 2C markers were only observed upon Setdb1-

CKO and high-efficiency KD (Figures S1B–S1E, S3A, and S3B).

Furthermore, we repurposed the reported RNA-seq data upon

Setdb1-KO (Karimi et al., 2011) and validated the upregulation

of 2C-like state genes and MERVL (Figures S3C and S3D). These

results supported the notion thatSetdb1-KOor high-efficiencyKD

reactivated 2C-like-state genes.

We then knocked down Setdb1 in a MERVL::tdTomato

reporter ESC line as an indicator of 2C-like state. Only high-effi-

ciency Setdb1 KD with two-round siRNA transfection induced

tdTomato-positive cells (Figures 3A, 3B, S3E, and S3F). Further-

more, we generated Rosa26-targeted MERVL::tdTomato

knockin lines on Setdb1-CKO ESCs and observed a similar

phenotype of the siSetdb1 system (Figures 3C–3E). In detail,

Setdb1-KO exhibited up to 22% of tdTomato-positive cells,

comparing to 14.2% in siSetdb1. Besides, 2iL condition partially

dampened tdTomato-positive rate comparing to SL upon

Setdb1-KD or KO (Figures 3B and 3D). To define the cell fate po-

tential of Setdb1-KO ESCs in the embryonic development, we

aggregated Setdb1-KO ESCs with 8-cell embryos. Setdb1-KO

ESCs exhibited high incorporation frequency (16/24) into both

ICM and TE, while wild-type ESCswere incapable of TE incorpo-

ration (Figure 3F). This Setdb1-KO-specific TE-incorporation is

complemented by Setdb1-OE, as incorporation of Setdb1-KO

cells were decreased in the TE layer of the chimeric embryo.

Together, these observations validated that Setdb1-KO facili-

tates transition into the totipotent ‘‘2C-like state.’’

2C-Like State Transition Induced by Setdb1-KO Is Dux

Dependent and Suppressed by Nanog Overexpression
Free of H3K9 methylation occupation, MERVL elements are

known to be regulated by Dux, a critical initiator of 2C-like state

transition from ESCs (Cossec et al., 2018; Maksakova et al.,

2013; Percharde et al., 2018). As SETDB1 directly regulates
(D) A column graph summarizes the percentages of cells with Rosa26-targeted M

SEM).

(E) Phase-contrast and fluorescence microscopic images of Setdb1 KO in Rosa2

bars, 250 mm.

(F) A column graph on the left panel illustrates the percentage of chimeric embryos

was determined by Fisher’s exact test, *p < 0.0001). The right panel displays th

positive Setdb1-CKO ESCs. Scale bars, 20 mm.

(G) Schematic view of the Dux KO strategy. Arrows indicate primer locations.

(H) An agarose gel image illustrating the PCR-based genotyping assay of the Dux

are double KO cell lines, whereas Dux-KO4 is a single KO cell line.

(I) qPCR analysis demonstrating the expression of Setdb1, Nanog, the mprint

Setdb1-CKO after Dux KO (n = 2, each with 2 technical replicates; error bar, SD

30 Cell Reports 30, 25–36, January 7, 2020
Dux loci (Figure 2F), we constructed Dux-KO Setdb1 CKO

ESCs to measure the contribution of Dux during SETDB1-medi-

ated 2C-like transition (Figures 3G and 3H). We found that Dux-

KO eliminated Setdb1-KO-induced 2C-like genes and TE genes

activation, while it did not affect Nanog decrease and imprinted

genes activation (i.e., Dazl, Mmp12) (Figures 3I and S3G),

demonstrating that Dux plays a dominant role in 2C-like induc-

tion upon Setdb1-KO.

Degradation of pluripotency proteins such asNANOG/OCT4 is

a known property of 2C-like transition from ESCs (Ishiuchi et al.,

2015; Macfarlan et al., 2012). However, we observed that

Setdb1-KO cells in 2iL retain NANOG expression (Figure 1F).

