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Exchange protein directly activated by cAMP (Epac) 1 plays
an essential role in stress-induced exercise capacity by regulating
PGC-1α and fatty acid metabolism in skeletal muscle
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Abstract
Exchange protein directly activated by cAMP (Epac) mediates cAMP-mediated cell signal independent of protein kinase
A (PKA). Mice lacking Epac1 displayed metabolic defect suggesting possible functional involvement of skeletal muscle
and exercise capacity. Epac1 was highly expressed, but not Epac 2, in the extensor digitorum longus (EDL) and soleus
muscles. The exercise significantly increased protein expression of Epac 1 in EDL and soleus muscle of wild-type (WT)
mice. A global proteomics and pathway analyses revealed that Epac 1 deficiency mainly affected “the energy production
and utilization” process in the skeletal muscle. We have tested their forced treadmill exercise tolerance. Epac1−/− mice
exhibited significantly reduced exercise capacity in the forced treadmill exercise and lower number of type 1 fibers than
WT mice. The basal protein level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was reduced in
the Epac1−/− mice. Furthermore, increasing expression of PGC-1α by exercise was also significantly attenuated in the
skeletal muscle of Epac1−/− mice. The expressions of downstream target genes of PGC-1α, which involved in uptake
and oxidation of fatty acids, ERRα and PPARδ, and fatty acid content were lower in muscles of Epac1−/−, suggesting a
role of Epac1 in forced treadmill exercise capacity by regulating PGC-1α pathway and lipid metabolism in skeletal
muscle. Taken together, Epac1 plays an important role in exercise capacity by regulating PGC-1α and fatty acid
metabolism in the skeletal muscle.

Keywords Exchange protein directly activated by cAMP (Epac) . Exercise capacity . PGC-1α . Fatty acid metabolism . Skeletal
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Introduction

Skeletal muscle is the largest organ in the body; it plays critical
roles in physical activities, metabolism (glucose disposal and
lipid catabolism) and is associated with some pathological
conditions like muscular dystrophies and sarcopenia [8, 21,
26]. The ability of skeletal muscle to response to enhanced
energy demand in terms of efficient and timely balance be-
tween glucose and lipid utilization is a form of metabolic
plasticity essential for survival [3, 11, 16, 26]. Conversely,
metabolic inflexibility in skeletal muscle can cause exercise
intolerance, organ dysfunction, and disease [11].

Skeletal muscle physiology is essentially regulated by G
protein-coupled receptor (GPCR)-cAMP signaling [1, 9, 21],
from the regulation of acute metabolic changes during exer-
cise to the developmental and structural changes of skeletal
muscle in the long term [5].β2-adrenergic receptor (β2-AR) is
the prevalent β-AR on skeletal muscle and β2-AR/cAMP
represents one of the best-characterized GPCR/cAMP signal-
ing pathways in skeletal muscle. During exercise, epinephrine,
via β2-AR, promotes acute changes in muscle contraction and
energy utilization, such as faster excitation contraction cou-
pling [35]. Chronic β2-AR activation would lead to skeletal
muscle hypertrophy with increased protein synthesis and re-
duced protein degradation. β2-AR agonists have been used as
ergogenic to boost athletic performance [21]. Clinically, phar-
maceutical manipulation of cAMP signaling, such as by the
use of β2-AR agonists, has proven beneficial to people suffer
from skeletal muscle disorders like sarcopenia, cancer cachex-
ia, and muscular dystropies [5].

Two cAMP sensors, protein kinase A (PKA) and exchange
protein directly activated by cAMP (Epac), mediate cAMP
responses. Despite the importance of the cAMP signaling in
skeletal muscle, the molecular mechanisms mediating cAMP
actions are still being elucidated. Particularly, most of the
knowledge is restricted to the conventional cAMP effector
protein kinase A (PKA) whereas information about the newly
identified effector Epac is extremely limited.

The two Epac isoforms, Epac1 and Epac2, are guanine
nucleotide exchange factors for the small G protein Rap [6].
Our laboratory has generated mice carrying homozygous de-
letion of Epac1 isoform and showed that Epac1−/− mice
displayed metabolic phenotypes, including impaired glucose
tolerance and lower glucose-stimulated insulin secretion [18].
Importantly, Epac1−/− mice exhibited significantly higher re-
spiratory exchange ratio, elevated circulating triglyceride TG
levels. The present work started with examining whether the
perturbation of lipid metabolism would compromise physical
exercise performance. The present work also demonstrated
that, Epac1−/−, as well as Epac2−/− and Epac1−/−; Epac2−/−

mice exhibited significantly reduced exercise capacity when
compared with wild-type (Epac1+/+; Epac2+/+) mice. As mus-
cle fiber composition and lipid utilization are critical

determinants of exercise capacity, to address the hypothesis
that exercise intolerance in Epac-deficient mice could stem
from defects in these aspects in skeletal muscle, immunocyto-
chemical experiment showed that Epac knockout (KO) shifted
the muscle fiber to fast-twitch type. Furthermore, fatty acid
(FA) and triglyceride homeostasis were found perturbed in
Epac KO muscle. Both resting and exercised Epac-deficient
muscle contained reduced level of master transcription coac-
tivator PGC-1Α mRNA than the wild-type counterpart. The
present study elucidates the role of Epac1 in skeletal muscle
fiber typing, lipid utilization, and physical exercise
performance.

Materials and methods

Animal experiments

All animal experiments were conducted following the guide-
lines approved by Committee on the Use of Live Animals in
Teaching and Research of The University of Hong Kong
(CULATR 3175-13) and Inje University Animal Care and
Use Committee (IACUC 2014-037). Mice were housed with
a 12-h light/dark cycle (L 0700 to 1900 h) and ad libitum
access to food and water. All the mouse lines used in the
present study were obtained and bred according to the previ-
ously published paper [37]. Eight- to 12-week male WT,
Epac1−/−, Epac2−/− and Epac1−/−; 2−/− mice were used in all
experiments, unless otherwise stated.

