Thrombin/PAR-1 activation induces endothelial damages via NLRP1 inflammasome in gestational diabetes

Yue Liu, Zhuang-Zhuang Tang, Yu-Meng Zhang, Li Kong, Wei-Fen Xiao, Teng-Fei Ma, Yao-Wu Liu

PII:	S0006-2952(20)30070-8
DOI:	https://doi.org/10.1016/j.bcp.2020.113849
Reference:	BCP 113849
To appear in:	Biochemical Pharmacology
Received Date:	15 December 2019
Accepted Date:	6 February 2020

Please cite this article as: Y. Liu, Z-Z. Tang, Y-M. Zhang, L. Kong, W-F. Xiao, T-F. Ma, Y-W. Liu, Thrombin/ PAR-1 activation induces endothelial damages via NLRP1 inflammasome in gestational diabetes, *Biochemical Pharmacology* (2020), doi: https://doi.org/10.1016/j.bcp.2020.113849

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

1	Thrombin/PAR-1 activation induces endothelial damages via NLRP1 inflammasome in
2	gestational diabetes
3	Yue Liu ^a , Zhuang-Zhuang Tang ^a , Yu-Meng Zhang ^a , Li Kong ^a , Wei-Fen Xiao ^b , Teng-Fei
4	Ma ^c , Yao-Wu Liu ^{a,d,*}
5	^a Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical
6	University, Xuzhou 221004, Jiangsu, China
7	^b Department of Obstetrics and Gynecology, Xuzhou Medical University Affiliated Hospital,
8	Xuzhou 221006, Jiangsu, China
9	^c Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation
10	Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing
11	211166, Jiangsu, China
12	^d Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004,
13	Jiangsu, China
14	
15	*Corresponding author: Yao-Wu Liu
16	Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical
17	University
18	No. 209, Tongshan Road, Xuzhou 221004, Jiangsu, China
19	ywliu@xzhmu.edu.cn (Liu YW)
20	Tel: +86-516-83262107
21	Fax: +86-516-83262630

Running Head: Thrombin/PAR-1 mediated endothelial damages in GDM

23	Abbreviat	ions
24	AGEs	advanced glycation endproducts
25	AG	aminoguanidine
26	Arg	argathroban
27	DM	diabetes mellitus
28	ELISA	enzyme-linked immunosorbent assay
29	HG	high glucose
30	HUVECs	human umbilical vein endothelial cells
31	IL	interleukin
32	GDM	gestational diabetes mellitus
33	LDH	lactate dehydrogenase
34	NLRP1	nucleotide-binding domain and leucine-rich repeat containing protein 1
35	PAR-1	protease-activated receptor 1
36	qPCR	real-time fluorescence quantitative PCR
37	RAGE	receptor for advanced glycation endproducts
38	Sar	sarsasapogenin
39	shRNA	short hairpin RNA
40	Vor	vorapaxar

42 Abstract

43	Gestational diabetes mellitus (GDM) is associated with an increased risk of progressing to type 2
44	DM and cardiovascular disease; however, the pathogenesis is still poorly understood. This study
45	was to investigate roles of thrombin and its receptor protease-activated receptor 1 (PAR-1) and
46	NLRP1 inflammasome in endothelial injury in GDM condition. Umbilical cord and plasma of
47	GDM patients and high glucose (HG) cultured human umbilical vein endothelial cells (HUVECs)
48	were used to examine the pathological changes of these pathways. Meanwhile, ameliorative
49	effects and potential mechanisms of a natural product sarsasapogenin (Sar) were investigated in
50	HUVECs. Thrombin/PAR-1 pathway, advanced glycation endproducts (AGEs) and their receptor
51	(RAGE) axis, and the nucleotide-binding domain and leucine-rich repeat containing protein 1
52	(NLRP1) inflammasome were activated in GDM condition and HG-cultured HUVECs,
53	accompanied by endothelial injury (decreased cell viability and increased lactate dehydrogenase
54	release). Nevertheless, thrombin inhibition or PAR-1 antagonism caused decreases in AGEs
55	formation and RAGE expression in HG-cultured HUVECs, while AGEs inhibition or RAGE
56	antagonism declined PAR-1 expression not thrombin activity. Furthermore, thrombin inhibition or
57	PAR-1 antagonism restrained NLRP1 inflammasome activation in HG-cultured HUVECs;
58	meanwhile, NLRP1 expression and interleukin 18 levels were remarkably reduced in HG-cultured
59	HUVECs after PAR-1 knockdown. Interestingly, Sar co-treatment could suppress
60	thrombin/PAR-1 pathway, NLRP1 inflammasome, and AGEs/RAGE axis. Together, endothelial
61	damages in GDM were likely due to enhanced interaction between AGEs/RAGE axis and
62	thrombin/PAR-1 pathway, followed by NLRP1 inflammasome activation. Moreover, Sar may act
63	as a protective agent against endothelial injury in chronic HG condition.

- 65 Key words: Gestational diabetes mellitus; endothelial injury; thrombin/PAR-1 pathway; NLRP1
- 66 inflammasome; AGEs/RAGE axis; sarsasapogenin

68 1. Introduction

69	Gestational diabetes mellitus (GDM) is a disease of abnormal glucose tolerance during pregnancy,
70	which is accompanied by a series of adverse responses in pregnant women [1], subsequently
71	leading to fetal macrosomia, respiratory distress syndrome, and type 2 diabetes in the offspring
72	[2]. Although abnormal glucose tolerance usually returns to normal in the immediate postpartum
73	period, women with GDM have a 20-70% risk of progressing to type 2 diabetes in the first decade
74	after delivery [3]. However, at present, the mechanisms of how GDM develops type 2 diabetes are
75	still unclear. Thus, it is important to deeply clarify the biochemical pathways in GDM. Moreover,
76	pharmacological interventions might prevent or delay the onset of type 2 diabetes in the affected
77	women.
78	Physiological changes of blood coagulation occur and might be at a prethrombotic state in
79	normal pregnancy, especially in middle and late stages [4]. Simultaneously patients with diabetes
80	are in a systemic and chronic blood hypercoagulability condition due to hypercoagulation and
81	platelet activation [5]. Therefore, GDM may aggravate the changes of blood coagulation in normal
82	pregnancy [6, 7]. Thrombin, a serine protease produced during intravascular coagulation, is
83	typically regarded as a consequence of vascular injury, and protease-activated receptors (PARs)
84	mediate the effects of thrombin in normal and disease states [8]. Vascular endothelial injury and
85	chronic low-grade inflammation have been considered central points in the pathophysiology of
86	GDM [9-11]. Elevated levels of inflammatory mediators may be associated with an increased
87	coagulability and a tendency towards thrombus formation in patients with type 2 diabetes who
88	have microvascular complications [12], suggesting an interaction between inflammation and blood
89	coagulation system [5]. Thrombin and PAR-1, a prototypical receptor of thrombin, also play