Even though Dux showed a dominant role in 2C-like program

initiation (Figures 3G–3I), we wonder whether pluripotency exit

is required for 2C-like transition. We overexpressed Nanog/

Oct4 in Setdb1-CKO ESCs (CKO-Nanog) and found that CKO-

Nanog cells failed to activate 2C-like program (Figures 4A, 4B,

and S4A). These observations demonstrated that pluripotency

transcription network impairs 2C-like program, echoing that 2iL

inhibits transition from pluripotent to 2C-like state.
Setdb1-KO Induces Necroptosis in 2iL Condition
The 2iL condition restored the pluripotent network after Setdb1-

KO (Figures 1F, 1G, and S2E). However, we found that these

Oct4-GFP+/Nanog+ ESCs were not able to passage, suggesting

initiation of programs preventing cell proliferation (Figure 5A).

Among the 0001 genes, we identified genes relative to pro-

grammed cell death and immune response such as Ripk3,

Oas2, and Irf7 (Figures 2A and 5B). RT-qPCR validated their re-

activation in Setdb1-KO ESCs under 2iL (Figure 5B). In addition,

cluster 0101 gene Caspase 8 (Casp8) was derepressed upon

Setdb1-KO (Figures 2A, S5A), suggesting that programmed

cell death may serve as the pathway to prevent Setdb1�/�

ESC proliferation in 2iL condition. Moreover, the upstream (50)
of Ripk3 is marked with Setdb1-dependent H3K9me3, centering

on an IAPLTR2 element with lower DNA methylation upon 2iL

(Figure S5B), suggesting double repressive mechanism for clus-

ter 0001 genes. Then we tested small-molecule compounds tar-

geting apoptosis (Z-VAD) (Fearnhead et al., 1995; Slee et al.,

1996) and necroptosis (Nec-1) (Degterev et al., 2005). Nec-1,

but not Z-VAD, reversed the proliferation blockage effect of

Setdb1-KO (Figures 5C, 5D, and S5C). Nec-1 is known as an in-

hibitor for RIPK1 phosphorylation and activation, suggesting

RIPK1-dependent programmed necroptosis is induced by

Setdb1 KO in 2iL condition.
ERVL::tdTomato level upon Setdb1-KO in SL/2iL condition (n = 3; error bar,

6-targeted MERVL-TdTomato reporter cell line under SL/2iL condition. Scale

after injecting WT, Setdb1-KO, and the Setdb1-OE rescued ESCs (the p value

e fluorescence microscopic images of 8-cell embryo injected with mCherry-

-KO ESCs. Genotyping results of 4 ESCs are shown. Dux-KO1, KO2, and KO3

ed gene, Dazl, the trophectoderm gene, Cdx2, and the 2C gene Tcstv1 in

).



A

B

Figure 4. Nanog-OE Inhibits the Induction of 2C-like Program upon Setdb1 Deficiency

(A) qPCR analysis the expression of Setdb1,Nanog, Esrrb, trophectoderm genes (i.e., Hand1,Mmp9, Cdx2,Gata2), 2C genes (i.e., Dux, Zscan4, Tcstv1, Tcstv3),

imprinted genes (i.e., Dazl, Mmp12, Tex19.1), and Irf7 in CKO cells under SL ± 4OHT treatment upon Nanog overexpression (OE) (n = 3, each with 2 technical

replicates; error bar, SD).

(B) Western blot analysis demonstrates the expression of SETDB1 in Setdb1-KO ESCs upon Nanog-OE.
We then performed immunoprecipitation-mass spectrometry

(IP-MS) of RIPK1 before and after Setdb1-KO in 2iL condition

(Figure 5E; Table S2). As reported, RIPK1 constitutively inter-

acted with FADD (Lu et al., 2011; Shan et al., 2018), while it

only interacted with RIPK3 upon Setdb1-KO (Figures 5E and

5F). As necrosome assembly is a known process depending

on RIPK1-RIPK3 interaction (Cho et al., 2009; Shan et al.,

2018; Wegner et al., 2017), these results indicated that

Setdb1-KO triggered necrosome formation. Consistently, phos-

pho-RIPK1 and phospho-MLKL were detected by western blot-

ting in Setdb1-KO ESCs culturing in 2iL (Figure 5G). RIPK1 and
MLKL were also slightly phosphorylated in SL condition