Graded treadmill running test

Treadmill running test was conducted according to the pub-
lished protocols [13, 22]. Mice were trained for 3 days with
running on the treadmill with 5° inclination at 10 cm/s for
5 min and 15 cm/s for 10 min. The treadmill was equipped
with an electric shock apparatus to keep the mice running. On
the testing day, mice were allowed to run on the treadmill with
10° inclination at 10 cm/s for 5 min and 15 cm/s for 10 min
and the speed was increased by 3 cm/s every 2 min. The mice
were allowed to run until exhaustion when the mice unable to
run on the treadmill for 10 s despite mechanical prodding.
Body weight, weight of tissues, running time, running dis-
tance, number, and duration of electric shocks were measured.
Work done performed was calculated using the published for-
mula [29]: body weight (kg) × running distance (m) × Sin
(slope degree) × 9.8 (J/kg ×m).

One-dimensional LC-MS/MS proteome analysis

Protein separation and LC-MS analysis were performed as
previously described [19]. Briefly, dissolved skeletal soleus
muscle proteins from wild-type, Epac1−/−, Epac2−/− and
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Epac1−/−; Epac2−/− mice were separated on a 12% polyacryl-
amide gel by SDS-PAGE. The gels were washed three times
with ddH2O for 5 min each and then stained with Bio-Safe
Coomassie stain solution (Coomassie G250 stain; Bio-Rad,
Hercules, CA) for 1 h, with gentle shaking at room tempera-
ture. The Coomassie-stained gels were evenly sliced into 10
slices and then destained by incubation in 75 mM ammonium
bicarbonate/40% ethanol (1:1). Disulfides were reduced by
treatment with 5 mM DTT/25 mM ammonium bicarbonate
at 60 °C for 30 min, followed by alkylation with 55 mM
iodoacetoamide at room temperature for 30 min. The gel
pieces were then dehydrated in 100% acetonitrile (ACN),
dried, and swollen overnight at 37 °C in 10 μl 25 mM ammo-
nium bicarbonate buffer containing 20 μg modified sequenc-
ing grade trypsin (Roche Applied Science, Indianapolis, IN)/
ml. The tryptic peptide mixture was eluted from the gel with
0.1% formic acid. LC-MS/MS analysis was performed using a
ThermoFinnigan ProteomeX workstation LTQ linear ion trap
MS (Thermo Electron, San Jose, CA) equipped with NSI
sources (Thermo Electron). Briefly, 12 μl of peptide sample
from the in-gel digestion was injected and loaded onto a pep-
tide trap cartridge (Agilent, Palo Alto, CA). Trapped peptides
were eluted onto a 10-cm reversed phase (RP) PicoFrit col-
umn packed in-house with 5-μm 300-Å pore size C18, then
separated by gradient elution. The mobile phases consisted of
H2O and ACN, both containing 0.1% v/v formic acid. The
flow rate was maintained at 200 nl/min. The gradient started
at 2% ACN, then reached 60% ACN in 50 min, 80% ACN in
the next 5 min, and 100% H2O in the final 15 min. Data-
dependent acquisition (m/z 400–1800) was enabled, and each
MS survey scan was followed by five MS/MS scans within
30 s, with the dynamic exclusion option enabled. The spray
voltage was 1.9 kV, the temperature of the ion transfer tube
195 °C, and the normalized collision energy was 35% [27].

Data-analyzed tandem mass spectra were extracted and the
charge state deconvoluted and de-isotoped using the Sorcerer
3.4 beta2 platform (Sorcerer software 3.1.4, Sorcerer Web
interface 2.2.0 r334, and Trans-, Proteomic Pipeline 2.9.5).
All MS/MS samples were analyzed using SEQUEST (version
v.27, rev. 11; ThermoFinnigan, San Jose, CA), which was set
to search the ipi 3.29 database (IPI ver.3.29, 40131 entries)
with semitrypsin as the digestion enzyme. The search used a
fragment-ion mass tolerance of 1.00 Da and a parent-ion mass
tolerance of 1.5 Da. Iodoacetamide-derivatized cysteine was
specified as a fixed modification. Methionine oxidation,
iodoacetamide derivatizion of cysteine, and phosphorylation
of serine, threonine, and tyrosine were specified as variable
modifications. Scaffold (version Scaffold-2.0; Proteome
Software Inc., Portland, OR) was used to validate MS/MS-
based peptide and protein identifications. Peptide identifica-
tions were accepted if their probability was > 95.0%, as spec-
ified by the Peptide Prophet algorithm, and they contained at
least one identified peptide. Protein probabilities were

assigned by the Protein Prophet algorithm. Proteins contain-
ing similar peptides such that they could not be differentiated
based on MS/MS analysis alone were grouped to satisfy the
principles of parsimony. After identifying the proteins, each
dataset was used for a subtractive analysis by semi-
quantitative normalized spectral counts, which were normal-
ized by total spectral counts in the Scaffold program [24].

Bioinformatics analysis

In order to elucidate the molecular functions and biological pro-
cesses of the identified proteins, the proteins were further cate-
gorized and annotated, and functional networks were construct-
ed. Systematic bioinformatics analysis of the proteome was con-
ducted using STRING 10.0 (Search Tool for the Retrieval of
Interacting Genes/Proteins) [34] and Ingenuity Pathway
Analysis Software (IPA, http://www.ingenuity.com) [20].