90	important roles in vascular physiology and inflammation [13-15]. Ishibashi et al. report that
91	advanced glycation endproducts (AGEs), key factors for diabetic complications in
92	microangiopathy, potentiate the citrated plasma-induced oxidative and inflammatory reactions in
93	endothelial cells via the activation of thrombin/PAR-1 system [16]. Early reports show that
94	proinflammatory effect of thrombin and PAR-1 is associated with NF-kappaB activation [17, 18],
95	while interleukin 1 β (IL-1 β) enhances granzyme B-mediated neurotoxicity by increasing PAR-1
96	expression [19]. Moreover, a recent report indicates that high glucose induced endothelial injury is
97	associated with NLRP3 inflammasome activation in human umbilical vein endothelial cells
98	(HUVECs) [20]. Thus, inflammatory responses caused by thrombin/PAR-1 pathway may involve
99	the activation of NLRP3/1 inflammasome besides NF-kappaB activation in endothelium.
100	However, it is not clear about the role of thrombin and PAR-1 signaling in high glucose-caused
101	endothelial damages in GDM condition, and the relationship of thrombin/PAR-1 pathway and
102	NLRP1 inflammasome activation is not understood in vascular endothelial cells.
103	Sarsasapogenin (Sar) is a major steroidal sapogenin of the timosaponins separated from the
104	Chinese Materia Medica Rhizoma Anemarrhenae (family Asparagaceae). Timosaponin AIII and
105	BII, the common glycosides of Sar, are reported to show significant antiplatelet, antithrombotic
106	effects and anti-inflammatory actions [21, 22], indicating that timosaponins and the major aglycon
107	Sar have anticoagulation and antithrombotic effects [23-25]. Importantly, timosaponin AIII and
108	Sar ameliorate colitis in mice, and the vitro and in vivo anti-inflammatory effects of Sar are more
109	potent than AIII [26]. In addition, a recent report from our team showed that Sar markedly
110	ameliorated diabetic nephropathy in rats via inhibiting NLRP3 inflammasome activation and
111	AGEs/RAGE interaction [27]. Thus, anti-inflammatory effects may contribute to the

- anticoagulation and antithrombotic effects of timosaponins and Sar, and Sar may be a good
- 113 candidate for protection of the vascular endothelium.
- 114 In this study, our aims were: firstly, whether thrombin/PAR-1 pathway and the NLRP1
- inflammasome were activated in GDM patients and HUVECs cultured with high glucose;
- secondly, whether activated thrombin/PAR-1 resulted in the activation of NLRP1 inflammasome;
- thirdly, whether enhanced AGEs/RAGE interaction mediated the activated thrombin/PAR-1
- signaling in HUVECs in high glucose condition; finally, whether a natural compound Sar
- ameliorated the damaged vascular endothelium in high glucose-cultured HUVECs.
- 120 2. Materials and Methods
- 121 2.1. Human specimen collection
- 122 GDM was diagnosed according to the International Association of the Diabetes and Pregnancy
- 123 Study Group (IADPSG) criteria: The pregnant women with 24-28 weeks were subjected to oral
- 124 glucose tolerance test by using 75 g glucose; then those patients were diagnosed to GDM with any
- of the following results: fasting plasma glucose $\geq 5.1 \text{ mmol/L}$, 1 h plasma glucose ≥ 10.0

126 mmol/L, and 2 h plasma glucose ≥ 8.5 mmol/L [28]. The high blood glucose in GDM patients

- 127 was controlled using diet or insulin. For insulin control, the blood glucose was kept within 4.4
- 128 mmol/L after fasting or at 6.7 mmol/L for 2 hour post-meal. The umbilical cord tissues of
- 129 pregnant women with and without GDM hospitalized in full-term pregnancy were collected in the
- 130 cesarean section operating room of the Affiliated Hospital of Xuzhou Medical University. The
- umbilical cord tissue 2 to 3 cm near the fetus side was cut and collected, one part for paraffin
- 132 embedding and the other part preserved in the -80°C refrigerator for use. Serum samples were
- 133 collected from the Department of Clinical Laboratory of the Affiliated Hospital of Xuzhou

134	Medical University. The experiment obtained an approval from the Ethics Committee of the
135	Affiliated Hospital of Xuzhou Medical University (reference number: XYFY2019-KL172-02).
136	2.2. HUVECs culture and treatments
137	The HUVECs cell line was purchased from Shanghai Bioengineering Biotechnology Co., Ltd,
138	China. HUVECs cultured in vitro at passage 5 to 10 were used for experiments. The cells were
139	cultured in Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum.
140	DMEM culture medium and fetal bovine serum were purchased from Hyclone (Logan, UT, USA).
141	After incubation for 24 h under normal conditions (medium containing 5.56 mmol/L glucose, 10%
142	FBS, 100 U/mL penicillin and 100 μ g/mL streptomycin, 5% CO ₂ , 37 °C) and subsequent cell
143	cycle synchronization for 12 h, HUVECs were divided into the following groups: normal glucose
144	group (NG, 5.56 mmol/L glucose), high glucose group (HG, 30 mmol/L glucose), low, middle,
145	and high concentrations of Sar group (HG+Sar, 30 mmol/L glucose plus 0.2, 1.0, 5.0 μ mol/L
146	sarsasapogenin, respectively), PAR-1 antagonist group (HG+Vor, 30 mmol/L glucose plus 1.0
147	μ mol/L vorapaxar), thrombin inhibitor group (HG+Arg, 30 mmol/L glucose plus 1.0 μ mol/L
148	argatroban), AGEs inhibitor group (HG+AG, 30 mmol/L glucose plus 1.0 µmol/L
149	aminoguanidine), and RAGE antagonist group (HG+FPS-ZM1, 30 mmol/L glucose plus 1.0
150	μ mol/L FPS-ZM1). Sarsasapogenin (purity > 98%) was purchased from Beijing Medicass
151	Biotechnologies, Co. Ltd., China, vorapaxar d from Selleckchem (Shanghai), argatroban from
152	Sigma-Aldrich (Shanghai), aminoguanidine from Aladdin (Shanghai), and FPS-ZM1 from
153	MedChemExpress (Shanghai), China. Sarsasapogenin and all the above tool drugs were dissolved
154	in dimethylsulfoxide and made into stock solutions for use. After treatment with the above
155	different agents for 48 h, the cells were harvested for indices analysis. The culture time was

- selected according to the changes of PAR-1 protein in HUVECs cultured with 30 mmol/L glucose
- 157 for 24 h, 48 h, and 72 h, respectively.
- 158 2.3. PAR-1 knockdown in HUVECs
- 159 Lentivirus carrying F2R shRNA (shF2R) (Shanghai Genechem Gene Chemical Technology, Co.
- 160 Ltd., China) was transfected into HUVECs, establishing a stable cell line with PAR-1 knockdown.
- 161 After 72 h of screening with puromycin (Xuzhou VICMED Bioengineering Co., Ltd., China),
- samples of cell stable strains were collected. Then the interference efficiency of shF2R was
- 163 confirmed, and the cells were divided into two kinds: negative control (shNC) and PAR-1
- 164 knockdown (shF2R). The specific groups were: HG group (30 mmol/L glucose), HG+Sar group
- 165 (30 mmol/L glucose plus 5 µmol/L Sar), shF2R+HG group (30 mmol/L glucose in shF2R cells),
- and shF2R+HG+Sar, (30 mmol/L glucose plus 5 µmol/L in shF2R cells). The protein expression
- 167 of NLRP1 was detected by Western blot and intracellular IL-18 level by enzyme-linked
- 168 immunosorbent assay (ELISA).
- 169 2.4. CCK-8 assay for cell viability
- 170 CCK-8 assay was used for cell damage [29]. Briefly, cell suspension (100 μ L/well, 1.0×10⁶/ml)
- 171 was pre-incubated in a 96-well plate for 24-48 h at 37°C in a humidified atmosphere of 5% CO₂.
- 172 After the cells were incubated in different groups for 24 h, 10 µL of the CCK-8 solution (Dongren
- 173 Chemical Technology (Shanghai) Co. Ltd., China) was added to each well of the plate and
- 174 incubated for 2 h in incubator. After 10 µL of 1% (w/v) SDS added to each well in dark at room
- temperature, the absorbance was determined at 450 nm using a microplate reader. The net
- absorbance of the normal glucose group was considered as 100% of the cell viability.
- 177 2.5. Lactate dehydrogenase (LDH) release for cytotoxicity