(Figure 5G), consistent with the previous observation that Nec-

1mildly promoted the viability of Setdb1-KO cells in SL condition

(Figures 5D and S5C). AsRipk3 is activated bySetdb1 deficiency

in 2iL condition at the mRNA (Figures 2A and 5B) and protein

level (Figure 5G), we examined the impact of Ripk3 activation

on Setdb1-KO-induced programmed necroptosis. Two inde-

pendent Ripk3 shRNAs, but not Casp8 shRNA, rescued the

cell viability loss upon Setdb1 deficiency (Figures 5H, 5I, and

S5D). These results indicated Setdb1-KO induce necroptosis

in 2iL through activating Ripk3.
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Figure 5. Setdb1-KO Induces Necroptosis in 2iL Condition by Activating Ripk3

(A) Cell proliferation assay was performed on CKO cells under SL/2iL from day 0 to day 4 (n = 2; error bar, SD).

(B) qPCR analysis of Ripk3,Oas2, Irf7, and Irf9 gene expression in CKO cells with/without 4OHT treatment (n = 3, each with 2 technical replicates; error bar, SD).

(legend continued on next page)
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DISCUSSION

In this study, we conditionally depleted Setdb1 in SL or 2iL con-

ditions and demonstrated that SETDB1-mediated H3K9me3 is

responsible for the suppression of 2C-like state genes. Specif-

ically, activation of Dux is essential for Setdb1-KO-induced 2C-

like program. Meanwhile, TE genes were reactivated only in SL

condition and lack of either Setdb1 binding or H3K9me3 occu-

pancy. Distinct from the pluripotency, the 2C-like state acquired

totipotency with the potential of deriving trophectoderm fate

(Beddington and Robertson, 1989; Rodriguez-Terrones et al.,

2018; Tsunoda and McLaren, 1983). Although there may be

other essential factors, we showed that Dux-KO ESCs failed to

activate TE genes upon Setdb1 KO (Figures 3I and S3G), indi-

cating 2C-like transition is required for TE activation in SL condi-

tion. Therefore, we propose that the Setdb1-KO promoted TE

differentiation depends on the induction of 2C-like state, thus,

a secondary effect of Setdb1 deficiency.

Although Setdb1 deficiency is acquiescently correspondent to

2C-like transition, there is no substantial evidence. Instead, two

previous studies claimed that Setdb1-KD hardly activated

MERVL elements, the 2C-specific genes (Li et al., 2017b;Maksa-

kova et al., 2013). As our study observed that 2C-like transition

induced by Setdb1 deficiency is a dose-sensitive event (Figures

3A–3D; Table S3), we proposed that residual SETDB1 in Li’s and

Maksakova’s system impeded MERVL activation. Our data

confirmed that regular siRNA/shRNA KD of Setdb1 hardly acti-

vates MERVL reporter and 2C-like genes (Figures S3A–S3C).

Echoing that the ground state blocks 2C-like transition, we

observed that 2iL inhibited more than 50% MERVL::TdTomato

expression upon Setdb1-CKO (Figure 3D) (Macfarlan et al.,

2012). Consistently, pluripotency factors such as Nanog/Oct4

prevented 2C gene activation and TE differentiation (Figures

4A and S4A), supporting that pluripotent state precedes the

establishment of 2C-like transition (Fu et al., 2019; Rodriguez-

Terrones et al., 2018). It is intriguing that 2C-like cells in 2iL ex-

pressed both pluripotency and totipotency markers, resulting

in a distinct stage apart from the SL-induced 2C-like totipotency

(Figures S5E–S5G). Toward necroptosis or totipotency, the cell

fate following pluripotency state in 2iL remains to be determined.

Recent work manifested the unexpected minimal impact of

Dux on ZGA (Chen and Zhang, 2019). Notably, most Dux targets

in 2C-like cells are regularly activated in maternal and zygotic KO

embryos. They attributed the observation to the divergence of

2C-like regulation between 2-cell embryos and ESCs. Indeed,

any ESC studies have demonstrated that Dux is required to acti-

vate the 2C program under Dppa2/4 OE, Ubc9 KO, Kap1 KO,

and LINE1 KD conditions (Cossec et al., 2018; Eckersley-Maslin

et al., 2019; Percharde et al., 2018; Rodriguez-Terrones et al.,
(C) Phase-contrast and fluorescence microscopic images of Nec-1 rescues cell

(D) Cell viability assay of DMSO, Z-VAD, and Nec-1-treated Setdb1-KO using CC

0.001).