Real-time PCR

Total RNAwas extracted from tissues using TRIzoL Reagent
(Invitrogen) and used in first-strand DNA (cDNA) synthesis
using the PrimeScript RTMaster Mix (Takara, Japan) for real-
time PCR according to the manufacturer’s protocol. Real-time
PCR was performed in Bio-Rad iQ5 real-time thermal cycler
(Bio-Rad, Hercules, CA). Primer sequences are available up-
on request. The amplifications of target genes the internal
control GAPDH were performed as follows: a 3-min hot start
at 95 °C followed by 40 cycles of denaturation at 95 °C for
15 s and amplification at 60 °C for 30 s.

Western blot analysis

Equal amounts of total cell lysate were resolved on 7.5–15%
SDS-PAGE gels and electrotransferred to a PVDF membrane.
After blocking for 1 h with 5% nonfat dry milk in TBS-T
buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1%
Tween-20), the blots were probed for overnight at 4 °C with
the following primary antibodies: anti-Epac1 (kindly provided
by Professor J. Bos from the UMC Utrecht), anti-PKA regu-
latory subunit 1 alpha (Abcam, Cambridge, MA), anti-
GLUT4 (provided by Dr. Aimin Xu, The University of
Hong Kong), anti-phospho-CREB, anti-phospho-AKT
(Ser473), anti-phospho-AMPKa (Thr172) (Cell Signaling,
Inc., Austin, TX), anti-SIRT1 (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA), anti-tubulin antibody (Sigma, St.
Louis, MO). Anti-VDAC, anti-NDUFS4, anti-CX II 70kD
FP, anti-CX III subunit core 2, anti-COX-IV and were gifts
from Dr. Philip Ho, The University of Hong Kong. The blots
were then incubated with a peroxidase-conjugated secondary
antibody (Bio-Rad) for 1 h followed by detection with ECL
chemiluminescence reagent (Amersham, Arlington Heights,
IL) and exposure on X-ray films.
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Immunocytochemistry

Gastrocnemius were fixed in 4% paraformaldehyde for
around 48 h and embedded in paraffin for sectioning.
Five-μm sections were prepared using microtome and
mounted on pre-coated microscopic slides. Immunostaining
with anti-type I myosin heavy chain antibody (1:1000) was
performed on the sections using a Vectastain Elite ABC kit.
The sections were counter-stained with hematoxylin before
mounting. Images were captured with a Spot RT Color CCD
digital camera connected to an inverted microscope. Cross-
section area of positively stained fiber was quantified by
ImageJ software.

Mitochondrial DNA quantification

Total DNA was extracted from muscles using TRIzoL
Reagent. Real-time PCR was performed using primers specif-
ic for the mouse mitochondrial genes COX-II and ND-1 and
mitochondrial DNA content were normalized again DNA
content of nuclear gene,β-globin (Primer sequences are avail-
able upon request).

Isolation and culture of primary satellite cells

The soleus and gastrocnemius were dissected from wild-type
mice. Tendon, fat, vessel, and connective tissues were careful-
ly removed under a dissecting microscope. Muscles were cut
into small pieces and incubated with 0.1% collagenase H at 37
C for 1 h. After digestion, the slurry was centrifuged at 400g
for 15 min. The pellet was resuspended in growth medium
(DMEM with 20% FBS and 2.5 ng/mL recombinant human
FGF) and triturate using pipette to dislodge satellite cells from
muscle fibers. The mixture was filtered through a 40-μm ny-
lon mesh rinsed with proliferation medium. The cell suspen-
sion was pelleted by centrifugation at 1000g for 10 min. The
pellets containing satellite cells were resuspensed in prolifer-
ation medium and plated on matrigel-coated culture dishes.
Primary satellite cells were cultured in growth medium until
become confluent. Culture medium was then replaced with
differentiation medium (DM, DMEM with 2% horse serum
and 5 μg/ml insulin) and maintained in 5% CO2 at 37 °C for
7 days. Differentiation medium was changed every 2 days.
Myotubes differentiated from wild-type satellite cells were
incubated with 0.1% DMSO (vehicle) or Epac inhibitor ESI-
09 (ESI) for 48 h before being harvested for RNA extraction.
ESI was obtained from Selleck Chemicals (Houston, TX).

Fatty acid measurement

Measurement was done on non-excised or exercised 16-week
old wild-type, Epac1−/−, Epac2−/− and Epac1−/−; Epac2−/−

mice. For non-exercised group, chow was removed 4–6 h

prior to blood or tissues collection. Mice were trained and
allowed to run on a treadmill for 31 min according to the same
experimental protocol as in treadmill running test. Thirty-one
min was chosen based on the initial treadmill test when none
of the genotypes became exhausted but KO animals started
showing difficult to catch up the pace of treadmill (as indicat-
ed by higher electric shock number and duration) (Fig. 2b).
Blood were drawn and centrifuged at 2000 rpm for 10min and
plasma were collected. Tissues were snapped frozen and ho-
mogenized for FA extraction. FA contents were measured
using Triglyceride Fatty Acid Quantification kit (Abcam).

Statistical analysis

Real-time PCR quantification of mRNA level was calculated
using the 2–ΔΔ Ct method. Data are presented as the mean ±
SEM of 3–5 animals and were analyzed by unpaired Student’s
t tests or one-way ANOVA followed by Dunnett post hoc to
compare all columns against control or by Tukey’s post hoc
test to compare all pairs of columns using GraphPad Prism 5
(GraphPad Software, San Diego, CA).