178	LDH release was used to further assess endothelial cell injury referring to previous report [30].
179	Add 100 μ L of cell suspension to each well in 96-well plate, mix and prepare in culture incubator
180	$(37 \ ^{\circ}C, 5\% \ CO_2)$ for 24 h. One hour before the scheduled detection time point, the cell culture
181	plate was taken out from the cell culture incubator, and the reagent provided by the LDH release
182	kit (Beyotime Biotechnology, Nantong, China) was added to the "control well with maximum
183	enzyme activity". After adding the reagents of LDH release, mix repeatedly and continue to
184	incubate in the cell culture incubator. After the predetermined time was reached, the cell culture
185	plates were centrifuged at 400 g for 5 min. Then 120 μ L of the supernatant was taken and added to
186	the corresponding well in a new 96-well plate, and then 60 μ L of test solution of LDH release was
187	added, mixed well, and incubated at room temperature for 30 min in the dark. The absorbance was
188	then measured at 490 nm. The net absorbance of the normal glucose group was considered as
189	100% of the LDH release.
189 190	2.6. Determination of thrombin activity
189 190 191	100% of the LDH release.2.6. Determination of thrombin activityThrombin activity was measured by a fluorometric assay based on the cleavage rate of the
189 190 191 192	 100% of the LDH release. 2.6. Determination of thrombin activity Thrombin activity was measured by a fluorometric assay based on the cleavage rate of the synthetic thrombin substrate Boc-Asp (OBzl)-Pro-Arg-AMC according to previous study [31].
189 190 191 192 193	 100% of the LDH release. 2.6. Determination of thrombin activity Thrombin activity was measured by a fluorometric assay based on the cleavage rate of the synthetic thrombin substrate Boc-Asp (OBzl)-Pro-Arg-AMC according to previous study [31]. The protein concentration in the supernatant of tissues or cells was determined by the BCA
189 190 191 192 193 194	 100% of the LDH release. 2.6. Determination of thrombin activity Thrombin activity was measured by a fluorometric assay based on the cleavage rate of the synthetic thrombin substrate Boc-Asp (OBzl)-Pro-Arg-AMC according to previous study [31]. The protein concentration in the supernatant of tissues or cells was determined by the BCA method. Tris/HCL 1.21 g, CaCl₂ 22.2 mg, NaCl 1.755 g, and BSA 0.2 g were dissolved in 200 mL
 189 190 191 192 193 194 195 	 100% of the LDH release. 2.6. Determination of thrombin activity Thrombin activity was measured by a fluorometric assay based on the cleavage rate of the synthetic thrombin substrate Boc-Asp (OBzl)-Pro-Arg-AMC according to previous study [31]. The protein concentration in the supernatant of tissues or cells was determined by the BCA method. Tris/HCL 1.21 g, CaCl₂ 22.2 mg, NaCl 1.755 g, and BSA 0.2 g were dissolved in 200 mL of deionized water (pH = 8.8) to prepare a buffer solution, which was stored at 4°C until use. The
 189 190 191 192 193 194 195 196 	 100% of the LDH release. 2.6. Determination of thrombin activity Thrombin activity was measured by a fluorometric assay based on the cleavage rate of the synthetic thrombin substrate Boc-Asp (OBzl)-Pro-Arg-AMC according to previous study [31]. The protein concentration in the supernatant of tissues or cells was determined by the BCA method. Tris/HCL 1.21 g, CaCl₂ 22.2 mg, NaCl 1.755 g, and BSA 0.2 g were dissolved in 200 mL of deionized water (pH = 8.8) to prepare a buffer solution, which was stored at 4°C until use. The 77 mg Boc-Asp (OBzl)-Pro-Arg-AMC fluorogenic substrate (Nanjing Peptide Industry
 189 190 191 192 193 194 195 196 197 	 2.6. Determination of thrombin activity Thrombin activity was measured by a fluorometric assay based on the cleavage rate of the synthetic thrombin substrate Boc-Asp (OBzl)-Pro-Arg-AMC according to previous study [31]. The protein concentration in the supernatant of tissues or cells was determined by the BCA method. Tris/HCL 1.21 g, CaCl₂ 22.2 mg, NaCl 1.755 g, and BSA 0.2 g were dissolved in 200 mL of deionized water (pH = 8.8) to prepare a buffer solution, which was stored at 4°C until use. The 77 mg Boc-Asp (OBzl)-Pro-Arg-AMC fluorogenic substrate (Nanjing Peptide Industry Biotechnology Co., Ltd, China) was dissolved in 10 mL of DMSO, and 1.0 mg bestatin
 189 190 191 192 193 194 195 196 197 198 	 2.6. Determination of thrombin activity Thrombin activity was measured by a fluorometric assay based on the cleavage rate of the synthetic thrombin substrate Boc-Asp (OBzl)-Pro-Arg-AMC according to previous study [31]. The protein concentration in the supernatant of tissues or cells was determined by the BCA method. Tris/HCL 1.21 g, CaCl₂ 22.2 mg, NaCl 1.755 g, and BSA 0.2 g were dissolved in 200 mL of deionized water (pH = 8.8) to prepare a buffer solution, which was stored at 4°C until use. The 77 mg Boc-Asp (OBzl)-Pro-Arg-AMC fluorogenic substrate (Nanjing Peptide Industry Biotechnology Co., Ltd, China) was dissolved in 10 mL of DMSO, and 1.0 mg bestatin (Selleckchem, Shanghai, China) in 1 mL DMSO, mixed well in dark, and stored at -20°C.

200	with a final volume 100 μ L including bestatin and the fluorescent substrate in a black 96-well
201	microplate, and then fully mixed. The reaction was carried out in an oven at 37 °C for 50 min, and
202	the optical density value was immediately measured with a fluorescence spectroscopy at the
203	excitation wavelength 360 nm and emission wavelength 465 nm. The net absorbance from the
204	plates of cells cultured with normal glucose was considered as 100% thrombin activity.
205	2.7. ELISA assay of IL-18 and IL-1β
206	IL-18 and IL-1 β levels were measured by using corresponding human IL-18 and IL-1 β ELISA kits
207	(Wuhan Boster Bio-technology Co., Ltd., China) according to the manufacturer's instructions.
208	2.8. Western blotting analysis for PAR-1, cleaved-caspase-1, NLRP1, and RAGE levels
209	Protein concentration of the sample was determined using a BCA protein assay kit (Thermo
210	Scientific, Rockford, IL, USA). The protein samples were separated using sodium dodecyl sulfate
211	polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membrane
212	(Millipore, Bedford, MA, USA). The membrane was blocked with 2% milk powder solution for
213	60 min and incubated over night at 4°C with primary antibodies anti-β-actin (Bioworld
214	Technology, Inc., St. Louis, USA, 1:1000), anti-RAGE (Abcam Company, Cambridge, UK,
215	1:1000), anti-PAR-1 (Sigma-Aldrich Company, Shanghai, China, 1:1000), anti-cleaved-caspase-1
216	(Bioworld Technology, Inc., Bloomington, USA, 1:1000), and anti-NLRP1 (Abcam Company,
217	Cambridge, USA, 1:1000). The proteins were detected using goat anti rabbit IgG(H+L) secondary
218	antibodies (Li-Cor Inc., Lincoln, NE), respectively. Infrared Imaging System (Gene Company
219	Limited, Hong Kong, China) was applied to detect immunoreactive blots. The signal densities on
220	the blots were measured with Image J software and normalized using rabbit anti- β -actin antibody
221	(Bioworld Technology, St. Louis, USA) or rabbit anti-GAPDH antibody (ABclonal