(E) Volcano plots showing the RIPK1-hemagglutinin (HA) interactome of Setdb1-

(F) Coimmunoprecipitation (IP) assay demonstrating the interaction between HA-

(G) Western blot analysis of the necroptotic markers such as p-RIP1 and p-MLK

(H) Western blot analysis to verify the efficiency of the two shRNAs targeting Rip

(I) The percentage of cell viability upon shRNA treatment after Setdb1 KO (n = 3;
2018; Yan et al., 2019). Our study revealed that Setdb1-KO-

induced activation of 2C program is highly dependent on Dux

(Figures 3G–3I and S3G), elucidating the indisputable role of

Dux in 2C-like program activation.

Along with Kap1, Setdb1 is responsible for ERV silencing

(Collins et al., 2015; Kato et al., 2018; Liu et al., 2014; Matsui

et al., 2010; Sharif et al., 2016). Similarly, weobserved that thema-

jority of Setdb1-dependent H3K9me3 peaks reside at transposon

elements or long terminal repeat (data not shown; Jordan et al.,

2003). Notably, an IAPLTR2 element has been found upstream

of Ripk3, marked with Setdb1-dependent H3K9me3 and lower

DNA methylation upon 2iL (Figure S5B). As both H3K9me3 and

DNAmethylation are known to regulate IAP element, the differen-

tial regulation of Ripk3 upon two culturing conditions is possibly

due to these dual epigenetic modulation (Deniz et al., 2018).

Mice lacking either Ripk3 or Mlkl, the core necroptotic regula-

tors, are able to survive adulthood (Li et al., 2017a), understating

the regulatory role of necroptosis during development. Here, we

revealed Setdb1 depletion in 2iL initiates necroptosis via RIPK3,

followed by RIPK1/3-induced necrosome assembly. Caspase 8

(CASP8), the necroptotic suppressor, exhibited accumulation of

its pro-active form in the Setdb1-KO sample under 2iL condition,

but not sufficient to block necroptosis (Figure S5H; Weinlich

et al., 2017). Moreover, Nec-1 suppressed necroptosis upon

Setdb1-KO independent of Dux (Figure S5I), suggesting that

2C-like transition is dispensable forSetdb1-KO-induced necrop-

tosis in 2iL. The underlying mechanism of necroptotic transition

from pluripotency state requires further investigation.

To conclude, our study elucidated the restriction role of

SETDB1-mediated H3K9methylation during pluripotency to toti-

potency transition, especially, through epigenetic silencing of

ERV loci and relevant genes such as Dux. Consequently, Setdb1

deficiency causes defect of ICM generation in embryonic devel-

opment and undergoes 2C-like state transition in pluripotent

stem cells. Investigation toward SETDB1-centered epigenetic

regulation provides mechanistic insights of cell fate transition

and highlights potential therapeutic targets during early embry-

onic developmental defects.
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Quant-ITTM Picogreen dsDNA Assay kit Life Technologies CAT#P11496

NextSeq500 Mid output 150 cycles Illumina FC-404-2001

Deposited Data
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Experimental Models: Cell Lines
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MERVL::TdTomato reporter mouse embryonic
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A gift from Prof. Yangming
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Animal Technology
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release/bioc/html/maSigPro.html
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Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/