Results

Physical activity upregulates skeletal muscle Epac1
expression and energy metabolism is altered
in Epac-deficient muscle

As the first step to investigate the physiological function of
Epac in skeletal muscle, the expressions of the two Epac iso-
forms in skeletal muscle were examined. Epac1, but not
Epac2, mRNA can be easily detected in both glycolytic (ex-
tensor digitorum longus, EDL) and oxidative (soleus) types of
muscles. Epac2 expression in muscle was very low when
compared with the brain, which expresses both Epac isoforms
(Fig. 1a), confirmed by electrophoresing the PCR products to
specifically amplify Epac1 but no Epac2 (Fig. 1a). To examine
if any changes in Epac1 expression in response to exercise, the
expressions in non-exercised (NE) and exercised (EX)

�Fig. 1 Physical activity upregulates skeletal muscle Epac1 expression
and energy metabolism is altered in Epac-deficient muscle. a Real-time
PCR analysis of Epac1 and Epac2 expression in EDL and soleus in
resting animals and gel electrophoresis of PCR products. b Real-time
PCR and Western blot to examine changes of Epac1 mRNA and protein
in non-exercised (NE) and exercised (EX) muscles. c Real-time PCR
quantification of Epac1 mRNA in wild-type and Epac1−/− non-
exercised and exercised soleus muscles. d Western blot of phospho-
PKA and phospho-CREB in wild-type and Epac1−/− muscles. e
Proteins extracted from muscles of the wild-type, Epac1−/−, Epac2−/−

and Epac1−/−; Epac2−/− mice were subject to LC/MS/MS. Differentially
expressed proteins were identified and represented as STRING analysis.
EX: exercised; NE: non-exercised; bars represent means ± SEM of 3–5
animals. *p < 0.05; **p < 0.01; ***p < 0.005
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muscles were compared. Significantly elevated levels of
Epac1 mRNA and protein were found in muscles collected
from mice after running on treadmill (Fig. 1b). Epac1−/− mice
compared with wild-type mice subjected to physical exercise

showed lack of exercise-induced Epac1 induction in Epac1−/−

soleus (Fig. 1c). Interestingly, significantly elevated levels of
PKA and CREB phosphorylation in exercised Epac1−/− mus-
cle were observed (Fig. 1d). In addition, Epac1−/−, Epac2−/−
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and Epac1−/−; Epac2−/− mice also showed similar exercise
intolerance to Epac1−/− mice (data not shown). Proteomic
identification and systemic analysis are powerful tools for
screening the possible altered functions or pathways under
specific pathophysiological conditions. In the present study,
our proteomic results screened a number of possible pathways
which could be altered in the soleus muscle of different types
of Epac KO mice group. According to the global protein ex-
pression and functional protein interaction network analyses
using the STRING program, proteins differentially expressed
and altered direct (physical) and indirect (functional) path-
ways among wild-type, Epac1−/−, Epac2−/− and Epac1−/−;
Epac2−/− muscles were identified (Table 1). Based on the pro-
teomic results, we build up a hypothesis that EPAC can be the
important factor for regulating skeletal muscle function and
energy metabolism. The pathways involved in energy produc-
tion and utilization, protein stability and degradation, gene
translation and transcription, and cytoskeleton regulation were
altered in Epac1−/− muscles (Fig. 1e). The number of differ-
entially expressed proteins (p < 0.05) is 33, 43, and 44 in
Epac1−/−, Epac2−/− and Epac1−/−; Epac2−/− respectively.
Epac1−/−; Epac2−/− showed to have similar to that of Epac2−/
− or more number to that of Epac1−/− of differentially
expressed proteins. The pathways that are implicated in un-
folded protein response were the top pathway altered in
Epac1−/− muscle. Oxidative phosphorylation and mitochon-
drial dysfunction were among the top pathways altered in
Epac2−/− and Epac1−/−; Epac2−/− muscles (Table 2).
Moreover, lipid metabolism and energy production were
among the most severely altered molecular and cellular func-
tions in Epac1−/− muscle (Table 3).

Epac-deficient mice exhibited compromised exercise
capacity

The proteomic data suggested that Epac1-deficient mice may
exhibit defects energy homeostasis, which would be reflected
by physical exercise performance. To address this, wild-type,
Epac1−/−, Epac2−/− and Epac1−/−; Epac2−/−mice were subject-
ed to graded treadmill test. Epac1−/−, Epac2−/− and Epac1−/−;
Epac2−/− mice exhibited significantly reduced exercise capac-
ity than wild-type mice, in terms of lower work done, shorter
running distance, and shorter running time before exhaustion
(Fig. 2a). Epac-deficient mice, in particular Epac2−/− and
Epac1−/−; Epac2−/− mice, encountered higher numbers and
longer duration of electric shock (Fig. 2b).

Epac1-deficiency reduced type I muscle fiber number

Among the various muscle fiber subtypes, type I fiber is char-
acterized by type I myosin heavy chain (MyHC) expression,
high abundance of mitochondria, its high oxidative capacity,
resistance to fatigue and capability to perform sustained

exercise [11]. It is possible that the compromised exercise
capacity in Epac-deficient mice was a result of reduction in
type I fiber number and size (atrophy). The results showed that
gastrocnemius collected from Epac1−/−mice contained signif-
icantly fewer type I fiber than wild-type gastronemius
(Fig. 3a). On micrographs of higher magnification, the cross
section area of type I fibers, which is a measurement of fiber
size and an indication of any hypertrophy or atrophy, was
measured. However, there was no significant difference be-
tween the cross-section area of wild-type and Epac1−/− type I
fiber (Fig. 3b). The expressions of atrophy-related genes were
further examined. There was no difference in the levels of
atrogin-1 and MuRF-1 mRNA between wild-type and
Epac1−/− gastrocnemius (Fig. 3c). Same observation was con-
firmed on wild-type and Epac1-deficient EDL and soleus (da-
ta not shown).