- 222 Biotechnology Co., Ltd., Boston, USA) as an internal control.
- 223 2.9. Immunofluorescence analysis for PAR-1 and AGEs
- 224 Immunofluorescence assay was performed according to the report [32]. Cells plated on coverslips
- were fixed with 4% paraformaldehyde for 15 min, permeabilized with 0.1% TritonX-100 in PBS
- for 5 min, treated with blocking medium (1% bovine serum albumin in PBS) for 30 min, and then
- 227 incubated with anti-PAR-1 antibody (Cat No.Cleaved-Ser42, Sigma-Aldrich Company, Shanghai,
- 228 China) or anti-AGEs antibody (Abcam Company, Cambridge, UK), at 37°C for 2 h.
- 229 Immune-reacted primary antibody was detected after 1-h incubation in dark place at 37°C with a
- 230 secondary antibody Dylight 594 Affinipure donkey anti-rabbit IgG (H+L) (Earthox, Millbrae, CA,
- 231 USA). The cells were further stained with DAPI (Vector, Burlingame, CA, USA) for 2 min in dark
- 232 place at room temperature and washed, then mounted onto microscope slides in mounting
- 233 medium. Observations were carried out by using an Olympus BX43F fluorescence microscope
- 234 (Tokyo, Japan).
- 235 2.10. AGEs expression in umbilical cord by immunofluorescence
- 236 Protein detection in tissue paraffin section by immunofluorescence assay was conducted as our
- 237 previous report [27]. Briefly, 4-µm sections were incubated with anti-AGEs antibody (Abcam
- 238 Company, Cambridge, UK, 1:200) overnight at 4 °C followed by the secondary antibody Dylight
- 239 594-AffiniPure donkey anti-rabbit IgG(H+L) (EarthOx, LLC, Millbrae, USA). Then, the sections
- 240 were further stained with DAPI (Vector, Burlingame, USA) for 3 min in dark place. Finally, the
- sections were examined using an Olympus BX43F fluorescence microscope (Tokyo, Japan).
- 242 2.11. Statistical analysis
- All statistical analyses were carried out using GraphPad Prism 7.0 software. The values (a

244	maximum of two) with a large dispersion to the mean were rejected during data entry. An
245	unpaired, two-tailed Student's t test was performed for statistical analysis or one-way ANOVA
246	with Dunnet's post hoc tests for analysis, wherever applicable. Data were represented as mean \pm
247	SEM. A P value < 0.05 was considered statistically significant.
248	3. Results
249	3.1. Activation of the thrombin/PAR-1 pathway and AGEs/RAGE axis in GDM patients
250	To determine whether the thrombin/PAR-1 pathway was activated in GDM patients, thrombin
251	activity and protein expression of PAR-1 were assessed in umbilical cord. The data indicated that
252	enzymatic activity of thrombin and protein expression of PAR-1 were significantly (both $P <$
253	0.01) increased in the umbilical cord of GDM women, compared with those in normal pregnant
254	women (Fig. 1A, B). Meanwhile, further to investigate the alteration of AGEs/RAGE axis in
255	GDM condition, AGEs levels and protein expression of RAGE were determined in the GDM
256	women. It was found that protein expression of RAGE ($P < 0.01$) as well as AGEs levels was
257	markedly up-regulated in the umbilical cord of GDM women, compared with the normal pregnant
258	women (Fig. 1C, D). These results indicated that both thrombin/PAR-1 pathway and AGEs/RAGE
259	axis were activated in vascular endothelium in GDM condition.
260	3.2. Activation of the NLRP1 inflammasome in GDM patients
261	In order to explore whether activation of the NLRP1 inflammasome occurred in GDM patients,
262	protein expression of NLRP1 and cleaved-caspase 1 (two major components of the NLRP1
263	inflammasome) in umbilical cord, and an important product IL-18 levels in plasma were
264	examined. GDM significantly ($P < 0.05$ or $P < 0.01$) raised the protein expressions of NLRP1 and
265	cleaved-caspase 1 in umbilical cord as well as IL-18 levels in plasma of the expectant women,

266	compared with the normal expectant mothers (Fig. 2A, B, C). However, it was found that IL-1 β
267	levels were very low in plasma of GDM patients (data not shown). So the NLRP1 inflammasome
268	was activated in GDM condition.
269	3.3. Activation of the thrombin/PAR-1 pathway in HG-cultured HUVECs and effects of Sar
270	To thoroughly investigate the changes of those pathways in GDM condition, HG-cultured
271	HUVECs (a cell line of endotheliocyte) was used. Protein expression of PAR-1 was selected to be
272	examined in HUVECs cultured with high glucose for different time to seek for applicable culture
273	protocol. It was found that 30 mmol/L glucose obviously increased the protein expression of
274	PAR-1 in HUVECs after culture for both 48 h and 72 h by immunofluorescence analysis, while
275	PAR-1 protein was slightly raised for 24 h culture (Fig. 3). So the in vitro experiment protocol
276	HUVECs cultured with 30 mmol/L glucose for 48 h was adopted.
277	Chronic HG culture moderately increased thrombin activity in HUVECs compared with normal
278	glucose group (Fig. 4A), while dramatically ($P < 0.05$) up-regulated PAR-1 protein expression
279	(Fig. 4B). The results were similar to those in GDM patients (Fig. 1A, B). Nonetheless, both
280	PAR-1 antagonism with vorapaxar and thrombin inhibition with argatroban reversed the increase
281	in PAR-1 protein expression in HG-cultured HUVECs (Fig. 4B), verifying a vital role of PAR-1
282	in vascular endothelial functions. Furthermore, treatment with a natural compound Sar
283	significantly ($P < 0.05$ or $P < 0.01$) declined thrombin activity and PAR-1 protein expression at
284	both 1.0 and 5.0 µmol/L in HG-cultured HUVECs (Fig. 4A, B), demonstrating that Sar could
285	suppress thrombin/PAR-1 pathway.
286	3.4. Activation of AGEs/RAGE axis in HG-cultured HUVECs and effects of Sar

287 The formation of AGEs and protein expression of RAGE were also investigated in HG-cultured

288	HUVECs to seek for the potential mechanism of the activated thrombin/PAR-1 pathway.
289	Immunofluorescence study demonstrated that AGEs level was markedly increased in HG-cultured
290	HUVECs (Fig. 5A), and protein expression of RAGE was also remarkably ($P < 0.01$) up-regulated
291	in HUVECs exposed to chronic HG (Fig. 5B). However, both the AGEs levels and RAGE
292	expression were significantly ($P < 0.05$ or $P < 0.01$) decreased in all three concentrations of Sar
293	groups, compared to the untreated groups in HG-cultured HUVECs (Fig. 5A, B), suggesting a
294	strong inhibitory effect of Sar on AGEs/RAGE interaction.
295	3.5. Endothelial injury in HG-cultured HUVECs and effects of Sar
296	In order to examine whether the activated thrombin/PAR-1 pathway resulted in vascular
297	endothelial injury in prolonged HG condition, cell viability and LDH release were detected in
298	HG-cultured HUVECs. Figure 6A showed that cell viability was markedly ($P < 0.05$) decreased in
299	HUVECs cultured with HG for 48 h related to that in HUVECs cultured with normal glucose, and
300	LDH release was remarkably ($P < 0.01$) promoted in HG-cultured HUVECs (Fig. 6B).
301	Nonetheless, a PAR-1 antagonist or a thrombin inhibitor significantly ($P < 0.05$ or $P < 0.01$)
302	reduced LDH release in HG-cultured HUVECs, and the effect of PAR-1 antagonism was better
303	than that of thrombin inhibition (Fig. 6B). These reflected a contribution of the thrombin/PAR-1
304	pathway to vascular endothelial injury under the high glucose conditions. Moreover, cell viability
305	and LDH release were significantly ($P < 0.05$ or $P < 0.01$) ameliorated by Sar at the
306	concentrations of 0.2, 1.0, and 5.0 µmol/L in HG-cultured HUVECs (Fig. 6A, B).
307	3.6. Activation of the NLRP1 inflammasome in HG-cultured HUVECs and effects of Sar
308	In order to explore whether the NLRP1 inflammasome was activated in HUVECs exposed to
309	chronic HG, protein expressions of NLRP1 and cleaved-caspase 1 as well as the levels of IL-18