bowtie2/manual.shtml

MACS2 Zhang et al., 2008 https://pypi.org/project/MACS2/

Dfilter Kumar et al., 2013 https://reggenlab.github.io/DFilter/

Deeptools Ramı́rez et al., 2016 https://deeptools.readthedocs.io/

en/develop/

Homer Heinz et al., 2010 http://homer.ucsd.edu/homer/

DESeq2 Love et al., 2014 R package DESeq2

scikit-learn Pedregosa et al., 2011 https://scikit-learn.org/stable/index.html

matplotlib Hunter, 2007 https://matplotlib.org/index.html

seaborn Michael Waskom http://seaborn.pydata.org/index.html

Accuri C6 Plus BD biosciences http://www.bdbiosciences.com/us/

instruments/research/cell-analyzers/bd-

accuri/m/1294932/overview

Photoshop Adobe System Software Ireland http://www.adobe.com/cn/products/

cs6/photoshop.html

Other

DNA methylation data Habibi et al., 2013 GSE41923

2C and ZGA data Li et al., 2017b GSE44183

Setdb1 CKO data Karimi et al., 2011 GSE29413

Setdb1 KD data Yuan et al., 2009 GSE17642
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagentsmay bedirected to the LeadContact, Jiekai Chen (chen_jiekai@gibh.ac.cn)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Strains
OG2mice had a CBA/CaJ3 C57BL/6J background (Mouse strain datasheet: 004654). CD-1 mice were used as embryo donors and

the pseudopregnant recipients for blastocyst injection. CD-1 (Stock No.: 201) and 129 (Stock No.: 217) mice were obtained from

Beijing Vital River Laboratory Animal Technology Co., Ltd. Animal experiments were performed in accordance with the Guide of

the Care and Use of Laboratory Animals by the National Research Council and approved by (GIBH) Institutional Animal Care and

Use Committee.

Cell Lines and Cell Culture Condition
OG2mouse embryonic stem cells were derived from 3.5 d.p.c ICM from 129 female mice crossingmale OG2mice. MERVL::tdTomato

reporter ESC line is a gift Prof. Yangming Wang. ESCs were cultured independent of feeders in two types of media: 1000U/mL LIF in

DMEMcontaining 15% fetal calf serum (SL); 1000U/mLLIF in serum-freeN2B27medium supplementedwithMEK inhibitor PD0325901

(1 mM) and GSK3 inhibitor CHIR99021 (3 mM), known as 2i (2iL) (Ying et al., 2008).

METHOD DETAILS

Generation of Setdb1 Conditional Knockout OG2 mES Cell
In brief, two loxP sites were inserted into endogenous Setdb1 locus (Setdb1 ENSMUSG0000001569 7; SET domain, bifurcated 1,

MGI: 1934229) flanking exon16 with CRISPR Cas9 and donor plasmid. Then we introduce PGK-CreERT into another allele replacing

16exon of Setdb1 by homologous recombination. The cells were selected with Puromycin (1 mg/ml) for 3 days and conducted

genotype identification with genome PCR and western blot. Finally, we can get Setdb1 knockout OG2 mESCs by adding 0.5 mM

4-hydroxytamoxifen (4OHT).

Construction of Reporter Cell Lines
MERVL::tdTomato reporter ESC line for Figure 3A is reported in previous study (Yan et al., 2019). To generate Rosa26 loci knock-in

2C::tdTomato reporter cell line on Setdb1-CKO ESCs, the Rosa26 targetingMERVL-LTR-tdTomato reporter (a generous gift fromDr.
Cell Reports 30, 25–36.e1–e6, January 7, 2020 e3

mailto:chen_jiekai@gibh.ac.cn
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
https://pypi.org/project/MACS2/
https://reggenlab.github.io/DFilter/
https://deeptools.readthedocs.io/en/develop/
https://deeptools.readthedocs.io/en/develop/
http://homer.ucsd.edu/homer/
https://scikit-learn.org/stable/index.html
https://matplotlib.org/index.html
http://seaborn.pydata.org/index.html
http://www.bdbiosciences.com/us/instruments/research/cell-analyzers/bd-accuri/m/1294932/overview
http://www.bdbiosciences.com/us/instruments/research/cell-analyzers/bd-accuri/m/1294932/overview
http://www.bdbiosciences.com/us/instruments/research/cell-analyzers/bd-accuri/m/1294932/overview
http://www.adobe.com/cn/products/cs6/photoshop.html
http://www.adobe.com/cn/products/cs6/photoshop.html


Yue Huang, Chinese Academy ofMedical Sciences) was linearized and transfected into ESCs by electroporation. The cells were then

selected with Hygromycin (200 mg/ml) for 5 days. Colonies containing tdTomato-positive cells were subsequently picked and

expanded. All cell lines were kept under constant drug selection with Hygromycin. Mycoplasma detection tests were conducted

routinely to ensure mycoplasma-free conditions throughout the study.