Epac deficiency increased mitochondrial COX proteins

Epac is known to mediate resveratrol and cAMP action on
mitochondrial biogenesis [28]. The impact of Epac deficiency
on muscle mitochondrial content was next examined, which
was measured as the ratios of mitochondrial gene DNA
(COX-II or ND-1) to nuclear gene DNA (β-globin). Among
EDL and soleus from wild-type, Epac1−/−, Epac2−/− and
Epac1−/−; Epac2−/− mice, none of the Epac-deficient muscles
contained significantly difference mitochondrial contents
when compared the corresponding wild-type muscles
(Fig. 4a). The expressions of several mRNA encoding pro-
teins function in mitochondria were also quantified. Among
which Tfam (mitochondrial transcription factor A), UCP-3
(mitochondrial uncoupling protein-3), and CS (citrate syn-
thase) showed no different in muscles of different genotypes
(Fig. 4b and Supplementary Fig 1). A subtle but significant
increase was found in COX-IVmRNA in Epac1−/− EDLwhen
compared with wild-type EDL (Fig. 4b). The increase in
COX-IV mRNA led us to examine the levels of proteins of
mitochondrial complexes. At protein level, COX-IV showed a
trend of increase, albeit did not reach statistical significance.
Levels of CXIII subunit core 2 protein in Epac1−/−, Epac2−/−

and Epac1−/−; Epac2−/− were higher than wild-type soleus
whereas Epac2−/− also contained significantly more VDAC.
NDUFS4 and CXII levels were consistent among the 4 geno-
types (Fig. 4c).

Glucose uptake pathway was enhanced and PGC-1Α
induction was blunted in Epac1-deficient muscle

Skeletal muscle is the largest glucose sink in the body there-
fore plays a central role in glucose homeostasis. The impacts
of Epac deficiency on glucose flux in skeletal muscle were
next examined. From non-exercised mice, significantly ele-
vated glucose transporter 4 (GLUT4) levels over wild-type
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were consistently found in Epac1−/−, Epac2−/− and Epac1−/−;
Epac2−/− soleus (Fig. 5a). AMPK is activated by exercise to
promote GLUT4-mediated glucose uptake by skeletal muscle
[31]. In addition to the upregulation of GLUT4, a more pro-
found AMPK activation was observed in Epac1−/− gastrocne-
mius (Fig. 5b) and EDL (data not shown) collected after ex-
ercise. The SIRT1/PGC-1α (peroxisome proliferator-
activated receptors (PPAR) gamma coactivator-1α) axis is a
critical energy sensing pathway coordinating energy homeo-
stasis. PGC-1α is highly expressed in metabolic organs/
tissues of high energy demand (like type I muscle fiber, brown
adipose tissue, and heart) and is induced under conditions of
increased metabolic demand like during aerobic exercise.
Upregulation of SIRT1 protein was detected in non-
exercised Epac KO soleus, in particular in Epac2−/− soleus
(Fig. 5c). In line with this observation, a robust elevation of
SIRT1 was seen in soleus collected after exercise (data not
shown). The influence of Epac deficiency on PGC-1α
mRNA expression was then examined. Soleus isolated from
resting mice of different genotypes expressed similar levels of
PGC-1α (Fig. 5d). PGC-1α expressionwas markedly induced
in wild-type soleus after exercise, and the induction was sig-
nificantly lower in the Epac1−/− and Epac1−/−; Epac2−/− soleus
(Fig. 5d). In in vitro myotube culture, Epac antagonist ESI
reduced PGC-1α mRNA significantly (Fig. 5e).

Epac deficiency impaired skeletal muscle lipid
metabolism

As lipid is the preferable substrate for energy production in
oxidative type fiber [15, 33], the impacts of Epac deficiency
on lipid metabolism were focused on oxidative type muscle.
Gene expressions in wild-type and KO gastrocnemius were
first compared. Transcription factors like ERRα and PPARδ
were consistently and significantly reduced in Epac1−/−,
Epac2−/− and Epac1−/−; Epac2−/− gastrocnemius (Fig. 6a).
Fabp3 and CD36 are the principal molecules facilitating skel-
etal muscle FA uptake, Epac1−/− gastrocnemius expressed less
CD36mRNA thanwild-type whereas the levels of both Fabp3
and CD36 in Epac2−/− and Epac1−/−; Epac2−/− gastrocnemius
were significantly lower than wild-type (Fig. 6b). The two
genes, Cpt-1a and Cpt-2, involved in FA activation were sig-
nificantly lower in the three Epac-deficient gastrocnemius
(Fig. 6b). Expressions of genes participating in FA oxidation
were also measured. In Epac1−/−, Epac2−/− and Epac1−/−;
Epac2−/− gastrocnemius, significant reduction of Acadl,
Acadvl, and Decr1 was observed, whereas expression of
Acadm, HadhA, and HadhB was unchanged (Fig. 6c).

In gastrocnemius and soleus isolated from resting animals,
FA contents tended to be lower in Epac1−/−, Epac2−/− and
Epac1− /− ; Epac2− /− muscles . Epac1− /− ; Epac2− /−

Table 2 Top canonical pathways
altered in Epac-deficient muscles Canonical pathways p value Molecules

WT vs E1KO

Unfolded protein response 0.003467369 HSPA9, P4HB

Creatine-phosphate biosynthesis 0.006456542 CKB

Branched chain α-keto acid dehy-
drogenase complex

0.006456542 DBT

Glycogen biosynthesis II (from
UDP-D-glucose)

0.009772372 GYG1

NAD biosynthesis III 0.009772372 NAMPT

WT vs E2KO

Oxidative phosphorylation 1.23027E−07 NDUFA10, NDUFS2, NDUFA5, MT-CO2,
NDUFS4, NDUFB10