310	and IL-1 β were determined. Results indicated that NLRP1 inflammasome was significantly
311	activated in HG-cultured HUVECs, as evidenced by the increased protein expressions of NLRP1
312	$(P < 0.01)$ and cleaved-caspase 1 $(P < 0.05)$, and the elevated levels of IL-18 and IL-1 β (both $P <$
313	0.01), compared with the culture with normal glucose (Fig. 7A-D). Moreover, treatment with Sar
314	at 1.0 or 5.0 µmol/L had similar ameliorative effects to thrombin/PAR-1 pathway inhibition on the
315	activation of NLRP1 inflammasome in HG-cultured HUVECs, while 0.2 μ mol/L Sar mildly
316	improved these indices (Fig. 7A-D). Together with our previous report [27], we could conclude
317	Sar indeed had an inhibitory efficacy on NLRP1/3 inflammasome.
318	3.7. Interaction between AGEs/RAGE axis and thrombin/PAR-1 pathway in HG-cultured
319	HUVECs
320	To verify whether the activated thrombin/PAR-1 pathway was associated with the enhanced
321	AGEs/RAGE interaction in HG-cultured HUVECs, both thrombin activity and PAR-1 expression
322	were assessed in the presence and absence of AGEs inhibition or RAGE antagonism. It was found
323	that protein expression of PAR-1 was markedly (both $P < 0.01$) reduced in HUVECs co-cultured
324	with HG plus either aminoguanidine (AG, a typical inhibitor of AGEs formation) or FPS-ZM1 (a
325	high-affinity antagonist of RAGE) (Fig. 8A), as well as co-culture with HG and high
326	concentration of Sar (Fig. 8A). However, thrombin activity was not changed in HUVECs
327	co-cultured with HG plus either aminoguanidine or FPS-ZM1, compared with HG culture alone
328	(Fig. 8B), but thrombin activity was still significantly ($P < 0.05$) decreased after co-culture with
329	HG and high concentration of Sar (Fig. 8B). These results demonstrated that it was thrombin
330	receptor PAR-1 not thrombin itself that was influenced by AGEs/RAGE axis in HUVECs in HG
331	condition. On the other hand, high glucose co-culture with a thrombin inhibitor argatroban or a

332	PAR-1 antagonist vorapaxar markedly attenuated the increase in AGEs level in HUVECs (Fig.
333	5A), and greatly ($P < 0.05$ or $P < 0.01$) suppressed the expression of RAGE (Fig. 5B), compared
334	with HG culture alone. Taken together, a crosstalk may exist between thrombin/PAR-1 pathway
335	and AGEs/RAGE axis in vascular endothelial injury in high glucose condition.
336	3.8 Thrombin/PAR-1 pathway mediated the activation of NLRP1 inflammasome in HG-cultured
337	HUVECs
338	The mechanism of the proinflammatory effect of activated thrombin/PAR-1 pathway was
339	explored from the point of NLRP1 inflammasome activation in HG-cultured HUVECs. Compared
340	with high glucose culture alone, high glucose co-culture with a thrombin inhibitor argatroban or a
341	PAR-1 antagonist vorapaxar reversed the increases in NLRP1, cleaved-caspase 1, IL-18, and
342	IL-1 β levels in HG-cultured HUVECs (Fig. 7A-D), showing that activated thrombin/PAR-1
343	pathway may cause NLRP1 inflammasome activation in HG-cultured HUVECs. To further testify
344	this relationship, a HUVEC line with a stable PAR-1 knockdown by using short hairpin RNA
345	(shRNA) was established. The interference efficiency of F2R shRNA (F2R as the gene symbol of
346	PAR-1) (Fig. 9) was enough to perform the following experiment. It was found that NLRP1 and
347	IL-18 levels were dramatically (both $P < 0.01$) decreased in HG-cultured HUVECs with PAR-1
348	knockdown, compared to those in HG-cultured HUVECs with normal PAR-1 expression (Fig.
349	10A, B). The similar results were obtained by using HG co-treatment with high concentration of
350	Sar (i.e. HG+Sar-5) in the condition of PAR-1 knockdown (Fig. 10A, B). Altogether, we could
351	obtain that the proinflammatory effect of activated thrombin/PAR-1 pathway was achieved
352	through the activation of NLRP1 inflammasome in vascular endothelium in high glucose
353	condition.

~		4	D '	•
-	54	4	1)1601	issinn
-	54	ч.	DISC	u 331011

355	In this study, we found that thrombin/PAR-1 pathway, the NLRP1 inflammasome, and
356	AGEs/RAGE axis were activated in the umbilical cord of GDM patients. In HUVECs cultured
357	with chronic high glucose, the above mentioned pathways were also activated, in couple with
358	noteworthy endothelial injuries. Further studies demonstrated that there may be a crosstalk
359	between AGEs/RAGE axis and thrombin/PAR-1 pathway, followed by the activation of NLRP1
360	inflammasome in HG-cultured HUVECs. Moreover, a natural compound sarsasapogenin
361	ameliorated endothelial damages caused by chronic high glucose, which was achieved through
362	suppressing vascular inflammation mediated by both AGEs/RAGE axis and thrombin/PAR-1
363	pathway.
364	The physiological changes of blood coagulation occur in normal pregnancy and might be at a
365	prethrombotic state, evidenced by both the increased coagulation activity and the reduced
366	anticoagulation and fibrinolytic activity [4]. Gumus et al. reported that thrombin-activatable
367	fibrinolysis inhibitor antigen levels in plasma were significantly higher in pregnant women with
368	GDM when compared with controls, and may contribute to the decreased fibrinolytic potency,
369	causing a thrombophilic state [7]. The present study indicated that thrombin activity was markedly
370	elevated in the umbilical cord of GDM patients and HG-cultured HUVECs. Furthermore, protein
371	expression of PAR-1 was significantly raised in both the umbilical cord of GDM patients and
372	HG-cultured HUVECs, indicating that thrombin/PAR-1 pathway was activated in the vascular
373	endothelial cells in GDM condition.
374	Obvious vascular endothelial injury happens in GDM condition, which is closely related to
375	inflammation [11]. Accumulating data suggest that inflammasomes, mainly NLRP3 and NLRP1,

376	are involved in the generation of tissue or organ damage through exaggerating systemic and
377	organ-specific inflammatory responses [33]. We found that the NLRP1 inflammasome was
378	activated in GDM patients, for protein expressions of its main components NLRP1 and
379	cleaved-caspase 1 in the umbilical cord and its product IL-18 levels in plasma were remarkably
380	elevated. Similarly, the NLRP1 inflammasome was also activated in HG-cultured HUVECs,
381	accompanied by the damaged endothelial functions. Additionally, Jiang et al. reported that the
382	NLRP3 inflammasome activation was also involved in HG-induced endothelial injury in HUVECs
383	[20]. On the other hand, thrombin is a potent modulator of endothelial function, and
384	thrombin-dependent adhesion of monocytes to endothelial cells requires an intact endothelial
385	CARMA3·Bcl10·MALT1 signalosome [17], and up-regulation of PAR-1 is critically involved in
386	the co-activation of coagulation and inflammatory responses caused by thrombin [14]. In the
387	present study, co-treatment with high glucose and a thrombin inhibitor argatroban or a PAR-1
388	antagonist vorapaxar reversed the increases in NLRP1, cleaved-caspase 1, IL-18, and IL-1 β levels
389	in HG-cultured HUVECs. Moreover, NLRP1 and IL-18 were markedly decreased in HUVECs
390	cultured with HG after PAR-1 knockdown by using F2R shRNA. These results demonstrated that
391	the activated NLRP1 inflammasome was due to activation of the thrombin/PAR-1 pathway in
392	endothelial cells in GDM condition.
393	AGEs may prime pro-inflammatory mechanisms through RAGE in endothelial cells, thereby
394	amplifying pro-inflammatory mechanisms in chronic inflammatory disorders [34]. RAGE
395	expression was significantly increased in the omental adipose tissue explant from GDM subjects,
396	and its ligand high mobility group box 1 protein was markedly elevated in fetal membranes from
397	GDM subjects [35]. Our finding showed that AGEs levels and RAGE protein expression were