Gene Knockdown Assay
siRNAs were suspend-transfected twice at Day0 and Day2 using Lipofectamine RNAiMAX Transfection Reagent (13778150, Invitro-

gen) according to the manufacturer’s instructions. shRNA were constructed into pLKO.1 constructor (Table S4). Lentivirus was

prepared by transfecting 293T cells, as previously described (Castro-Diaz et al., 2014; Rowe et al., 2010). Briefly, The virus was har-

vested 48 h after transfection and pre-infected 2 days (for 8h with twice) to ensure its knockdown efficiency before 4OHT treatment.

Western Blot
Western blots were performed using typical laboratory procedures with the following antibodies: anti-NANOG (A300-397A, Bethyl),

anti-SETDB1 (GTX115305, GeneTex), anti-GAPDH (MAB374, Millipore), anti-RIPK1 (17519-1-AP, Proteintech), anti-RIPK3 (17563-1-

AP, Proteintech), anti-pMLKL (37333, CST), and anti-pRIPK1 (31122, CST). Briefly, cells were lysed on ice in SDS buffer (62.5 mM

Tris-HCl (pH 6.8 at 25�C). Whole-cell extracts were resolved by 10% or 12% SDS-PAGE, transferred to PVDF membranes and

probed with corresponding antibodies according to the manufacturer’s recommendations (Cell Signaling Technology).

Immunofluorescence Staining
Cells growing on a confocal dish (801002, NEST) were fixed in 4% paraformaldehyde for 30 min, washed with PBS three times and

permeabilized with 0.2% Triton X-100 and 3% BSA for 30min at room temperature. Then the cells were incubated with anti-NANOG

(A300-397A, Bethyl) for 2 h. Following PBS washes, the secondary antibody (A11011, Invitrogen) was applied for 1h and subse-

quently, DAPI for 2 min. Finally, the coverslips were mounted on slides for observation.

Cell Survival Assay
Cell survival assay was performed using the Cell Counting Kit-8 Assay kit according to the manufacturer’s instructions (C0037,

Beyotime). ESCs underwent pre-treatment with 50 mm Caspase inhibitor Z-VAD-FMK (S7023, Selleck) and 30 mm RIP inhibitor

Necrostatin-1 (S8037, Selleck) along with 0.5 mm 4OHT for 2 days, followed by re-plating for 4 days.

Flow Cytometry
Cells were digested by 0.05% trypsin and re-suspended with PBS with 2% FBS (FACS buffer) for direct detection. The suspension

was filtered with a strainer and analyzed using Fortessa cytometer (BD Biosciences, San Jose, CA). The GFP fluorescence intensity

were detected in the FITC channel, and mCherry in PE channel. Data were analyzed using FlowJo software (FlowJo, LLC, Ashland,

OR, USA).

Co-immunoprecipitation (Co-IP)
RIP1-HA overexpression Setdb1 CKOmES cells were collected with 1x107 cells per tube. The cells were re-suspended in 1ml Lysis

buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.4, 2 mM EDTA, 1% NP-40, and protease inhibitors) and rotated 30min at 4�C. Cell lyate
was collected by centrifugation (10,000 g, 10min at 4�C) and incubated with 20ul Anti-HA Magnetic Beads (88837, Sigma) for 30 mi-

nutes at room temperature. Beads were washed with lysis buffer for 5 times (10 min each time) and boiled in SDS buffer for 10 min to

elute the protein complex.