Regulation of cellular mechanics by
calpain protease

1.44544E−07 VCL, CAPN1, ACTN2, ACTN4, Actn3

Mitochondrial dysfunction 1.77828E−06 NDUFA10, NDUFS2, NDUFA5, MT-CO2,
NDUFS4, NDUFB10

Actin cytoskeleton signaling 6.91831E−06 MYH3, VCL, ACTN2,ACTN4, Actn3, RDX

Remodeling of epithelial adherens
junctions

1.41254E−05 VCL, ACTN2, ACTN4, Actn3

WT vs DKO

Mitochondrial dysfunction 6.60693E−08 SOD2, NDUFS2, NDUFA11, NDUFA5, ATP5B,
NDUFS4, NDUFB10

Oxidative phosphorylation 1.07152E−07 NDUFS2, NDUFA11, NDUFA5, ATP5B,
NDUFS4, NDUFB10

Arginine degradation I (arginase
pathway)

2.63027E−05 OAT, ALDH4A1

Actin cytoskeleton signaling 9.12011E−05 MYH3, MYH7, MYH6, Actn3, RDX

Epithelial adherens junction signaling 0.000251189 MYH3, MYH7, MYH6, Actn3
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gastrocnemius and Epac2−/− and Epac1−/−; Epac2−/− soleus
contained significantly less FA than wild-type (Fig. 6d and
Supplementary Figure 2). Importantly, FA content in wild-
type soleus dropped significantly after 31-min treadmill run-
ning, indicating utilization of FA (Fig. 6d). However, there
was no reduction of FA content in all three types of KO soleus.
There was no statistically significant difference and changes in
heart FA content (Fig. 6d).

Discussion

Firstly, the present study demonstrated that Epac1 is the major
isoform expressing in skeletal muscle. Epac1 was induced in
both oxidative and glycolytic type of muscles in response to
increase metabolic demand. More importantly, Epac2 mRNA
was not detected nor elevated in Epac1 KO muscle and even
in exercised muscle in which Epac1 was significantly induced
in wild-type animal. Importantly, in Epac1 KO EDL and gas-
trocnemius, there were elevated levels of PKA and the

downstream CREB activation in Epac1−/− muscle than wild-
type muscle, possibly a compensatory effect on Epac1-
deficieny by PKA/CREB signaling, nevertheless, Epac1−/−

muscle and mice exhibited molecular and physiologic pheno-
types distinct from the wild-type counterpart. This observation
highlighted that Epac1 possess unique roles in skeletal muscle
which cannot be compensated by PKA.

Both contractile and metabolic properties of skeletal mus-
cle are determined by the composition of fiber types: type I
(slow-twitch) fiber, type IIb (fast-twitch) fibers and intermedi-
ate types IIa and IIx. Among which, type I fiber is capable to
perform sustained exercise as it contains abundant mitochon-
dria and type I myosin heavy chain (MyHC), exhibits high
oxidative capacity and is resistant to fatigue [11]. Fiber com-
position of skeletal muscle is dynamic and can be modulated
by electric stimulation and exercise. Activation of β-adrener-
gic/cAMP signaling by clenbuteol caused conversion of slow
to fast type fiber/decreased type I MyHC expression [7, 35],
whereas diminishing β-adrenergic signaling leads to a shift to
oxidative fiber [9, 36]. On Epac1− /− and wild-type

Table 3 Top molecular and
cellular functions altered in
Epac-deficient muscles

p value Molecules

WT vs E1KO

Lipid metabolism 8.75E−04 ACAA2, FABP4, FH, OXCT1, CRAT, NMPT

Small molecule
biochemistry

8.75E−04 ACAA2, FABP4, FH, P4HB, OXCT1, CKB, GSTM3, NMPT,
APOBEC2, CLTC, CRAT

Cell-to-cell signaling
and interaction

1.08E−03 DCN, VCL, ARHGDIA, CLTC, LAMC1, P4HB

Cell morphology 1.31E−03 ARHGDIA, VCL, LAMC1, LDB3, CLTC, CKB, NAMPT, NDUFS4,
EIF4G1, RYR1, DCN

Energy production 1.44E−03 ETFB, NAMPT, RYR1, FH, P4HB

WT vs E2KO

Cellular movement 3.69E−05 ACTN4, CAPN1, DCN, MB, SERPINA1, SERPINF1, VCL, VCP,
CRYAB, TAGLN, LAMC1

Cellular assembly and
organization

4.56E−05 ACTN2, ACTN4, GAPDH, LAMC1, RDX, SERPINF1, SPTAN1,
VCL, USO1, AK1, NDUFS4, CRYAB, CLTC, DCN, VCP, CAPN1

Cell death and
survival

1.27E−04 CAPN1, CRYAB, GAPDH, MB, SERPINF1, RDX, NDUFS4, AK1,
HSPA9, DCN, SERPINA1, LAMC1, VCP

Cellular function and
maintenance

2.98E−04 ACTN2, AK1, CAPN1, CKB, CLTC, CRYAB, FABP4, SERPINA1,
TMEM38A, VCP, VCL, USO1, HSPA9, RDX, GAPDH,
SPATAN1, ACTN4

Protein degradation 2.98E−04 CAPN1, CRYAB, GAPDH, PSMB3, SERPINA1, VCP

WT vs DKO

Cellular compromise 3.53E−08 BIN1, MYH6, MYOT, NAMPT, STIM1, VCP, NDUFS4, RDX,
SOD2, CYNC1H1