398	remarkably raised in the umbilical cord of GDM patients. Coincidentally, Tang et al. found that
399	AGEs/RAGE axis was activated in the rat model of GDM, and secretory RAGE showed a
400	protective effect on fetal development [36]. Furthermore, our cell experiments demonstrated that
401	AGEs/RAGE axis was similarly activated in HG-cultured HUVECs, and Rajaraman et al. reported
402	that HG caused vascular inflammation through AGEs mediated multiple axes besides
403	AGEs/RAGE axis in the primary culture of HUVECs [37]. These studies reinforce the enhanced
404	AGEs/RAGE interaction in vascular endothelium in chronic high glucose exposure.
405	Importantly, our observations showed that AGEs inhibition or RAGE antagonism markedly
406	decreased PAR-1 protein expression (Fig. 8A) in HG-cultured HUVECs, but did not affect
407	thrombin activity (Fig. 8B), exhibiting that the enhanced AGE/RAGE interaction mediated
408	HG-induced PAR-1 up-regulation in HUVECs. On the other hand, thrombin inhibition or PAR-1
409	antagonism significantly declined not only AGEs levels (Fig. 5A) but also RAGE protein
410	expression in HG-cultured HUVECs (Fig. 5B). Additionally, Ishibashi et al. reported that AGEs
411	potentiated the citrated plasma-induced oxidative and inflammatory reactions in endothelial cells
412	via the activation of thrombin/PAR-1 system, and blockade of the crosstalk between AGEs/RAGE
413	axis and coagulation system might be a novel therapeutic target for thromboembolic disorders in
414	diabetes [16]. In short, these results revealed an interaction between AGE/RAGE axis and
415	thrombin/PAR-1 pathway in endothelial injuries in prolonged high glucose condition.
416	The present study also testified that a natural compound Sar had an ameliorative effect on
417	endothelial damages against chronic high glucose. Timosaponin BII and AIII, the natural
418	glycosides of Sar, possess strong antiplatelet and antithrombotic effects [21, 22]. Our study
419	indicated that Sar could inhibit the activation of thrombin/PAR-1 pathway in HG-cultured

420	HUVECs, which may be the reasons for the antiplatelet and antithrombotic effects of the
421	glycosides of Sar. Moreover, timosaponin BII, AIII, and Sar show powerful anti-inflammatory
422	actions mainly through inhibiting NF-kappaB signal pathway and MAPK pathway [23-26]. In the
423	current study, we found that Sar remarkably suppressed the activated NLRP1 inflammasome in
424	HG-cultured HUVECs, which further clarified the action mechanism of anti-inflammatory
425	efficacy of Sar and its glycosides. Meanwhile, our results indicated that Sar significantly inhibited
426	AGEs/RAGE interaction in HG-cultured HUVECs. In addition, our previous report demonstrated
427	that Sar restrained the activation of AGEs/RAGE axis in the kidney of rats with diabetic
428	nephropathy [27]. Therefore, these findings indicated that Sar showed good protection against
429	chronic high glucose-induced endothelial damages through several pathways, suggesting Sar a
430	multi-target compound.
431	In summary, our findings demonstrated that high glucose-induced endothelial damage in GDM
432	was associated with thrombin/PAR-1 pathway mediated activation of the NLRP1 inflammasome,
433	and there may be an interaction between thrombin/PAR-1 pathway and AGEs/RAGE axis in
434	endothelial damages in high glucose state (Fig. 11). Moreover, Sar could act as a multi-target
435	protective agent against endothelial injury in prolonged HG condition (Fig. 11).
436	
437	Conflict of interest
438	The authors declare no conflict of interest.

439 Acknowledgements

440 The work was supported through funding from Qing Lan Project of Jiangsu Province (2014),

441 China, and Fundamental Research Funds for the Research on Graduate Innovation Program,

- 442 Jiangsu Province (NO: KYCX17_1731), China.
- 443 References
- 444 [1] H.S.C.R. Group, B.E. Metzger, L.P. Lowe, A.R. Dyer, E.R. Trimble, U. Chaovarindr, D.R.
- 445 Coustan, D.R. Hadden, D.R. McCance, M. Hod, H.D. McIntyre, J.J. Oats, B. Persson, M.S.
- 446 Rogers, D.A. Sacks, Hyperglycemia and adverse pregnancy outcomes, N Engl J Med 358(19)
- 447 (2008) 1991-2002.
- 448 [2] D. Dabelea, D.J. Pettitt, Intrauterine diabetic environment confers risks for type 2 diabetes
- 449 mellitus and obesity in the offspring, in addition to genetic susceptibility, J Pediatr Endocrinol
- 450 Metab 14(8) (2001) 1085-91.
- 451 [3] L. Bellamy, J.P. Casas, A.D. Hingorani, D. Williams, Type 2 diabetes mellitus after gestational
- diabetes: a systematic review and meta-analysis, Lancet 373(9677) (2009) 1773-9.
- [4] D. Katz, Y. Beilin, Disorders of coagulation in pregnancy, Br J Anaesth 115 Suppl 2 (2015)
 ii75-88.
- 455 [5] L. Pretorius, G.J.A. Thomson, R.C.M. Adams, T.A. Nell, W.A. Laubscher, E. Pretorius,
- 456 Platelet activity and hypercoagulation in type 2 diabetes, Cardiovasc Diabetol 17(1) (2018)
 457 141.
- 458 [6] J. Bendl, J. Kvasnicka, A. Umlaufova, J. Kvasnicka, Jr., J. Zivny, [Hemostasis and levels of
- 459 cytoadhesion molecules in gestational diabetes], Ceska Gynekol 64(2) (1999) 83-6.
- 460 [7] Gumus, II, A. Kargili, F. Karakurt, B. Kasapoglu, A. Derbent, I. Kaygusuz, C. Koca, S.
- 461 Sevgili, Levels of thrombin activatable fibrinolysis inhibitor in gestational diabetes mellitus,
- 462 Gynecol Endocrinol 29(4) (2013) 327-30.
- 463 [8] S.R. Coughlin, Thrombin signalling and protease-activated receptors, Nature 407(6801) (2000)

- 464 258-64.
- 465 [9] H.S. Bajaj, C. Ye, A.J. Hanley, M. Sermer, B. Zinman, R. Retnakaran, Biomarkers of vascular
- 466 injury and endothelial dysfunction after recent glucose intolerance in pregnancy, Diab Vasc
- 467 Dis Res 15(5) (2018) 449-457.
- 468 [10] M.D. Savvidou, L. Geerts, K.H. Nicolaides, Impaired vascular reactivity in pregnant women
- 469 with insulin-dependent diabetes mellitus, Am J Obstet Gynecol 186(1) (2002) 84-8.
- 470 [11] P. Pantham, I.L. Aye, T.L. Powell, Inflammation in maternal obesity and gestational diabetes
- 471 mellitus, Placenta 36(7) (2015) 709-15.
- 472 [12] N. Zheng, X. Shi, X. Chen, W. Lv, Associations Between Inflammatory Markers, Hemostatic
- 473 Markers, and Microvascular Complications in 182 Chinese Patients With Type 2 Diabetes
- 474 Mellitus, Lab Med 46(3) (2015) 214-20.
- 475 [13] W.M. Cheung, M.R. D'Andrea, P. Andrade-Gordon, B.P. Damiano, Altered vascular injury
- 476 responses in mice deficient in protease-activated receptor-1, Arterioscler Thromb Vasc Biol
- 477 19(12) (1999) 3014-24.
- 478 [14] C. Schoergenhofer, M. Schwameis, G. Gelbenegger, N. Buchtele, B. Thaler, M. Mussbacher,
- 479 G. Schabbauer, J. Wojta, P. Jilma-Stohlawetz, B. Jilma, Inhibition of Protease-Activated
- 480 Receptor (PAR1) Reduces Activation of the Endothelium, Coagulation, Fibrinolysis and
- 481 Inflammation during Human Endotoxemia, Thromb Haemost 118(7) (2018) 1176-1184.
- 482 [15] K. De Ceunynck, C.G. Peters, A. Jain, S.J. Higgins, O. Aisiku, J.L. Fitch-Tewfik, S.A.
- 483 Chaudhry, C. Dockendorff, S.M. Parikh, D.E. Ingber, R. Flaumenhaft, PAR1 agonists
- 484 stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory
- 485 injury, Proc Natl Acad Sci U S A 115(5) (2018) E982-E991.