Immunoprecipitation (IP)-MS
RIP1 HA-tag Immunoprecipitation and On-bead Digestion. Whole cell extracts of mES cells with Ripk1-HA overexpression were pre-

pared using lysis buffer (50 mM Tris pH 8.0, 150mMNaCl, 10%Glycerol, 0.5%NP40) with fresh added Complete Protease inhibitors

(Sigma, 1187358001). Cells were incubated for 2h at 4�Cwith rotation. Soluble cell lysates were collected by centrifugation (12,000 g,

15min at 4�C). 1 mg of cell lysates were incubated with either HA antibody or matched IgG overnight at 4�C with rotation. Combined

Protein A/G magnetic beads (Bio-rad, 1614833) were added for another 1.5 h. Beads were then washed 3 times with wash cell lysis

buffer and 1 time with PBS. After completely removal of PBS, immunoprecipitated proteins were digested using on-bead digestion

protocol as described before (Spruijt et al., 2013). Briefly, beads were incubated with 100 mL of elution buffer (2 M urea, 10 mM DTT

and 100mMTris pH 8.5) for 20min. Then, iodoacetamide (Sigma, I1149) was added to a final concentration of 50mM for 10min away

from light, followingwith 250 ng of trypsin (Promega, V5280) partially digestion for 2 h. After incubation, the supernatant was collected

in a separate tube. The beadswere then incubatedwith 100 mL of elution buffer for another 5min, and the supernatant was collected in

the same tube. All these steps were performed at RT in a thermoshaker at 1500 rpm. Combined elutes were digested with 100 ng of

trypsin overnight at RT. Finally, tryptic peptides were acidified to pH < 2 by adding 10 mL of 10% TFA (Sigma, 1002641000) and

desalted using C18 Stagetips (Sigma, 66883-U) prior to MS analyses.
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Mass Spectrometry Analysis
RIP Tryptic peptideswere separated using a total 140min of data collection (100min of 2% to 22%, 20min 22% to 28%and 12min of

28% to 36% gradient of acetonitrile (Thermo, 51101) for peptide separation, following with two steps washes: 2 min of 36% to 100%

and 6 min of 100% acetonitrile) with an Easy-nLC 1200 connected online to a Fusion Lumos mass spectrometer (Thermo). Scans

were collected in data-dependent top-speedmodewith dynamic exclusion at 90 s. Raw data were analyzed usingMaxQuant version

1.6.0.1 search against Mouse Fasta database, with label free quantification and match between runs functions enabled. The output

protein list was analyzed and visualized using DEP package as described before (Zhang et al., 2018).

Native ChIP
Native ChIP protocol was performed as previously described (Hasson et al., 2013). Onemillion mES cells were collected and washed

with PBS, then centrifuged and resuspended in 0.25ml of Buffer1 (0.32M Sucrose, 60mM KCl, 15mM NaCl, 5mM MgCl2, 0.1mM

EGTA, 15mM Tris-HCl pH7.5, 0.5mM DTT, 0.1mM PMSF, 1:1000 protease inhibitor cocktail (Sigma-Aldrich)), along with 0.25ml of

Buffer1+0.1%IGEPAL. The resulting 0.5ml of nuclei were layered on top of 1ml of Buffer3 (Same as Buffer1, but with 1.2M Sucrose)

and centrifuged at 10,000 g for 20 min at 4�C unbraked. Nuclei were resuspended in Buffer A (0.34M sucrose, 15mMHEPES, pH7.4,

15mM NaCl, 60mM KCl, 4mMMgCl2, 1mM DTT, 0.1mM PMSF, 1:1000 protease inhibitor cocktail (Sigma-Aldrich)) and digested for

20 min at 37�C with MNase(Sigma) in Buffer A supplemented with 3mM CaCl2. The reaction was stopped with 5mM EGTA, centri-

fuged at 13,500 g for 10min, and chromatin resuspended in (10mMEDTA, pH8.0, 1mMPMSF, 1:1000 protease inhibitor cocktail) and

rotated at 4�C for 2-4h. The mixture was adjusted to 500mM NaCl, allowing rotation for another 45 min and then centrifuged at

13,500 g for 10 min. Chromatin supernatant was diluted to 100ng/ml with buffer B (20mM Tris, pH8.0, 5mM EDTA, 500mM NaCl,

0.2% Tween20) and incubated for 20 min at 4�C with 60 mL protein G + protein A beads (GE Healthcare). Antibodies were added

and rotated overnight at 4�C. The beads were washed three times with Buffer B, and once with Buffer B without Tween 20. The

DNA was eluted with 300 mL of elution buffer (20mM Tris (pH7.5), 20mM EDTA, 0.5% SDS, 500ug/ml Proteinase K) and incubated

for 4h at 56�C. The resulting samples were purified with QIAGEN MinElute columns, according to the manufacturer’s instructions.