Cellular assembly and
organization

1.31E−05 BIN1, FHL1, MYH6, MYH7, NDUFS4, SOD2, VCP, STIM1,
GAPDH, FHL1, LDB3, RDX, CKB, YWHAG, AP1B

Cellular development 1.31E−05 BIN1, DYNC1H1, GAPDH, IPO7, MB, NAMPT, SOD2, STIM1,
YWHAG, FHL1, LDB3, MYH6, MB, FABP4, CD36

Cellular growth and
proliferation

1.31E−05 BIN1, DYNC1H1, GAPDH, IPO7, MB, NAMPT, SOD2, STIM1,
YWHAG, FHL1, LDB3, MYH6, IPO7, FABP4, CD36

Small molecule
biochemistry

1.31E−05 FH, RDX,DYNC1H1, FABP4, ATP5B, CD36, NAMPT, SOD2, VCP,
MB, P4HB, OXCT1, CKB, OAT, APOBEC2
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Fig. 3 Epac1-deficiency reduced
type I muscle fiber number. a
Representative micrographs of
wild-type and Epac1−/− gastroc-
nemius immunostained with type
I myosin heavy chain antibody. b
Microgrpahs of higher magnifi-
cation for the quantification of
cross-section area of type I fiber. c
Real-time PCR analysis of
mRNA levels of atrophy-related
genes in gastrocnemius. Bars
represent means ± SEM of 4–5
animals. *p < 0.05

Fig. 2 Epac-deficient mice
exhibited compromised exercise
capacity. Wild-type Epac1−/−,
Epac2−/− and Epac1−/−; Epac2−/−

mice were subjected to graded
treadmill test. a Running distance
and running time before exhaus-
tion were recorded and work done
were calculated. b Number and
time of electric shock experienced
by the mice were recorded and
were plotted as a function of time.
Bars represent means ± SEM of
3–5 animals. *p < 0.05;
**p < 0.01; ***p < 0.005
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gastrocnemius, type I fiber is marked by type I MyHC immu-
nostaining and the number of type I fiber in Epac1 KO mice
muscle was significantly lower than wild-type.

Muscle hypertrophy (physiologic) and atrophy would pos-
itively and negatively impact on physical performance, re-
spectively; however, the impact of Epac onmuscle trophilicity
is largely unknown. Epac has been shown play a role in the
development of cardiac hypertrophy [23]. Using pharmaco-
logical Epac selective agonist, Epac activation has been
shown to elevate activation of AKT and Foxo3a and to medi-
ate the anti-proteolytic effect of catecholamine in rat EDL
muscle ex vivo [4]. These lines of evidence made us

hypothesized that Epac1-deficiency would lead to muscle at-
rophy and reduction of fiber size. Nevertheless, the cross-
section area of wild-type and Epac1−/−muscle fibers was com-
parable, as well as the expressions of atrophy-related genes
(atrogin-1 andMuRF-1). There was no consistent reduction of
muscle masses in the knockout mice (data not shown). Taken
together, muscle atrophy was not resulted from Epac ablation
and not an underlying reason of the compromised physical
performance. This discordancy with the anabolic role of
Epac demonstrated [4] possibly arose from different experi-
mental approaches. For instance, rat EDL was incubated with
Epac agonist ex vivo for short time. In in vivo condition, the

Fig. 4 Epac deficiency increased
mitochondrial COX proteins. a
Levels of mitochondrial DNA in
non-exercised soleus or EDL
measured by real-time PCR and
expressed as ratios to nuclear
DNA. b Real-time PCR quantifi-
cation of mRNA of mitochondrial
genes and genes encoding pro-
teins function in mitochondria in
soleus or EDL. c Western blot of
mitochondrial complex proteins
in soleus. Bars represent means ±
SEM of 3 animals. *p < 0.05;
**p < 0.01
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catabolic effect on skeletal muscle due to Epac deficiencymay
be compensated by other signaling pathways. In addition, the
Epac agonist used could have off-target effects [30] especially
when it is applied at high concentration [4].

During the preparation of this manuscript, a study by has
been published showing that in Epac1 knockout mice, β-AR
agonist-induced masseter muscle hypertrophy, but not type II
fiber subtypes switch, was abolished [25]. However, similar
phenotypes have not been observed in the Epac1−/− mice. No
sign of hypertrophy or dystrophy was found in Epac1−/− mus-
cle fibers from the Epac1 KO mice. The reason of such dif-
ference possibly arose from the different knockout strategies,
strains and ages of mice used, skeletal muscle under investi-
gation, and treatment regime.

Adrenergic/cAMP signaling pathway has well-
demonstrated roles in energy sensing and energy metabolism.
Evidence supporting pivotal roles of Epac in mediating cAMP
signaling pathways and linking adrenergic/cAMP and

metabolic pathways is mounting [2]. Current study also shows
the impact of Epac deficiency on the metabolism of the two
principal substrates, glucose and fatty acid, for ATP biosyn-
thesis in skeletal muscle. Though Epac-deficient mice ran for
shorter durations and distance than wild-type mice, cellular
energy sensor (AMPK activation) and glucose uptake
(GLUT4 expression) were higher in Epac1−/− muscle.
Moreover, elevated GLUT4 expressions were also found in
Epac2−/− and Epac1−/−; Epac2−/− muscles, suggesting that el-
evated glucose catabolism is a common feature in Epac1−/−

and Epac2−/−muscles. Previously, we have published the met-
abolic phenotype of epac1-deficient mice, there is no signifi-
cant difference in blood glucose level between WT and Epac
1−/− mice. However, Epac1−/− mice displayed the metabolic
syndrome with slightly higher body weight and higher triglyc-
eride level and more prone to develop diabetes [18]. In fact,
the GLUT2 expression level was lower in epac1-deficient
islets. So we were puzzled with the increased GLUT4