486	[16] Y. Ishibashi, T. Matsui, S. Ueda, K. Fukami, S. Yamagishi, Advanced glycation end products
487	potentiate citrated plasma-evoked oxidative and inflammatory reactions in endothelial cells by
488	up-regulating protease-activated receptor-1 expression, Cardiovasc Diabetol 13 (2014) 60.
489	[17] P.C. Delekta, I.J. Apel, S. Gu, K. Siu, Y. Hattori, L.M. McAllister-Lucas, P.C. Lucas,
490	Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are
491	mediated by the CARMA3.Bcl10.MALT1 signalosome, J Biol Chem 285(53) (2010)
492	41432-42.
493	[18] K. Tantivejkul, R.D. Loberg, S.C. Mawocha, L.L. Day, L.S. John, B.A. Pienta, M.A. Rubin,
494	K.J. Pienta, PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells
495	through a Bcl-xL-dependent mechanism, J Cell Biochem 96(3) (2005) 641-52.
496	[19] P.R. Lee, T.P. Johnson, S. Gnanapavan, G. Giovannoni, T. Wang, J.P. Steiner, M. Medynets,
497	M.J. Vaal, V. Gartner, A. Nath, Protease-activated receptor-1 activation by granzyme B causes
498	neurotoxicity that is augmented by interleukin-1beta, J Neuroinflammation 14(1) (2017) 131.
499	[20] T. Jiang, D. Jiang, L. Zhang, M. Ding, H. Zhou, Anagliptin ameliorates high glucose-
500	induced endothelial dysfunction via suppression of NLRP3 inflammasome activation mediated
501	by SIRT1, Mol Immunol 107 (2019) 54-60.
502	[21] ZH.Z. Su-Yan Li, Hai-Yun Pei, et al., Effect of timosaponin AIII on formation of thrombus,
503	Bull Acad Mil Med Sci 30(4) (2006) 340-342.
504	[22] W.Q. Lu, Y. Qiu, T.J. Li, X. Tao, L.N. Sun, W.S. Chen, Antiplatelet and antithrombotic
505	activities of timosaponin B-II, an extract of Anemarrhena asphodeloides, Clin Exp Pharmacol
506	Physiol 38(7) (2011) 430-4.
507	[23] Z. Wang, J. Cai, Q. Fu, L. Cheng, L. Wu, W. Zhang, Y. Zhang, Y. Jin, C. Zhang,

- 508 Anti-Inflammatory Activities of Compounds Isolated from the Rhizome of Anemarrhena
- solution asphodeloides, Molecules 23(10) (2018).
- 510 [24] W.Q. Lu, Y. Qiu, T.J. Li, X. Tao, L.N. Sun, W.S. Chen, Timosaponin B-II inhibits
- 511 pro-inflammatory cytokine induction by lipopolysaccharide in BV2 cells, Arch Pharm Res
- **512 32(9)** (2009) 1301-8.
- 513 [25] J.Y. Kim, J.S. Shin, J.H. Ryu, S.Y. Kim, Y.W. Cho, J.H. Choi, K.T. Lee, Anti-inflammatory
- 514 effect of anemarsaponin B isolated from the rhizomes of Anemarrhena asphodeloides in
- 515 LPS-induced RAW 264.7 macrophages is mediated by negative regulation of the nuclear
- factor-kappaB and p38 pathways, Food Chem Toxicol 47(7) (2009) 1610-7.
- 517 [26] S.M. Lim, J.J. Jeong, G.D. Kang, K.A. Kim, H.S. Choi, D.H. Kim, Timosaponin AIII and its
- 518 metabolite sarsasapogenin ameliorate colitis in mice by inhibiting NF-kappaB and MAPK
- activation and restoring Th17/Treg cell balance, Int Immunopharmacol 25(2) (2015) 493-503.
- 520 [27] Y.W. Liu, Y.C. Hao, Y.J. Chen, S.Y. Yin, M.Y. Zhang, L. Kong, T.Y. Wang, Protective
- 521 effects of sarsasapogenin against early stage of diabetic nephropathy in rats, Phytother Res
- **522 32(8) (2018) 1574-1582.**
- 523 [28] D. International Association of, P. Pregnancy Study Groups Consensus, B.E. Metzger, S.G.
- 524 Gabbe, B. Persson, T.A. Buchanan, P.A. Catalano, P. Damm, A.R. Dyer, A. Leiva, M. Hod,
- 525 J.L. Kitzmiler, L.P. Lowe, H.D. McIntyre, J.J. Oats, Y. Omori, M.I. Schmidt, International
- 526 association of diabetes and pregnancy study groups recommendations on the diagnosis and
- 527 classification of hyperglycemia in pregnancy, Diabetes Care 33(3) (2010) 676-82.
- 528 [29] D. Lei, L. Chengcheng, Q. Xuan, C. Yibing, W. Lei, Y. Hao, L. Xizhi, L. Yuan, Y. Xiaoxing,
- 529 L. Qian, Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through

- the Hippo pathway, Pharmacol Res 146 (2019) 104320.
- 531 [30] L. Bao, J. Zu, Q. He, H. Zhao, S. Zhou, X. Ye, X. Yang, K. Zan, Z. Zhang, H. Shi, G. Cui,
- 532 Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase,
- 533 Toxicol Mech Methods 27(1) (2017) 18-23.
- 534 [31] D. Bushi, J. Chapman, A. Katzav, E. Shavit-Stein, N. Molshatzki, N. Maggio, D. Tanne,
- 535 Quantitative detection of thrombin activity in an ischemic stroke model, J Mol Neurosci 51(3)536 (2013) 844-50.
- 537 [32] L. Du, L. Wang, B. Wang, J. Wang, M. Hao, Y.B. Chen, X.Z. Li, Y. Li, Y.F. Jiang, C.C. Li,
- 538 H. Yang, X.K. Gu, X.X. Yin, Q. Lu, A novel compound AB38b attenuates oxidative stress and
- 539 ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2
- 540 signaling, Acta pharmacologica Sinica (2019).
- 541 [33] P. Bortolotti, E. Faure, E. Kipnis, Inflammasomes in Tissue Damages and Immune Disorders
- 542 After Trauma, Front Immunol 9 (2018) 1900.
- 543 [34] G. Basta, G. Lazzerini, M. Massaro, T. Simoncini, P. Tanganelli, C. Fu, T. Kislinger, D.M.
- 544 Stern, A.M. Schmidt, R. De Caterina, Advanced glycation end products activate endothelium
- 545 through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory
- 546 responses, Circulation 105(7) (2002) 816-22.
- 547 [35] C. Santangelo, T. Filardi, G. Perrone, M. Mariani, E. Mari, B. Scazzocchio, R. Masella, R.
- 548 Brunelli, A. Lenzi, A. Zicari, S. Morano, Cross-talk between fetal membranes and visceral
- adipose tissue involves HMGB1-RAGE and VIP-VPAC2 pathways in human gestational
- 550 diabetes mellitus, Acta Diabetol 56(6) (2019) 681-689.
- 551 [36] X. Tang, Q. Qin, X. Xie, P. He, Protective effect of sRAGE on fetal development in pregnant

552	rats with gestational	diabetes mellitus,	Cell Biochem	Biophys	s 71(2)	(2015)	549-56.
	6	,				<hr/>	

- 553 [37] B. Rajaraman, N. Ramadas, S. Krishnasamy, V. Ravi, A. Pathak, C.S. Devasena, K.
- 554 Swaminathan, A. Ganeshprasad, A.A. Kuppuswamy, S. Vedantham, Hyperglycaemia cause
- vascular inflammation through advanced glycation end products/early growth response-1 axis
- in gestational diabetes mellitus, Mol Cell Biochem 456(1-2) (2019) 179-190.