Antibodies used: anti-H3K9me3 (5 mg; ab8898, abcam), anti-H3K27me3 (5 mg, 17-622, Millipore).

ChIP-Seq
Setdb1 ChIP was performed as described previously (Chen et al., 2013). ESCs were fixed with 1% formaldehyde for 12min and

the reaction was quenched by 0.125M glycine. Cells were then washed with PBS for three times. Cells were lysed in ChIP buffer

(1% SDS, 50 mM Tris-HCl, pH 8.0, 10 mM EDTA, and protease inhibitor cocktail) for 10 min at 4�C. The DNA was fragmented to

200-500bp by sonication and centrifuged at 12,000 g for 2min. The supernatant was diluted with ChIP IP buffer (50 mM Tris-HCl,

pH 8.0, 150 mM NaCl and protease inhibitor cocktail). Immunoprecipitation was performed with 5 mg rabbit anti-Setdb1 antibody

(GTX115305, GeneTex) coupled to protein A/G overnight at 4�C. Beads were washed, eluted, and reverse cross-linked. DNA was

purified using the MinElute Reaction Clean up Kit (QIAGEN). The ChIP DNA library for NextSeq 500 sequencing was constructed

with VAHTS Turbo DNA Library Prep Kit for Illumina (Vazyme Biotech) according to the manufacturer’s instructions. AMPure XP

beads were used for purification steps. The library was quantified with VAHTS Library Quantification Kit for Illumina (Vazyme Biotech)

and sequenced on an Illumina NextSeq 500 v2 with 50bp paired-end reads. Annoroad Gene Technology company (Beijing, China)

performed the DNA sequencing.

qRT-PCR and RNA-Seq
Total RNAwas extractedwith a TRIzol-based protocol. For quantitative PCR, cDNAwas synthesizedwith ReverTra Ace (Toyobo) and

oligo-dT (Takara), and then analyzed by qPCR with Premix Ex Taq (Takara). VAHTS mRNA-seq V3 Library Prep Kit for Illumina

(NR611, Vazyme) was used for library constructions and sequencing done with NextSeq500 Mid output 150 cycles (FC-404-

2001, Illumina) for RNA-seq. The qPCR primers can be found in Table S4. Annoroad Gene Technology company (Beijing, China)

performed the DNA sequencing.

RNA-Seq, ChIP-Seq Analysis
RNA-seq clean reads weremapped tomouse transcript annotation of Gencode vM15 version onmm10 genome using RSEM (Collier

et al., 2017).We chose Trans PerMillion (TPM) value for the normalization and evaluation of gene expression levels. Meanwhile, ChIP-

seq clean reads were mapped to mm10 genome using Bowtie2 package (Langmead and Salzberg, 2012). Then we applied MACS2

(Zhang et al., 2008) andDfilter (Kumar et al., 2013) to call the enriched peaks. Deeptools (Ramı́rez et al., 2016) andHomer (Heinz et al.,

2010) were applied to calculate the ChIP-seq peak profiles of nearby genes. Data analysis and visualizations were performed in R

environment.

Gene Set Enrichment Analysis (GSEA) was used to determine whether the Setdb1-KO upregulated genes were enriched for genes

that are specifically expressed at the 2-cell stage or during ZGA as described previously (Li et al., 2017b). We used the following pub-

lished datasets for analysis: DNA methylation (GSE41923, Habibi et al., 2013).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented asmean ± s.e.m. or mean ± s.d. as indicated in the figure legends. Unpaired two-tailed Student’s t test, Two-way

AVOVA with Sidak’s multiple comparisons test were used to assess statistical significance. The p value, t-ratio were calculated with

the Prism 6 software. A p value < 0.05 was considered as statistically, *p < 0.05, **p < 0.01, ***p < 0.001. No statistical method was

used to predetermine sample size.

DATA AND CODE AVAILABILITY

Accession Numbers
ABioProject accession number (PRJNA544540) has been assigned to the sequencing data of this manuscript. Other published data-

sets can be found in ‘‘Other’’ section of Key Resources Table.
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