Fig. 5 Glucose uptake pathway
was enhanced and PGC-1Α
induction was blunted in Epac1-
deficient muscle. a Soleus col-
lected from non-exercised wild-
type, Epac1−/−, Epac2−/− and
Epac1−/−; Epac2−/− mice were
subjected to Western blot for de-
tection of GLUT4. b GLUT4 and
AMPK activation were detected
in gastrocnemius collected from
exercised wild-type and Epac1−/−

mice by Western blot. c
Expression of SIRT1 in soleus
from non-exercised wild-type,
Epac1−/−, Epac2−/− and Epac1−/−;
Epac2−/− mice. d Real-time PCR
quantification of PGC-1α mRNA
in soleus from mice with or with-
out exercise. e PGC-1α mRNA
levels in myotube treated with
Epac antagonist (ESI). EX:
exercised; NE: non-exercised;
bars represent means ± SEMof 3–
5 animals in A-D and represent
means ± SEM of 3 independent
experiments in E. *p < 0.05;
**p < 0.01; ***p < 0.005
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expression level in the muscle of epac1-deficient mice. We
would have to further investigate this phenotype to determine
the detailed mechanism of how Epac regulate glucose trans-
porters in various tissues.

Glucose is a preferable substrate during low to moderate
intensity exercise but cannot sustain prolonged exercise
and rely on FA oxidation [15, 33]. It is reasonable to spec-
ulate that the glucose catabolic pathway was more pro-
nounced in Epac-deficient muscle as a result of compensa-
tory response due to defective energy production process
for sustainable exercise. On Epac1−/− mice, previous study
has shown the mice relied on carbohydrate metabolism and
therefore exhibited a higher RER [18]. A similar shift to
dependence on carbohydrate catabolism and reduced phys-
ical performance was observed on Kruppel-like factor 15

knockout mice [14]. As lipids are the preferred fuel source
for slow-twitch muscle and for sustained endurance exer-
cise [15, 33], these skeletal muscle abnormalities might be
due to defective lipid utilization. This prompted us to ex-
amine FA metabolism in Epac KO mice. In addition to
PGC-1α, levels of ERRα and PPARδ were expressed at
significantly lower levels in gastrocnemius from all three
types of Epac deficiency mice, suggesting turning off of
transcription program for FA oxidation. Recent studies
suggested that EPAC1 plays a role as an upstream regulator
of PGC-1α and PPARγ or PPARδ via C/EBP-β signaling
or CaMKKβ/Sirt1 signaling pathway [10, 17, 28]. In this
context, we proposed that Epac 1 deficiency affect the up-
stream signal axis of PGC-1α and PPARδ and downregu-
lated those target genes in the skeletal muscle.

Fig. 6 Epac deficiency impaired
skeletal muscle lipid metabolism.
a–c Real-time quantification of
mRNA expression of nuclear re-
ceptors involved in FA metabo-
lism (a) and genes involved FA
uptake and activation (b) and
mitochondrial-FA oxidation (c) in
gastrocnemius isolated from non-
exercised mice. d FA contents in
gastrocnemius and soleus, skele-
tal muscle and heart in animals
without exercise or after 31-min
running. Data represent means ±
SEM of 3–5 animals. *p < 0.05;
**p < 0.01; ***p < 0.005

Pflugers Arch - Eur J Physiol



Accordingly, Epac-deficient muscles contained significantly
lower levels of mRNA encoding proteins implicated in
various FA oxidation reactions/processes, namely FA uptake,
FA activation, and FA oxidation in mitochondria. Importantly,
the influence of Epac deficiency is limited and is specific to FA
oxidation pathway, as there were no reductions of mitochondri-
al numbers and mitochondrial gene expressions; instead, dys-
regulation of FA oxidation gene expression affected the FA flux
inmuscle. Taken together, the defective FAmetabolism, instead
of glucose metabolism and mitochondrial functions, attributes
to the compromised exercise capacity of Epac deficiency mice.

In contrast to the expression, activation, and cell autonomous
nature of Epac1 demonstrated, expression studies showed a very
low/no Epac2 expression in skeletal muscle; nevertheless,
Epac2−/− muscles exhibited comparable phenotypes to Epac2−/
− counterparts, suggesting that Epac2 functions on skeletal mus-
cle are in a non-cell autonomous fashion. Interestingly, Epac2-
deficient mice also observed some phenotypic changes in the
metabolic markers similar to that of Epac1-deficient mice even
though Epac1 is the major isoform of Epac expressed in the
skeletal muscles. Previously, we have reported that expression
of Epac2 is not altered in the Epac1 knockout brain and pancreas.
However, the expression of Epac1 is lower in Epac2-deficient
brain. Therefore, it is possible that the changes in the metabolic
markers or phenotypes of Epac2-deficient mice in skeletal mus-
cle may be due to this reduction of Epac1 in the Epac2-deficient
mice. It is also possible that the phenotype of Epac2-deficient
mice may be the result of their anxiety and depression-like phe-
notype of Epac2-deficient mice.

Epac2 is expressed by neurons and alters neurotransmission.
Epac2 is abundantly expressed in neuronal tissues and activation
of Epac by agonist enhanced neurotransmitter release in gluta-
matergic synapses from calyx of Held [32]. In hippocampus,
Epac2 is required for the cAMP-stimulated transmitter release
at the mossy fiber-CA3 synapse through maintaining the readily
releasable pool at presynaptic terminal [12]. The functional roles
of Epac2 at CNS and PNS levels affecting the function of neu-
romuscular junctions are worthy of further investigation.

In conclusion, our results demonstrate a prominent role for
and underlying mechanisms of Epac in the regulation of type
1 fiber in skeletal muscle and aerobic exercise capacity.
Especially, Epac 1 has a key role for transcriptional regulation
of PGC-1α and related FA metabolism.
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