559	Figure captions
560	Fig. 1 Thrombin activity (A), PAR-1 expression (B), RAGE expression (C), and AGEs levels (D)
561	in the umbilical cord of GDM patients. The 60-70 µg protein was loaded onto the gel in Western
562	blot detection. Mean ± SEM, thrombin (n=8), PAR-1 (n=6), RAGE (n=6). **P<0.01, compared
563	with N. Scale bar: 20 µm.
564	
565	Fig. 2 Protein expressions of NLRP1 (A) and cleaved caspase-1 (B) in umbilical cord, and IL-18
566	levels in plasma (C) of GDM patients. The 60-70 µg protein was loaded onto the gel in Western
567	blot detection. Mean ± SEM, NLRP1 and cleaved caspase-1 (n=6), IL-18 (n=31-32). *P<0.05,
568	**P<0.01, compared with N.
569	
570	Fig. 3 Protein expression of PAR-1 in HUVECs cultured with high glucose for 24 h, 48 h, and 72
571	h by immunofluorescence. NG and HG represented 5.6 mmol/L glucose and 30 mmol/L glucose,
572	respectively. Scale bar: 20 µm.
573	
574	Fig. 4 Effects of sarsasapogenin (Sar) on thrombin activity (A) and PAR-1 expression (B) in
575	HUVECs cultured with high glucose for 48 h. NG, HG, HG+Sar-0.2, HG+Sar-1, HG+Sar-5,
576	HG+Vor, and HG+Arg groups: cells treated with 5.6 mmol/L glucose, 30 mmol/L glucose, 30
577	mmol/L glucose plus 0.2, 1, 5 µmol/L Sar, 1.0 µmol/L vorapaxar (Vor, a selective PAR-1
578	antagonist), or 1.0 µmol/L argatroban (Arg, a typical inhibitor of thrombin), respectively. The 50
579	μ g protein was loaded onto the gel in Western blot detection. Mean \pm SEM, thrombin (n=6),
580	PAR-1 (n=3). *P<0.05, compared with NG; #P<0.05, ##P<0.01, compared with HG.

582	Fig. 5 Effects of sarsasapogenin (Sar) on AGEs levels (A) and protein expression of RAGE (B) in
583	HUVECs treated with high glucose for 48 h. NG, HG, HG+Sar-0.2, HG+Sar-1, HG+Sar-5,
584	HG+Vor, and HG+Arg groups: cells treated with 5.6 mmol/L glucose, 30 mmol/L glucose, 30
585	mmol/L glucose plus 0.2, 1, 5 µmol/L Sar, 1.0 µmol/L vorapaxar (Vor, a selective PAR-1
586	antagonist), or 1.0 µmol/L argatroban (Arg, a typical inhibitor of thrombin), respectively. The 50
587	μ g protein was loaded onto the gel in Western blot detection. Mean \pm SEM, RAGE (n=3). ** <i>P</i> <
588	0.01, compared with NG; $^{\#}P < 0.05$, $^{\#\#}P < 0.01$, compared with HG.
589	
590	Fig. 6 Effects of sarsasapogenin (Sar) on cell viability (A) and LDH release (B) in HUVECs
591	cultured with high glucose for 48 h. NG, HG, HG+Sar-0.2, HG+Sar-1, HG+Sar-5, HG+Vor, and
592	HG+Arg groups: cells treated with 5.6 mmol/L glucose, 30 mmol/L glucose, 30 mmol/L glucose
593	plus 0.2, 1, 5 µmol/L Sar, 1.0 µmol/L vorapaxar (Vor, a selective PAR-1 antagonist), or 1.0
594	μ mol/L argatroban (Arg, a typical inhibitor of thrombin), respectively. Mean \pm SEM, n=3.
594 595	μ mol/L argatroban (Arg, a typical inhibitor of thrombin), respectively. Mean \pm SEM, n=3. * P <0.05, ** P <0.01, compared with NG; * P <0.05, ** P <0.01, compared with HG.
594 595 596	μ mol/L argatroban (Arg, a typical inhibitor of thrombin), respectively. Mean \pm SEM, n=3. * <i>P</i> <0.05, ** <i>P</i> <0.01, compared with NG; * <i>P</i> <0.05, ** <i>P</i> <0.01, compared with HG.

(B), IL-18 (C), and IL-1β (D) in HUVECs treated with high glucose for 48 h. NG, HG,
HG+Sar-0.2, HG+Sar-1, HG+Sar-5, HG+Vor, and HG+Arg groups: cells treated with 5.6 mmol/L
glucose, 30 mmol/L glucose, 30 mmol/L glucose plus 0.2, 1, 5 µmol/L Sar, 1.0 µmol/L vorapaxar
(Vor, a selective PAR-1 antagonist), or 1.0 µmol/L argatroban (Arg, a typical inhibitor of

602 thrombin), respectively. The 50 μg protein was loaded onto the gel in Western blot detection.

603 Mean \pm SEM, NLRP1 (n=5), cleaved caspase-1 (n=4), IL-18 and IL 1 β (n=3). *P < 0.05, **P <

- 604 0.01, compared with NG; $^{\#}P < 0.05$, $^{\#\#}P < 0.01$, compared with HG.
- 605

Fig. 8 Effects of inhibition of AGEs/RAGE axis on PAR-1 expression (A) and thrombin activity (B) in HUVECs cultured with high glucose for 48 h. HG, HG+Sar-5, HG+AG, and HG+FPS-ZM1 groups represent cells treated with 30 mmol/L glucose, 30 mmol/L glucose plus 5 μ mol/L Sar, 1 μ mol/L aminoguanidine (AG, a typical inhibitor of AGEs formation), or 1 μ mol/L FPS-ZM1 (a high-affinity inhibitor of RAGE), respectively. The 50 μ g protein was loaded onto the gel in Western blot detection. Mean \pm SEM, PAR-1 (n=5), thrombin (n=6). **P*<0.05, ***P*<0.01, compared with HG.

613

Fig. 9 Interference efficiency of F2R shRNA (shF2R) was performed in HUVECs. (A) HUVECs
infected with lentivirus containing F2R shRNA (F2R as the gene symbol of PAR-1) under
bright-field microscopy illumination, and fluorescent light in the same field showed stable and
high expression of green fluorescent protein (GFP). (B) The protein levels of PAR-1 by Western
blot using 50 μg total proteins. Mean ± SEM, n=3, **P<0.01, compared with vehicle (shNC).

619

Fig. 10 Effects of PAR-1 knockdown on protein expressions of NLRP1 (A) and IL-18 (B) in
HUVECs treated with high glucose for 48 h. HG, HG+Sar-5, shF2R+HG, and shF2R+HG+Sar-5
groups represent cells infected with lentivirus containing F2R negative control (shNC) or F2R
shRNA (F2R, the gene symbol of PAR-1) subsequently cultured with HG or HG plus 5 µmol/L
Sar, respectively. The 50 µg protein was loaded onto the gel in Western blot detection. Mean ±

SEM, NLRP1 (n=3), IL-18 (n=5). **P < 0.01, compared with HG; #P<0.05, ##P<0.01, compared
with HG+Sar-5.

628 Credit Author Statement

Liu Yao-Wu: Conceptualization, Project administration, Funding acquisition, Writing-Review &
Editing. Liu Yue: Investigation, Methodology, Data curation, Writing-Original draft preparation. Tang
Zhuang-Zhuang: Methodology, Validation, Data curation. Zhang Yu-Meng: Resources,
Visualization. Kong Li: Methodology, Funding acquisition. Xiao Wei-Fen: Conceptualization,
Supervision. Ma Teng-Fei: Visualization, Writing- Reviewing and Editing.

